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and upper bounds, we will use iterative method [13] to 
calculate the entanglement and obtain the closest product 
states.  

3. Classifications of the Graph States of Nine, 
Ten and Eleven Qubits 

All the graphs of 9, 10 and 11 vertices that are LC ine-
quivalent for their graph states can be found in Ref. [17]. 
The total number of inequivalent classes of 9-qubit graph 
states is 440. We denote them from No.147 to No.586. 
The entanglement of the graph states is classified and 
listed in Table 1. The entanglement of graph states with 
equal lower and upper bounds can be calculated with the 
methods in Ref [16], and we use computer program to 
determine the bounds. The entanglement of graph states 
with unequal bounds can be calculated with the iterative 
algorithm [13]. 

These two graph states whose entanglement values is 
5.5124 and 5.8381 are new in the sense that they have 
different values of entanglement after the decimal point 
with respect to the former (1 to 8 qubit) graph states. 

The total number of inequivalent classes of 10-qubit 
graph states is 3132, and we denote the graphs from 
No.587 to No.3718. The entanglement is classified and 
listed in Table 2.  

The total number of inequivalent classes of 11-qubit 
graph states is 40457, and we denote them from No.3719 
to No.44175. The entanglement is classified and listed in 
Table 3. 

4. Structures of the Closest Product States of 
Nine, Ten and Eleven Qubits 

4.1. The Nine Qubit System 

Denote 0 1 1 ,( 1, ,4),ji
j p pe j

     
 

with

1 1
(1 ) 0.4597,

2 3
p    1 2 3

3
, , ,

4 4 4

       

4

3
;

4

  
1 1

( 0 1 ); ( 0 1 ),
2 2

O i    

1
' ( 0 1 ).

2
O i   The closest product state of ring 5 

graph state is 
5

5 .8 1ring No     , the entanglement 

is .8 2 21 log 3 log (3 3) 2.9275NoE       [13]. The  

graph set with non-integer entanglement (k + 0.9275) 
graph states is closely related with ring 5 graph. The 
closest product state of graph state whose entanglement 
equals 3.9275 can be 

3 2 3

4 1 0               (5) 

The closest product state of graph state whose entan- 

Table 1. Classification of the graph state of 9 qubits. 

E  biE  loccE  NUM  

1 

2 

3 

3.9275 

4 

4.5850 

4.9275 

5 

5.5124 

5.8381 

1 

2 

3 

3 

4 

4 

4 

4 

4 

4 

1 

2 

3 

4 

4 

5 

5 

5 

6 

6 

1 

10 

61 

3 

207 

2 

42 

112 

1 

1 

 
Table 2. Classification of the graph state of 10 qubits. 

E  biE  loccE  NUM  

1 

2 

3 

3.9275 

4 

4 

4.5850 

4.9275 

5 

5 

5.5850 

5.9275 

6 

5 

5.5850 

5.8549 

5.9275 

6 

6.1669 

1 

2 

3 

3 

4 

4 

4 

4 

5 

4 

4 

4 

4 

5 

5 

5 

5 

5 

5 

1 

2 

3 

4 

4 

5 

5 

5 

5 

5 

6 

6 

6 

6 

6 

6 

6 

6 

7 

1 

11 

103 

3 

631 

5 

2 

76 

1536 

100 

1 

13 

13 

40 

28 

12 

217 

339 

1 

 
glement equals 4.9275 can be 

3 2 3

4 1 0             (6) 

The graph set with non-integer entanglement (k + 
0.5850) graph states is closely related with No.19 graph. 
The closest product state of graph state whose entangle-
ment equals 4.5850 can be  

52

3 10          (7) 

No.510 has a new structure in 9-qubit graph states. Its 
entanglement is 

.510 2 22 2 log (3) log (3 3) 5.5124NoE       (8) 

its closest product state can be 
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Table 3. Classification of the graph state of 11 qubits. 

E  
biE  loccE  NUM  

1 

2 

3 

3.9275 

4 

4 

4.5850 

4.9275 

5 

5 

5 

5.5850 

5.5850 

5.8549 

5.9275 

5.9275 

5.9275 

6 

6 

6.5124 

6.5850 

6.7824 

6.8381 

6.8549 

6.9275 

7 

1 

2 

3 

3 

4 

4 

4 

4 

5 

5 

4 

4 

5 

5 

5 

5 

4 

5 

5 

5 

5 

5 

5 

5 

5 

5 

1 

2 

3 

4 

4 

5 

5 

5 

5 

6 

5 

6 

6 

6 

6 

7 

6 

6 

7 

7 

7 

7 

7 

7 

7 

7 

1 

13 

163 

3 

1561 

14 

2 

121 

9951 

286 

125 

1 

48 

12 

1936 

1 

2 

22573 

351 

4 

67 

1 

1 

35 

1145 

2040 

 
9

.510 2No   .         (9) 

The entanglement of No.582 is 5.8381, and its closest 
product state has a totally new structure. The known 
closest product state include components 

( 1, ,4), 0 , 1 , , 'j j O O   , however, there are 5 
new components in the closest product state of No.582.  

Denote 0 1 1 ,( 5, ,9)ji
j j jp p e j

      .  

The new components are listed as follows, 

5 : 0.9357, 7.3 ,p      

6 : 0.9255, 21.4 ,p      

7 : 0.4365, 43.0 ,p      

8 : 0.4208, 44.7 ,p      

9 : 0.8807, 43.8p     . 

In fact, we can find 15 kinds of new component qubits 
in the closest product state of graph state No.582. How-
ever, we can transform these 15 new component qubits 

into the above five kinds of qubits by using unitary trans- 

formation 1

1 11

1 12
U

 
   

 or 2

11

12

i
U

i

 
  

 
. Using  

iterative algorithm, we find the closest product states of 
graph state No.582, and denote them as 

1 EDDBCAABC  , 

2 DEAACBDCB  , 

3 DAECBDBAC  , 

4 BACEACDBD  , 

5 CCBAEABDD  , 

6 ABDCAECDB  , 

7 ADBDBCECA  , 

8 BCABDDCEA  , 

9 CBCDDBAAE  .           (10) 

where A, B, C, D, E represent 5 9, ,  , respectively. 
If we ignore the order of qubits, the closest product state 
of graph state No.582 can be written as 

2 2 2 2
.582No EA B C D          (11) 

4.2. The Ten Qubit System 

In Table 2, the graph set with non-integer entanglement 
(k+0.9275) graph states is characterized by ring 5 graph. 
The closest product state can be 

4 5

2 0            (12) 

for ten qubit graph state with entanglement 3.9275, it can 
be 

33 2 2

3 1 0               (13) 

for graph state with entanglement 4.9275, it can be 
32 2

3 2 30 0          (14) 

when with entanglement 5.9275. The graph set with non- 
integer entanglement (k+0.8549) graph states is characte- 
rized by graph state No.133. The entanglement of graph 
state No.133 is 

.133 2 21 2 log 3 2 log (3 3) 4.8549NoE      , its closest  

product state can be 
2 2 2

133 4 1 4 1 4No          

[13]. The closest product state of graph state whose en-
tanglement equals 5.8549 can be 

2 2

3 2 1 3 2 3 0          (15) 

The only ten qubit graph state with new pattern of 
closest product state is graph state No.3599 whose en-
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tanglement is 

.3599 23 2 log 3 6.1699NoE          (16) 

the closest product state can be 
52 2

.3599 3 4 3 1No            (17) 

4.3. The Eleven Qubit System 

For eleven qubit graph states show in Table 3, a detail 
comparison of computed closest product states of 
No.3724, No.3765 shows that all these closest states have 
a substructure of the closest product state of ring 5 graph. 
Ring 5 graph is essential to all these graph states with 
entanglement k + 0.9275 (integer k). The closest product 
states can be 

45

.3724 2 3 0No          (18) 

4 2 2

.3765 2 4 21 0No            (19) 

The graph set (No.3764, No.3936) with non-integer 
entanglement (k + 0.5850) graph states is characterized 
by graph No.19. The entanglement of graph state No.19 
is .19 22 log 3 3.5850NoE     Typically, the closest  

product state is 
3 3

.19 3 4No     [13]. The closest  

state for No.3764 and No.3936 graph state can be 
24

.3764 2 3 2 3 10No           (20) 

3 2

.3936 3 2 4 4 20 0No            (21) 

respectively. The graph set (No.4113, No.30597) with 
non-integer entanglement (k + 0.8549) graph states is 
characterized by graph state No.133. The closest state for 
No.4113 and No.30597 graph state can be 

2 3

.4113 1 3 1 4 1 4 0No        , 

2 2 2

.30597 1 1 1 1 40 0No         . 

The entanglement of No.30505 is a new type in 
11-qubit graph states. Its entanglement is 

.30505 22 3log (3 3) 6.7824NoE       (22) 

its closest product state can be 
4 2

.30505 1 4 1 4 1 4 1No           (23) 

The entanglement of No.23813 is 6.8381, the closest 
product state of No.23813 can be 

.23813 1No BEDB DCAAC     (24) 

It contains the closest product of graph state No.582 

.582No  as its substructure. 
Note that, we have just found one of the many closest 

product states for each LC inequivalent graph state. Ac-
tually, there are many local equivalent closest product 

states for the same graph state. 

5. Conclusions 

We calculate the entanglement of all local complimenta-
ry inequivalent graph states with nine, ten and eleven 
qubits. The total number of the graph states we treated is 
44029, and we list the numbers of them in Tables 1-3 
according to their entanglement. Further calculation for 
twelve qubits is quite difficult since there are more than 
1.27 million of local complimentary inequivalent graph 
states. Four new types of non-integer entanglement val-
ues appear in 9, 10 and 11 qubit graph states. The detail 
results and some special characters of the closest product 
states are as follows: (1) The graph sets with non-integer 
entanglement (k + 0.9275, k + 0.5850 and k + 0.8549) 
graph states are specified by ring 5 graph, No.19 graph 
and No.133 graph, respectively. Their closest product 
states contain five, six and eight ( 1, , 4)j j   ; (2) 
The closest product states of graph states with non-in- 
teger entanglement (5.5124 for nine qubits, 6.1669 for 
ten qubits, 6.7824 for eleven qubits) contains 9, 10 and 
11 ( 1, , 4)j j   , respectively; (3) The graph states 
with non-integer entanglement (k + 0.8381) have a new 
structure in their closest product states. We find 5 new 
components ( 5, ,9)j j    in the closest product 
states. (4). The closest product state for graph state with 
integer entanglement does not contain ( 5, ,9)j j   . 

6. Acknowledgements 

Funding by the National Natural Science Foundation of 
China (Grant No. 60972071), Natural Science Founda-
tion of Zhejiang Province (Grant No. Y6100421), Zhe-
jiang Province Science and Technology Project (Grant 
No. 2009C31060) are gratefully acknowledged. 

REFERENCES 
[1] R. Raussendorf, D. E. Browne and H. J. Briegel, “Mea-

surement-Based Quantum Computation on Cluster States,” 
Physical Review A, Vol. 68, No. 2, 2003, Article ID: 
022312. http://dx.doi.org/10.1103/PhysRevA.68.022312 

[2] D.-M. Schlingemann, Quant. Inf. Comp., Vol. 2, 2002, p. 
307. 

[3] D.-M. Schlingemann, Quant. Inf. Comp., Vol. 4, 2002, p. 
287. 

[4] M. Hein, J. Eisert and H. J. Briegel, “Multiparty Entan-
glement in Graph States,” Physical Review A, Vol. 69, No. 
6, 2004, Article ID: 062311.  
http://dx.doi.org/10.1103/PhysRevA.69.062311 

[5] M. Hein, W. Dur, J. Eisert, R. Raussendorf, M. Van den 
Nest and H. J. Briegel, In G. Casati, D. L. Shepelyansky, 
P. Zoller and G. Benenti, Eds., Quantum Computers, Al-
gorithms and Chaos, IOS Press, Amsterdam, 2006. 

[6] M. Grassl, A. Klappenecker and M. Rotteler, “Graphs, 



C. F. WANG  ET  AL. 

Copyright © 2013 SciRes.                                                                                JAMP 

55

Quadratic Forms, and Quantum Codes,” Proceedings of 
2002 IEEE International Symposium on Information 
Theory, Lausanne, Switzerland, p. 45.  
http://dx.doi.org/10.1109/ISIT.2002.1023317 

[7] R. Raussendorf and H. J. Briegel, “A One-Way Quantum 
Computer,” Physical Review Letters, Vol. 86, No. 22, 
2001, pp. 5188-5191.  
http://dx.doi.org/10.1103/PhysRevLett.86.5188 

[8] G. Vidal and R. Tarrach, “Robustness of Entanglement,” 
Physical Review A, Vol. 59, No. 1, 1999, pp. 141-150.  
http://dx.doi.org/10.1103/PhysRevA.59.141 

[9] V. Vedral, M. B. Plenio, M. A. Rippin and P. L. Knight, 
“Quantifying Entanglement,” Physical Review Letters, 
Vol. 78, No. 12, 1997, pp. 2275-2279.  
http://dx.doi.org/10.1103/PhysRevLett.78.2275 

[10] V. Vedral and M. B. Plenio, “Entanglement Measures and 
Purification Procedures,” Physical Review A, Vol. 57, No. 
3, 1998, pp. 1619-1633.  
http://dx.doi.org/10.1103/PhysRevA.57.1619 

[11] T.-C. Wei and P. M. Goldbart, “Geometric Measure of 
Entanglement and Applications to Bipartite and Multipar-
tite Quantum States,” Physical Review A, Vol. 68, No. 4, 
2003, Article ID: 042307.  
http://dx.doi.org/10.1103/PhysRevA.68.042307 

[12] M. Hayashi, D. Markham, M. Murao, M. Owari and S. 

Virmani, “Entanglement of Multiparty-Stabilizer, Sym-
metric, and Antisymmetric States,” Physical Review A, 
Vol. 77, No. 1, 2008, Article ID: 012104.  
http://dx.doi.org/10.1103/PhysRevA.77.012104 

[13] X. Y. Chen, “Entanglement of Graph States up to Eight 
Qubits,” Journal of Physics B, Vol. 43, No. 8, 2010, Ar-
ticle ID: 085507.  
http://dx.doi.org/10.1088/0953-4075/43/8/085507 

[14] A. Cabello, A. J. Lopez-Tarrida, P. Moreno and J. R. 
Portillo, “Entanglement in Eight-Qubit Graph States,” 
Physics Letters A, Vol. 373, No. 26, 2009, pp. 2219-2225.  
http://dx.doi.org/10.1016/j.physleta.2009.04.055 

[15] M. Hayashi, D. Markham, M. Murao, M. Owari and S. 
Virmani, “Bounds on Multipartite Entangled Orthogonal 
State Discrimination Using Local Operations and Clas-
sical Communication,” Physical Review Letters, Vol. 96, 
No. 4, 2006, Article ID: 040501.  
http://dx.doi.org/10.1103/PhysRevLett.96.040501 

[16] D. Markham, A. Miyake and S. Virmani, “Entanglement 
and Local Information Access for Graph States,” New 
Journal of Physics, Vol. 9, 2007, pp. 194.  
http://dx.doi.org/10.1088/1367-2630/9/6/194 

[17] L. E. Danielsen, “Database of Self-Dual Quantum Codes.” 
http://www.ii.uib.no/larsed/vncorbits/ 

 


