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ABSTRACT 
The quaternion Fourier transform plays a vital role in the representation of two-dimensional signals. This paper charac-
terizes spectrum of quaternion-valued signals on the quaternion Fourier transform domain by the partial derivative. 
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1. Introduction 
The quaternion Fourier transform (QFT) is a nontrivial 
generalization of the real and complex Fourier transform 
to quaternion cases. The four QFT components separate 
four cases of symmetry in real signals instead of only 
two in the complex FT. The QFT plays a vital role in the 
representation of signals and transforms a quaternion 2D 
signal into a quaternion-valued frequency domain signal. 
Many efforts had been devoted to some important prop-
erties and applications of the QFT [1-7]. 

In the last few years, there has been a great interest to 
the study of the spectrum of signals, i.e. the support of 
the transform of these signals relatively to certain 
integral transforms [8-15].  

Motivated by the treatment of the QFT in quaternion 
algebra, in this paper we will characterize the quater-
nion-valued signals whose QFT has compact support. 
The main difficulty lies in the fact that the quaternion 
algebra is non-commutative, so one cannot directly ex-
tend the results for the Fourier transform to those for the 
QFT. 

This paper is organized as follows: Section 2 is de-
voted to reviewing some necessary results about the qua-
ternion algebra. In Section 3, based on the definition and 
some properties of the QFT, we get a result to describe 
the spectrum for the QFT. 

2. Preliminaries 
The quaternion algebra   is an extension of the alge-
bra of complex numbers to a four dimensional real alge-
bra. It is given by 

{ }0 1 2 3 0 1 2 3| , , , , ,q q iq jq kq q q q q= + + + ∈  

where the elements , ,i j k obey Hamilton’s multiplica- 
tion rules 

2 2 2

, ,

1.

ij ji k jk kj i ki ik j
i j k ijk

= − = = − = = − =

= = = = −
 

The conjugate of a quaternion q  is obtained by 
changing the sign of the pure quaternion part, i.e., 

0 0 1 2 3.q q q q iq jq kq
−
= − = − − −  The modulus q  of a 

quaternion q  is defined by 
2 2 2 2
0 1 2 3 .q qq q q q q= = + + + Using the conjugate and 

the modulus of a quaternion, we can define the inverse of  

{ }\ 0q∈  by 1
2

qq
q

− =  which shows that   is a  

normed division algebra. Moreover, for arbitrary 
,a b∈ the following identity holds 

.ab a b=             (2.1) 

We introduce the space ( )2 2 ;L    as the left mod-
ule of all quaternion-valued functions 2:f →    with 
finite norm 

( )2

1
2 22( )f f x d x= ∫       (2.2) 

where 2
1 2d x dx dx=  represents the usual Lebesgue 

measure in 2 . Moreover, denote the space ( )1 2 ;L    
the left module of all quaternion-valued functions 

2:f →    satisfying 2
2( )f x d x < ∞∫ 

. 

3. Main Results 
Note that ( ) ( )1 2 2 2; ;L L    is dense in *Corresponding author. 
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( )2 2 ; .L    Hence, standard density arguments allow us 
to extend the definition of the QFT of ( )1 2 ;f L∈    
in a unique way to the whole of ( )2 2 ; .L    We give 
the following definition of the QFT as an operator from 

( )2 2 ;L    into ( )2 2 ;L    [3].  
Definition 1 
The two-sided QFT of ( )2 2 ;f L∈    is the function 

qF f  defined by 

( )
( )

( )1 1 2 2
2

2
2

1
2

ix jx
qF f e f x e d xω ωω

π
− −= ∫  (3.1) 

with arbitrary frequency 1 2( , )ω ω ω= . 
The QFT can be inverted by 

( )
( )

( )1 1 2 2
2

2
2

1
2

ix jx
qf x e F f e dω ωω ω

π
− −= ∫  

with 2
1 2d d dω ω ω= . 

In what follows, we review some properties of the 
QFT, such as the Parseval theorem and the partial deriva-
tive. For more details, we refer to [3]. 

Lemma 2  
For ( )2 2 ;f L∈    we have 

1 2 ,qf F fπ=  

where the norm ⋅  is defined by Equation (2.2). 
Lemma 3  

If ( ) ( )2 2
0

1 2

; , ,
m n

m n f x L m n
x x

+∂
∈ ∈

∂ ∂
    and 

( )2 2 ;f L∈   . Then we have 

( ) ( ) ( )1 2
1 2

{ } ,
m n

m m n n
q qm nF f x i F f j

x x
ω ω ω ω

+∂
=

∂ ∂
 

where the QFT qF f  is defined by Equation (3.1). 
Given a multi-index ( ) 2

1 2, ,α α α += ∈ we write as  

usual 1 2 ,α α α= +  
1 2

1 2
1 2

D
x x

α α
α

α α

∂ ∂
=
∂ ∂

 for the partial de-

rivative.  
Moreover, we denote by supp qF f  the support of 

qF f  describing the smallest close set in 2  outside 
which qF f  vanishes almost everywhere. The following 
theorem describes the spectrum of signals for the QFT, 
i.e. the compactness of the support of qF f  by means of 
the norm of its partial derivative on 2 . 

Theorem 4  
Let ( )2 2 ;f L∈   . Then the QFT ( )qF f ω  is 

compactly supported in [ ]2,σ σ−  if and only if partial 
derivatives ( )2 2 ; ,D f Lα ∈    

( )1 2 2 2
1 2 ;qF f Lα αω ω ∈     

for all 2α +∈  and 
1

lim ,D f
αα

α
σ

→∞
=  

where ( ){ }2sup , 1,2 : 0, .k qk F fσ ω ω ω= = ≠ ∈   

PROOF. Firstly, we prove the necessity. Suppose that 
( )supp qF f ω  = [ ]2,σ σ− . The compactness of the  

support of qF f  and ( )2 2 ;f L∈    imply that 
1 2

1 2 qF fα αω ω  belongs to ( ) ( )1 2 2 2; ;L L    , thus  
partial derivatives D fα  exist and belong to 

( )2 2 ;L    for all 2 .α +∈  Moreover, by Lemma 3 we 
have 

{ } 1 1 2 2
1 2( )q qF D f i F f jα α α αα ω ω ω= . 

Applying Lemma 2, it follows 

( )
( )1 1 2 2

2

22 2
22

1 ,
2

qD f i F f j dα α α αα ω ω ω ω
π

= ∫  

that is, 

[ ]
1 2

2

2 22 2 2
1 22 ,

1 ( )
(2 ) qD f F f dα αα

σ σ
ω ω ω ω

π −
= ∫   (3.2) 

based on Equation (2.1) and 1 2 1.i jα α= =  Thus, we 
obtain 

( )
( )[ ]

( )

1 2
2

2 22 2 2
1 22 ,

2 22 2
2

1
2

1 ,
2

q

q

D f F f d

F f f

α αα
σ σ

α α

ω ω ω ω
π

σ σ
π

−
=

≤ =

∫
 

which leads to 
1 1D f C
α αα σ≤  with the constant 

C f=  independent of .α Then, we have  
1

limsup D f
αα

α σ→∞ ≤  

due to 1lim 1C α
α →∞ =  for all 0 C< < ∞ . On the other  

hand, using Equation (3.2) again, for (0, 2),ε σ∈ it 
holds  

( )
( )[ ]

( )
( )

( )[ ]

1 2
2

2

2 22 2 2
1 22 2 ,

22 2
2 2 ,

1
2

12 ,
2

q

q

D f F f d

F f d

α αα
σ ε σ ε

α

σ ε σ ε

ω ω ω ω
π

σ ε ω ω
π

− −

− −

≥

≥ −

∫

∫
 

which leads to  
1

liminf 2 .D f
αα

α σ ε→∞ ≥ −  

The arbitrariness of ε  implies 
1

liminf D f
αα

α σ→∞ ≥ . 

Therefore, we can conclude that  
1

lim D f
αα

α σ→∞ = . 

Secondly, we prove the sufficiency. Suppose that par-
tial derivatives 

( ) ( )2 2 ; ,D f x Lα ∈    ( )1 2 2 2
1 2 ;qF f Lα αω ω ∈    

for all 2α +∈  and 
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1
lim D f d

αα
α →∞ = < ∞ .    (3.3) 

We need to prove that 

sup{ , 1,2 : ( ) 0},k qk F fσ ω ω= = ≠  

Otherwise, ( ) 0qF f ω ≠  holds for almost everywhere 
2ω∈  and thus, associated with Equation (3.2) we ob-

tain that for arbitrary M  it holds  

( )
( )

( )
( )

1 2
2

1 2

2 22 2 2
1 22

2 22 2 2
1 22

1
2

1 ,
2

q

qE

D f F f d

F f d CM

α αα

αα ω

ω ω ω ω
π

ω ω ω ω
π

=

≥ ≥

∫

∫



 

where { }2 : , 1, 2kE M kω ω= ∈ ≥ =  and C  is some 
positive constant independent of α , that is to say, 

1 1
.D f M C

α αα ≥       (3.4) 

The above inequality (3.4) implies 
1

lim D f
αα

α →∞ = ∞ , 

which contradicts the assumption (3.3). Thus, we have 

sup{ , 1,2 : ( ) 0} ,k qk F fσ ω ω= = ≠ < ∞  

which means ( )qF f ω  is compactly supported in 
[ ]2,σ σ− . Finally, the same technique as the part of the 
proof for the necessity yields that d σ=  . Thus, the 
proof is complete. 
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