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ABSTRACT

The numbers of local complimentary inequivalent graph states for 9, 10 and 11 qubit systems are 440, 3132, 40457,
respectively. We calculate the entanglement, the lower and upper bounds of the entanglement and obtain the closest
product states for all these graph states. New patterns of closest product states are analyzed.
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1. Introduction

Graph states are certain pure multipartite quantum states
associated to graphs [1-5] and have important applica-
tions in quantum error correction [6] and one-way quan-
tum computer [7]. A variety of different entanglement
measures have been proposed for multipartite quantum
states, such as, the (Global) Robustness of Entanglement
[8], the Relative Entropy of Entanglement [9,10], and the
Geometric Measure [11]. Fortunately, these entangle-
ment measures are all equal for stabilizer state [12]. It is
known that the graph state is a subset of stabilizer state.
Thus these entanglement measures are all equal for graph
state. The geometric measure is the distance of the state
to its closest product state in terms of the fidelity. The
entanglement of graph states of 1 to 8 qubit systems has
been calculated and the closest product states are found
[13]. We will consider the entanglement of graph states
of 9 to 11 qubits and their closest product states in this
paper. Another closely related entanglement measure is
the Schmidt measure [4,14].

2. Preliminary

The geometric measure of entanglement for pure state
|y}, is defined as

Ely) = min —tom[(gw) .

where Pro is the set of product states. A graph
G =(V;I') is composed of a set V of n vertices and a set
of edges specified by the adjacency matrix I', which is
an nxn symmetric matrix with vanishing diagonal
entries and I', =1 if vertices a,b are connected and
I',, =0 otherwise. The graph state related to graph G
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is defined as

1

1 —urp’

G-,
2" u=0

where 0 = (0, 0,..., 0) and 1 = (1, 1,..., 1) are binary

vectors of length n. The entanglement of a graph state

|G> can be written as

E(G)) = E,(G)) = min~log; (Gl4)] ()

where |¢) = H,-(\/a|0>+*“_ pje'”’ |1)) is the product
pure state. All local complimentary (LC) equivalent
graph states have the same amounts of entanglement, so
only LC inequivalent graph states should be considered
concerning with the entanglement. The number of LC
inequivalent graph states increases with n rapidly. The
number of LC inequivalent graph states up to 8 qubits is
146, the entanglement is calculated with iterative method
and the closest product states are found [13] and are de-

noted with |¢N041> to |¢N04146>.

The entanglement is upper bounded by the local oper-
ation and classical communication (LOCC) bound
Eocc =n-log, N, where N is the the maximal num-

ber of graph basis states that can be discriminated per-
fectly by LOCC [13,15], and lower bounded by some
bipartite entanglement deduced from the state, that is, the
“matching” bound E,; [16]. Thus

Eyi < E(|G>) < Eloce 4)

For a large number of graph states considered later, we
have E; =E o4, the entanglement can be easily be

determined. While for graph states with unequal lower
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and upper bounds, we will use iterative method [13] to
calculate the entanglement and obtain the closest product
states.

3. Classifications of the Graph States of Nine,

Ten and Eleven Qubits

All the graphs of 9, 10 and 11 vertices that are LC ine-
quivalent for their graph states can be found in Ref. [17].
The total number of inequivalent classes of 9-qubit graph
states is 440. We denote them from No.147 to No.586.
The entanglement of the graph states is classified and
listed in Table 1. The entanglement of graph states with
equal lower and upper bounds can be calculated with the
methods in Ref [16], and we use computer program to
determine the bounds. The entanglement of graph states
with unequal bounds can be calculated with the iterative
algorithm [13].

These two graph states whose entanglement values is
5.5124 and 5.8381 are new in the sense that they have
different values of entanglement after the decimal point
with respect to the former (1 to 8 qubit) graph states.

The total number of inequivalent classes of 10-qubit
graph states is 3132, and we denote the graphs from
No.587 to No.3718. The entanglement is classified and
listed in Table 2.

The total number of inequivalent classes of 11-qubit
graph states is 40457, and we denote them from No.3719
to No.44175. The entanglement is classified and listed in
Table 3.

4. Structures of the Closest Product States of
Nine, Ten and Eleven Qubits

4.1. The Nine Qubit System

Denote |¢.>=f|0)+ﬂ/1— e“”i|1) =1....4), with

o= 305 =04597 g =F0. =50 =22,
(|0>—|1>)|O> (|0>—'|1>

|O ’) = %q 0) +i |1>). The closest product state of ring 5

504:_7’ | >

r|ngS> |¢N08>_|¢1>
is Ey,s =1+log,3+log,(3-+/3)~2.9275 [13]. The

graph set with non-integer entanglement (k + 0.9275)
graph states is closely related with ring 5 graph. The
closest product state of graph state whose entanglement
equals 3.9275 can be

[9)=[+)"14.)"14)"0) (5)

The closest product state of graph state whose entan-

graph state is the entanglement
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Table 1. Classification of the graph state of 9 qubits.

E E, Eee NUM
1 1 1 1
2 2 2 10
3 3 3 61
3.9275 3 4 3
4 4 4 207
4.5850 4 5 2
4.9275 4 5 42
5 4 5 112
5.5124 4 6 1
5.8381 4 6 1

Table 2. Classification of the graph state of 10 qubits.

E E, Eee NUM
1 1 1 1
2 2 2 11
3 3 3 103
3.9275 3 4 3
4 4 4 631
4 4 5 5
4.5850 4 5 2
4.9275 4 5 76
5 5 5 1536
5 4 5 100
5.5850 4 6 1
5.9275 4 6 13
6 4 6 13
5 5 6 40
5.5850 5 6 28
5.8549 5 6 12
5.9275 5 6 217
6 5 6 339
6.1669 5 7 1

glement equals 4.9275 can be
[9)=1+)" 14" 14)"[0) ©)

The graph set with non-integer entanglement (k +
0.5850) graph states is closely related with No.19 graph.
The closest product state of graph state whose entangle-
ment equals 4.5850 can be

16)=1+)"4,)"|0)| 1) )

No.510 has a new structure in 9-qubit graph states. Its
entanglement is

Eposio =2+2log,(3) +log,(3-~/3) ~ 5.5124 (8)

its closest product state can be
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Table 3. Classification of the graph state of 11 qubits.

E E, E,.. NUM
1 1 1 1
2 2 2 13
3 3 3 163
3.9275 3 4 3
4 4 4 1561
4 4 5 14
4.5850 4 5 2
4.9275 4 5 121
5 5 5 9951
5 5 6 286
5 4 5 125
5.5850 4 6 1
5.5850 5 6 48
5.8549 5 6 12
5.9275 5 6 1936
5.9275 5 7 1
5.9275 4 6 2
6 5 6 22573
6 5 7 351
6.5124 5 7 4
6.5850 5 7 67
6.7824 5 7 1
6.8381 5 7 1
6.8549 5 7 35
6.9275 5 7 1145
7 5 7 2040
|¢No.510> = | ¢2>®9 . (9)

The entanglement of No.582 is 5.8381, and its closest
product state has a totally new structure. The known
closest product state include components
|4,)(i=1,--,4),]0),]1),|0),|0) , however, there are
new components in the closest product state of No.582.

Denote |¢j>:\/p7j|0>+111— pjei(pj |1>,(j =5,--9).

The new components are listed as follows,
|¢): P ~09357,p=27.3",
|4,): P ~09255,p =214,
|4,):/p ~0.4365,0 = +43.0",
|4):\/p ~0.4208,p=+44.7",

|4):4/p ~0.8807,p=243.8".

In fact, we can find 15 kinds of new component qubits
in the closest product state of graph state No.582. How-
ever, we can transform these 15 new component qubits
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into the above five kinds of qubits by using unitary trans-

. 1 (1 1 1 (1 i .
formation U, = — or U, =— . Usin
! ﬁ(—l J : ﬁ[i J ¢

iterative algorithm, we find the closest product states of
graph state No.582, and denote them as

|®,) = EDDBCAABC ,
|®,) = DEAACBDCB,

|®

DAECBDBAC ,

|®,) = BACEACDBD,

2)
5)
W)
;)
‘)
)
8>

CCBAEABDD,

|®

ABDCAECDB,
|®,)= ADBDBCECA,
|@,) = BCABDDCEA,
|®,) = CBCDDBAAE . (10)

where A, B, C, D, E represent |¢),---,|d, ) , respectively.
If we ignore the order of qubits, the closest product state
of graph state No.582 can be written as

|¢N0_532> — EA®2 B®2c®2 D®2 (1 1)

4.2. The Ten Qubit System

In Table 2, the graph set with non-integer entanglement
(k+0.9275) graph states is characterized by ring 5 graph.
The closest product state can be

[0)=1+)" 1) |0) (12)

for ten qubit graph state with entanglement 3.9275, it can
be

[8)=[+)716)" |#) |0)” (13)

for graph state with entanglement 4.9275, it can be

1) =) [6)7 107 #)]0)]e) (14

when with entanglement 5.9275. The graph set with non-
integer entanglement (k+0.8549) graph states is characte-
rized by graph state No.133. The entanglement of graph
state No.133 is

Enoi3; =1+2log, 3+2log,(3 —/3) ~ 4.8549, its closest

product state can be |¢N0133> = | ¢4>|¢1>®2 |¢4>®2 |¢1>®2 |¢4>

[13]. The closest product state of graph state whose en-
tanglement equals 5.8549 can be

[9)=14)16)" )l )l) " [4:)]4)]0) (15)

The only ten qubit graph state with new pattern of
closest product state is graph state No.3599 whose en-
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tanglement is
Eposs00 =3+2l0g,3~6.1699 (16)

the closest product state can be

|¢No.3599> = |¢3>|¢4>®2 |¢3>®5 |¢1 >®2 (17)

4.3. The Eleven Qubit System

For eleven qubit graph states show in Table 3, a detail
comparison of computed closest product states of
No.3724, No.3765 shows that all these closest states have
a substructure of the closest product state of ring 5 graph.
Ring 5 graph is essential to all these graph states with
entanglement k + 0.9275 (integer k). The closest product
states can be

|¢No.3724> = |+>®5 |¢z>| ¢ >®4 |0> (18)

| trorss) =1=) " [#)]8.)7 (D] #) 7 [0) — (19)

The graph set (No.3764, No0.3936) with non-integer
entanglement (k + 0.5850) graph states is characterized
by graph No.19. The entanglement of graph state No.19
is Ey.o =2+log,3~3.5850 Typically, the closest

product state is |¢N0'19> = |¢53>®3 |¢4>®3 [13]. The closest
state for No.3764 and No.3936 graph state can be

|Bvosrea) =) |4.) 40804710V ) (20)

| tozoas) =[+) [0} #)1:) 2)[0)] ) [ &) @)

respectively. The graph set (No.4113, No.30597) with
non-integer entanglement (k + 0.8549) graph states is
characterized by graph state No.133. The closest state for
No.4113 and No.30597 graph state can be

|Frosris)|4) [4)]64)]60)|40)|4)]4.) 7 [0).
| Fno.z0507) :|¢1>®2 |+>|4’§1>|0>|4’§1>®2 |O>|¢1>|¢4>®2-

The entanglement of No0.30505 is a new type in
11-qubit graph states. Its entanglement is

Enososos = 2+3log,(3- \/5) ~6.7824 (22)

its closest product state can be

|¢No.30505> :|¢1>|¢4>|¢1>|¢4>|¢1>|¢4>®4|¢1>®2 (23)

The entanglement of No0.23813 is 6.8381, the closest
product state of N0.23813 can be

| buosssss) =|+) BEDB|1)DCAAC  (24)

It contains the closest product of graph state No.582
| fross2) s its substructure.

Note that, we have just found one of the many closest
product states for each LC inequivalent graph state. Ac-
tually, there are many local equivalent closest product
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states for the same graph state.

5. Conclusions

We calculate the entanglement of all local complimenta-
ry inequivalent graph states with nine, ten and eleven
qubits. The total number of the graph states we treated is
44029, and we list the numbers of them in Tables 1-3
according to their entanglement. Further calculation for
twelve qubits is quite difficult since there are more than
1.27 million of local complimentary inequivalent graph
states. Four new types of non-integer entanglement val-
ues appear in 9, 10 and 11 qubit graph states. The detail
results and some special characters of the closest product
states are as follows: (1) The graph sets with non-integer
entanglement (k + 0.9275, k + 0.5850 and k + 0.8549)
graph states are specified by ring 5 graph, No.19 graph
and No.133 graph, respectively. Their closest product
states contain five, six and eight |¢j>(j =1--,4); (2)
The closest product states of graph states with non-in-
teger entanglement (5.5124 for nine qubits, 6.1669 for
ten qubits, 6.7824 for eleven qubits) contains 9, 10 and
11 |¢j>(j =1,---,4), respectively; (3) The graph states
with non-integer entanglement (k + 0.8381) have a new
structure in their closest product states. We find 5 new
components |¢j>(j =5,---,9) in the closest product
states. (4). The closest product state for graph state with
integer entanglement does not contain |¢j >(j =5,---,9).
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