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ABSTRACT

The two dimensional quantum dipole springs in background uniform electric and magnetic fields are first studied in the
conventional commutative coordinate space, leading to rigorous results. Then, the model is studied in the framework of
the noncommutative (NC) phase space. The NC Hamiltonian and angular momentum do not commute any more in this

space. By the means of the su (1,1) symmetry and the similarity transformation, exact solutions are obtained for both
the NC angular momentum and the NC Hamiltonian.
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1. Introduction

The discovery of new fundamental interactions and the
development of quantum field theory have opened the
way to many research works. Then the Standard Model
has become the best theory that fits our actual under-
standing of particle physics. However, many reasons
bring us to think that it is not the end of the story. More-
over, these last decades have given birth to some new
theories addressing some of the still unresolved enigmas
of the nature. One of them is the hypothesis that funda-
mental structure of spacetime should be entirely revised,
considering for instances that it is based on a NC geo-
metry.

In recent years, there have been increasing interests in
studying physical aspects of quantum theory on NC
space-time, NC space as well as on NC phase space. NC
physical effects have thus aroused great interest and
related theories have been studied extensively (see for
example [1-7]). The motivation for this kind of theory is
that in the low energy effective theory of D-brane with a
background magnetic field and an extreme situation such
as in the string scale or at very high energy levels, not
only the space noncommutativity may appear, but also
the effects of momentum noncommutativity can be signi-
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ficant, which is called NC phase space. Hence, a lot of
specific problems have been investigated on the theory of
NC spaces such as the quantum Hall effects [8,9], the
harmonic oscillator [10-12], the Fock-Darwin system
[13], the coherent states [14], the classical-quantum rela-
tion-ship [15], the motion of the spin-1/2 particle under a
uniform magnetic field [16], the Dirac equation with a
magnetic field in 3D [17] and with the time-dependent
linear potential [18], etc. The main approach is based on
the Weyl-Moyal correspondence which amounts to repla-
cing the usual product by a star product in NC space [19].
Each of these NC theories is defined by a NC algebra
where the spectrum of the NC gquantum Hamiltonian is
worked out. In reference [7], the analog of the Landau
problem applied to dipoles in NC spaces is studied. In
their paper, the authors studied the analog of Landau
quantization, for a neutral polarized particle in the pre-
sence of homogeneous electric and magnetic external
fields in the context of the NC quantum mechanics,
where the Landau energy spectrum and the eigenfunc-
tions of the NC space and NC phase space coordinates
have been obtained. In reference [20] which is an exten-
sion of the model developed in [21], a supersymmetric
description of an analog of our model without the electric
field is provided in the commuting cordinates space and
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the energy spectrum, as well as the spectrum of the
angular momentum and the supercharge are determined.
Furthermore, to the best of our knowledge, the explicit
expressions of spectra for both the quantum Hamiltonian
and the angular momentum in NC phase space have not
been reported in the literature so far.

In this paper, we extend and study in the NC phase
space with an uniform background magnetic field, the
model describing a system of two nonrelativistic charged
particles of identical mass, of opposite charges and
linked by a spring through an harmonic potential®. This
extension constists of considering an electric field in
addition to the magnetic field and a confining potential.
The considered model may be viewed as a dipole obser-
ved from a network of charged particles. Through the
developments given hereafter, we note that the Hamil-
tonian and the angular momentum do not commute in
NC phase space. Our approach which combines algebraic
and analytical technics, using group theory tools, allows
to diagonalyze these observables.

The outline of the paper is as follows. In Section 2, we
solve the two dimensional quantum dipole coupled to
external background electric and magnetic fields in the
ordinary commuting coordinates space. This lights the
way for us in Section 3, where we deal with the study of
the system in NC phase space. In Section 4, we present
an algebraic framework to show that the corresponding
NC quantum Hamiltonian and NC angular momentum
possesse a hidden su(1,1) algebraic structure and we
obtain the exact eigenvalues and eigenfunctions of these
operators by means of the similarity transformation.
Section 5 is devoted to the conclusion.

2. Quantum Dipole in the Ordinary
Commuting Coordinates Space

Consider a system consisting of two nonrelativistic char-
ged particles of identical mass m but of opposite elec-
tric charges g and —q, moving in the two-dimensional
Euclidean space, coupled to some background gauge
fields A and ¢ . The magnetic field B=V A A is
chosen to be static, homogeneous and perpendicular to
the plane, while the electric field E=V¢ lies in that
plane. Their positions—with respect to some inertial
frame-are represented by two vectors r and s, respec-
tively. These two particles interact with one another
through an attractive harmonic force of constant spring.
Furthermore, this model is generalized® by confining the
center of mass of the system in an harmonic potential.

The system may be described by the following
Lagrangian

This description leads to the term “quantum dipole spring” that we call
simply “quantum dipole” in the title of the paper.

%For the sake of this problem and the next, the Coulomb interaction
between these two charges is ignored.
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1 . . , .
Ly =2 m(f*+7)+arA (1) -as A (s)
1)
~2maf (5 1) -2k (5,41 -9 (r)+9(5,).
In order to keep the rotational covariance of the system

explicit, the circular gauge will be used for the vector
potential

A(q):—%B°gijrj, i,j=12, 2)

while, the scalar potential is
¢(r)=-rE". 3)
Let’s introduce now the following change of variables,
xi:%(ri+si), u=(s-r), (4)

where X, thus being the position vector of the center-
of-mass of this two-body problem, while u; represents
the relative position of the particles.

The Lagrangian may be expressed as follows

L, =mx’ +lmui2 +lBgij ()’(iuj +uixj)
AP (5)
-U;E; —Emwg 7 —=mkZx?,
where B=qB° E, =qE’.
The Euler-Lagrange equations of motion for the
system are,

2mx, +Be;ui; +mkgx; =0, (6)

%mui +Be;X; +maju, + E = 0. 7

2.1. Hamiltonian Formulation

By the means of the “auxiliary” variables p, and 7,
the Lagrange function may also be written as follows,

Ly =X P +Ui7z; — Hy, (®)
where

2 2
H, :i( P, _lBgijuj) +£(7l’i —lBginjj
am 2 m 2 9)

+UE, Jrlma)ozui2 +1mk§xi2.
2 2

Indeed when solving for the equations of motion for
p; (;zi), these are seen to correspond to the conjugate
momenta of X (u;) and then one recovers the original
Lagrange function. Proceeding like that the action is
already in first-order Hamiltonian form, both for the
(%, p;) sector as well as for the (u;,7;) sector. Pois-
son brackets are then readily read off the Lagrangian in
first-order form, while H, is its Hamiltonian. Thus the

JMP
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Dirac quantization algorithm is left implicit and one finds
the following Poisson/Dirac brackets,

%5}, =65 {unm ) =4y (10)

1
Quantisation of the system is then straightforward
from these Poisson brackets and the above Hamiltonian
through the correspondence principle, in an obvious
manner.

2.2. The Quantum Dynamics

We now promote each degree of freedom to an operator
acting on a Hilbert space to be defined. Following the
canonical quantization procedure, we define the
commutation relations as (i7) times the Dirac bracket
of the classical quantities:

|:)2i’ ﬁj]:ihé}jl

where i,j=12 and all the operators are their own
hermitian conjugate. The quantum Hamiltonian is given

by,
2 2
H, = =l P, — lBgu el fri—lBgi-f(-
4m m 2 U (12)

+uE+1ma)u +1mk0x,.
2 2

(6.7, |=ins;, (1)

When wanting to complete with the electric field cou-
pling the square defined by the harmonic potential, one is
led indeed to the following change of variables [22],
which is a canonical transformation in phase space,

~ . E, ~ .1 E,
U =lU+—5, B=p+-Bg—, (13)
Mmay, 2 may,
such that,
[%.B ]=ins;, [U,2]=ins,.  (19)
We get
2 2
H, = 41 (P—EBSU j 1[7[ ——ngj
" (15)
1 E?

mkZ X2 ———

1
+— ma)OU +— >
2 2 2may,

Note that these changes of variable are ill-defined if
one wants to set @, =0. The reason for this is the
following: In the presence of a magnetic and an electric
field with no other confining force, the magnetic center
moves at a constant velocity, and one needs to apply a
Galilei boost; quantum states are no longer all
normalisable. In order to avoid that singularity, when
wanting to remove the harmonic confining potential, first
one needs to turn off the electric field E; lying in the
plane, and only then set @, =0 [22].
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From the physics point of view, clearly the system is
invariant under constant translations in time, and
constant rotations in space. Consequently, there must
exist conserved quantities generating the corresponding
infinitesimal transformations, to which specific quantum
operators also correspond which then generate these
transformations for quantum states and operators. It may
be shown that the generator for time translations is the
quantum Hamiltonian, equation (15), while the generator
for the rotations in the plane is given by,

" = L = &% P, + 60,7 (16)

L = LNoether ijoNc g

From here on, the solution of the quantum Hamil-
tonian (15) follows a standard path. Let us introduce the
following quantities [20]:

@, =k, +20, @ =k,-2w, o =E, 17
m

} 1 / 1
2 2 (18)

M, o,
2ha, 2mha)0
(19)

Mo, @ _
+ig;

" 2. 2mh0, wyo gl

May®, @ -
a = =y, —i 7,
2ha, 2mhayo,
(20)
. Mo, _ o
—l&::

ij X
2\/2mho, w,@,

Ma. @ _ -

ﬂ_:_

mhka)w

P +|5 ,
\j 4mhk o, \j
Mma,@_
k,ma,
Gjj Xj,
4mhk @, "\ ho, !

[aaf|=6,=[5.5] ] (23)

Consequently, the quantum Hamiltonian and the
angular momentum may be expressed as follows

~ 2hoyo, hk,o,

(21)

mik, o, @,
(22)

with

H, = —a; o + /’ﬁﬂ
@, @,
" ) (24)
= J2k@, (' B + . BT )+ hoo, ———,
ZU'+ 0 O( |ﬂ| |ﬂ| ) + 2m6()02
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L =—ing; (ala; + B B;). (25)

We may now apply a second change of variables to
remove the remaining non-diagonal terms in the Hamil-
tonian. It is straightforward to check that the previous
commutation relations do not change under the following
change of variables:

T(\/—a \/]Tﬁ,),
(26)
ol = (VEwal TR,
b= (e ),
@7)
o = (e ).
where
K= Zz . (28)
We then find,
[a.a]]=0; =[b,.b]]. (29)

The quantum Hamiltonian and the angular momentum
become

2
Ho =50, | afa +1-————
AmhaoiQ,
) (30)
+hQ_| bl +1-——— |,
AmhawyQ_
L =-ing; (ala; +bb; ), (31)

with

1 1

Q, =E(a)+ +o ), Q =E(a)+ -—w). (32)
The angular momentum operator mixes the two chiral

sectors that were held decoupled in the Hamiltonian. It is

therefore natural that a last change of variable that mixes

them is needed to diagonalize the operator L. Let us

introduce the following chiral Fock algebra operators,

a, = %(aﬁlaz) a; %(af +ia)),  (33)
1 T T
b, :\/E(b1 Fib,), b} \/_(bl +ib),  (34)

with
[a..al]=7=[b,bl]. (35)

Note that all these expressmns may be inverted to
express the original quantities X, (U) and P( ;) in
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terms of a, (b.) and al(b!).
After a direct substitution, one finds

E’
H, =hQ, [a1a+ +a'a +1——']

dmhaQ,
(36)
+hQ_|b'b, +b'b +1—E—2
Amhal Q.
L=n(ala, —a'a +bb, ~b'b ). 37)

We have constructed convenient creation and annihila-
tion operators which span bosonic Fock algebras, and
diagonalize the main observables of the system, namely
the Hamiltonian and the angular momentum. To com-
plete the description of the quantum system, we now
have to find a representation of these operators. We
therefore have to construct the Hilbert space of the phy-
sical states, and associate to each operator a linear trans-
formation on that space, such that the commutation rela-
tions hold. We will then be able to determine the energy
spectrum of quantum Hamiltonian H,, as well as the
spectrum of the angular momentum L.

Indeed, the orthonormalised chiral Fock states basis
with as normalised Fock vacuum a state

|2)=|0,0,0,0), (38)
such that

Q) =0,

Q)=0, (Q|Q)=1 (39)
is constructed by
1

Jmindmint )
x(al)" (6)" (al)"™ (o1) " [@).

(m/,n’,m’,n’|m,,n_,m_,n,)

e

[m,,n,m_n,)=

41
:5mjr,m+5n’,,n,§m’,,m,5n;,n+' ( )

with the property:
>lm,n,m_n)(m, nm,n|=7, (42)

the notation ¢, standing for m,,n_,m_,n, =0. This
complete set of states is a basis which diagonalises the
commuting operators H, and L

I—A|0|m+,n7,mf,n+)

(43)

=E(m,,n_,m_,n)[m_ n_m_n,),

.2

E(m,,n_,mn )=aQ | m, +m_ +1- S

AMha’Q,
\ (44)
+hQ_ | N, +n +1-————1|,
AMha?Q).
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L|m,,n_,m_,n,) (45)
=n(m,—m_+n,—n_)|m_n_m_n).

If we remove the harmonic well-which boils down to
set E; =0 andnext w,=0=Kk,--, then we get

free|m n—'m—’n+> (46)
=ho, (M, +m_+1)|mn_,m_n,).
Note that in setting
K, = 2a,, 47

which is a condition that relates the harmonic potentials
frequencies, we get the following spectrum,

E(m,,n.,m_,n,)=E

E =%h(a)+wc)(m+ +m_+1)
‘2 (48)

+%h(a)—a)c)(n )

where
o = \Jo? +8?. (49)

3. Quantum Dipole in NC Phase Space

The physics of two nonrelativistic charged particles of
identical mass m, of opposite electric charges g and
(—q) and respective positions £ and S, in crossed,
background electric and magnetic fields coupled with a
confining harmonic potential and connecting by a spring,
is described by the following quantum Hamiltonian

2 2
HAOZL lsi—lBgijL]j +i ﬁi_lBgijf(J’
4m 2 m 2

. £ (50)
+—mw§ljf+—mk§§<f— —,
2 2May;
where
~ 1. .y " oa E
=—_\5 |U': - h ! ]
=g (f08).Ui=( 1) o
(51)
—( T [
i = prI psi) E glj mwg T = ps, pﬁ)

X,U,p, and 7, are the relative coordinate operators,
the center of mass coordinate operators, the total momen-
tum operators and the relative momentum operators, res-
pectively.

These operators verify the following set of commu-
tation relations, with i, j=1,2,

[F" ﬁfj ] =ins; = [gi’ I351 J’ (52)

Copyright © 2013 SciRes.

Let us denote the operators of coordinates and
momenta in NC phase_space as S ;)and 73 (P
respectively, then the S R) and B (R, in the two-
dimensional NC phase space satlsfy the following
commutation relations [23]

[S 5, ] i0! )‘gu’ |:7§’|’7§’j:|:i6(b)gij, -
[P ,7:’5],:| )gij ' [73“’ Arj ] = IH_(b)gij
(8.7, |=ins, =[R.7, ], (54)

where 6® and 6 are the real-valued noncom—
mutat|V|ty terms of the space coordinates, while o°
and ™ are the real-valued noncommutativity terms of
the momenta, &; being an anti-symmetric matrix. Fur-
thermore, the two particles have opposite charges, and
each of them is supposed to have the same noncom-
mutativity but with opposite sign

0 =—g® =9, 99 =—9" =5.  (55)

Consequently, the relative coordinate operators X,,
the center of mass coordinate operators U, the total
momentum_operators R and the relative momentum
operators II;, in the NC phase space satisfy the follow-
ing commutation relations

(%4, |=ig0.[ R0, ] =
A ~ (56)
[%.5]=ins, =11, ]

while all other commutators vanish. According to this
recipe, the above quantum Hamiltonian and the angular
momentum act on an arbitrary function y as follows

L * W= I:Hy/, (57)

where the star product x is the Moyal-Weyl product
defined in [24,25]. H, and L, are the NC versions of
the quantum Hamiltonian H and of the angular mo-
mentum L, given by

2 2
H :i 73_—183--1/{- +i I:I-—lBg--?E-
9 i 2 ij"] 1 "]

H *V/:ﬁyl/ll

4m m

1 1 E’ 8)
+ MU + = mk X - ——,
2 2 2maf
L, =&, (&P +UT;), (59)
respectivily.

From the relations (56), we have the following expre-
ssions [26-28],

Xo=nk-———e&7,U = 77lj< —igu P (60)
n

Yoonp U

2hn
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where 7 is a scaling constant related to the noncom-
mutativity of phase space:

00 =4n"n*(1-n"), neR". (62)

when 60 =0, we obtain 7 =1, where the space-space is
noncommuting [24], while momentum-momentum is
commuting [29,30].

The constant uniform NC electric and magnetic fields
E; and F;; are given by

E, =E [1+180J, F, :gijB(1+189j. (63)
2 4

The quantum Hamiltonian written in equation (58)
becomes in the NC phase space,

"_1 52 |, p2 1o -~ 1 o(c2 o2

H, _H(Pl +P )+E(7Z'1 +7zz)+z & (% +%3)

B=y#B-———,0=1& +8c;. (66)
hn

(B9 2

D=0 - mwo |, 67

: {77 4y ha., °J (67)

while the guantum angular momentum Equation (52) is
given by

(68)

For convenience, in a NC phase space, we define the
annihilation and creation operators as

07,= %{ji‘f'l %AI,

L [ma- 2 .

& =45 Vi W=
8h mho

*The condition (47) is used.
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=

~ 1 - . @,

A= om0
~ 1 -~ . @
:

A=\ ame o

satisfying the well-known algebra
[aa]]=6,=[ 4.5 ] (12)

Therefore, the quantum Hamiltonian and the angular
momentum may be written as follows,

(70)

=

A, =Zha(ala + 1 B)-Sha (G5 + Bla)

E (72)

+ho—

1Y
2(1+BH) May?
2

L, =-ine; (&l + B'B)

_Z|ma)ggij (aiTﬂj +ﬂiTaj +0!iTﬂJT +0!iﬁj) (73)

.0 St pte sttt -
_I%Eij (afﬁj +ﬂiTaj —-q, ,Bj —aiﬂj).

Let us now apply a second change of variables to
remove the remaining non-diagonal terms in the Hamil-
nian. It is straightforward to check that the previous com-
tation relations do not change under the following change
of variables:

_ 1 . =\ . 1,.
- Lla-p)a-tia-a), o
=@ +A).B =@ +4), 9
2 2
with
aa]-a-[B8] 09
Next,
~ 1, ... 1 /4 .
o= fplasin). - (e a). o)
b, = (B,7iB,), B! =—=(B! +i6}),  (78)
2 V2
with
[a.4]=1=[6.5 (79)

Therefore, the quantum Hamiltonian takes the follow-
ing form

(80)

I
<
1]
I
S
+
I
T N
|
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H;:%haﬁ (ala, +b'p +1)+%h~c(eﬂé -b'b ), (81)
and
H2 :%hd) (a'a +bb, +1)+%ha”)c (a'a -bb,), (82)

while, the quantum angular momentum is issued by

L, =C,+L, (83)
with
e o 1.
L= ( Ia+—b_b_)+[zma)0/1_)
x[alb’+ab -a(ala +b'6 )], (84)
and
. 1
L2=-n(a'a -b'b, )-| =maor
0 (— — + +) [4 w —)
x| a'b] +a b -4(a'a +b/b,)], (85)
where
PR
N om- o (86)
A=
A

We note that, in commutating space, the quantum
Hamiltonian H, and the quantum angular momentum
L are commuting. But in NC phase space, they do not
commute any more. The commutator of the I-]e and
L, is written as follows

[H,.L, = %hrﬁcbzt%_ (alo’-ab -a'b! +ab,).(87)

The next section is devoted to the determination of the
spectrum of these main observables.

4. Eigenvalues and Eigenstates

In this section, we construct the algebra and symmetry
transformation that will help us to diagonalize skillfully
the NC phase space Hamiltonian and the NC angular
momentum of the model. Namely, the Fock basis which
diagonalizes the Hamiltonian is introduced. Then, the
su(1,1) algebra is used and by means of the similarity
transformation, the spectrum of the NC angular momen-
tum is determined.

4.1. Fock Space

The chiral Fock states basis is a natural choice in the way
of the quantization for our model. This basis is spanned

Copyright © 2013 SciRes.

by the vectors

[m,n_m_n)=

0 tm in 1 (88)

with
(m;,n’,m’,n/|m_,n_,m_n)

89
= 5m’+,m+5n’,,n,5m’,,m,5n;, ( )

>m,nm_n)m,n,m,n|=7.  (90)

_These states diagonalise the NC quantum Hamiltonian
H, , but not the NC angular momentum L, :

H5|m,,n_,m_n,)

Ehi)(m +n +1)+%ha~)C (m, —n_ )}|m+,n,m,n+>,

(91)
HA§|m+,n_,m_,n+>
= Bha*)(m_ +n, +1)+%hcbc (m_—n, )}|m+,n_,m_,n+)
(92)
I:f(,|m+,n_,m_,n+>

= [h(m+ —n_)—%m@% (m, +n_)}|m+,n_,m_,n+)
+Brﬁ£)9/1 (m, +1)(n_ +1)}|m+ +1,n_+1,m_,n )

+Brﬁa”)¢9/1_1/m+n_ }|m+ -1,n_-1,m_n,),
(93)

2|m,,n_,m_,n,)

= [—h(m —n+)+4—1hn~1d36'/1+ (m. +n+)}x|m+,n,m,n+)
—Emcbez_ (m_+1)(n++1)]|m+,n_,m_+l,n++1)

—Brﬁa}e/l m.n, }|m+,n,m -1,n, -1).

(94)
Additional considerations are thus necessary to solve
the NC angular momentum.

4.2. su(1,1) Realizations

It is well known that if a system is characterized by bo-
son operators, then the simplest way to find the corres-
ponding symmetry algebra is to construct the boson reali-
zations of this algebra. In this section we introduce some
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basic boson realizations of su(1,1) that we need to sol-
ve the quantum Hamiltonian (80) and the angular mo-
mentum (83).

The Lie algebra su(11) possesses interesting reali-
zations of bosons and is more appropriate to solve hume-
rous physical problems. Using the set of boson operators
(77) and (78) we introduce the operators

J,=ab',J =ab,

" 95
JO:%(313++b_Tb_+l), )

K,=a'b/,K =ab,
s 96
Kozi(a*a_+bjb++1), )

satisfying the commutation relations

[35,3.]=23., [3,,3.]=-23,, 97)
[Ko K ]=£K., [K,, K. ]=-2K,,  (98)

all the others being vanishing.
The number operators which commute with the gene-
rators of the su(1,1) algebra are issued by

M=4a'a, -b'b, N=a'a -b'b,. (99

The Casimir operators corresponding to this realiza-
tion are issued by

c, =%(1+M )(1-M), Cy =%(1+ N)(L-N). (100)

Therefore, if the eigenvalue of the operators C; and
Cy are j(1-j) and k(1-k) respectively, then
M =(1-2j) and N=(1-2k) . Consequently, the
action of the realizations (95) and (96) on the states
|i.mk,n), (mn=012.--) , leads to an infinite
dimensional unitary irreducible representation so-called
positive representation D*(j,k) and corresponds to
any j,k=1/2,1,3/2,---. Therefore, the action of the
operators on the basis states | j,m,k,n) is issued by

Jo| iomk,n)=(j+m)| j,mk,n), (101

J.[imk,n)=(2j+m)(m+1)| j,m+1,k,n), (102)
J_|iimk,n)=/(2j+m-1)m|j,m-1,k,n), (103)
and

Ko| j.m,k,n)=(k+n)| j,m,k,n), (104)
= J(2k+n)(n+1)| j,mk,n+1), (105)
K_|j.m.k,n)=/(2k+n-1)n| j,mk,n-1), (106)

and finally
Cy|i,mk,ny=m(1-m)|j,mk,n),  (107)

Copyright © 2013 SciRes.

Cy | J.m.k,n) =n(1-n)| j,m,k,n). (108)

The quantum Hamiltonians H: and H) may be
expressed in terms of generators of the su (1,1) algebra,

H =hnad, +%ha§cM, H2 = hakK, +%hcch. (109)

Likewise, the angular momentums Iflg and L may
also be expressed as follows:

L = aM +%ma39,1_ [3,+3 +4(-23,+1)],

(110)
and
2 =-aN —%maaew [K, +K_+4(-2K,+1)]. (112)

Obviously, the NC Hamiltonian remains diagonal in
the su(1,1) basis and the eingenvalue equations are
written as follows,

H | j,m,k,n)z{ha“)(j +m)+%ha“)c (1—2j)}| j,mk,n),
(112)

H alimk,n)= [ha) k+n)+;ha) (1-2k }|Jm,k,n>

(113)
At the opposite, the NC angular momentum is not yet
diagonal in this basis:

L, | j,m,k,n)

-|ha-2)+

202, (-2 j—2m +1)}| j,m,k,n)

JEnsor @ im0
+Bm@9,1\/(21+T}|1 m-1,k,n),
2 jm k)
[ h(1- 2k)—% @A, (—2k — 2n+l}|1mkn>
(115)

_(%mg,gg\/m)“,m,k,nﬂ)
_[%ma}m_\/mj“ m,k,n-1).

Note that the Fock states |m,,n_,m_,n,) are equi-

valent to the su(1,1) states |j,mk, n) for
n=2j+m-1 and m, =m, (116)
n,=2k+n-1 and m_=n. (117)

So far the L,-spectrum remains to be determined.
The next section aims at solving this question by means
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of a similarity transformation that gives rise to analytical
results.

4.3. Similarity Transformation

To get the analytical solution from the present problem,
let us introduce the following similarity transformation
[31] induced by the operators
6T ot
S = (éT )/b,b, , T :(éT )éb+b+ , (118)

where y and & are constants.

Since the operators b and &, commute, the trans-
formation of the b and b’ under S may be obtain-
ed in setting

(119)

with the following relations

[6.,0]=0=[6".0]

(120)
One finds
sbst=b (al)", sb'st=b'(a'). (121)

n

The transformations of &' and &, are written as follows

sa.5t=4, -/b'b (&) salst=al.  (122)
Likewise, the operators transform under T as follows:
ToT =6 () T =Bl (&), (129)
TaT =4 -oblb (a') ,TaT =4 (124)
Consequently, the algebra su(1,1) under the trans-
formations S and T is closed for y =-1=¢5. Then,
one finds the following results

-1

Sbs=b (af)sb's*=b'(al) ",

sa,5t=a +b'b (a])", salst=a', (125)
Tb,T™ =b, (a"),To/T* =b/(a") ",
TaT=a +b/b (a)", TaT =4 (126)

By the means of the transformed operators (125) and
(126), the generators of the algebra su(1,1) take the
following form

e (127)
Jo==>(ala, +26'0_+1),
K, =bl, K =ba'a +(5I5+ +1)b,,
(128)

K, = %(aja_ +2b/b, +1),
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and satisfy the commutation relations
(70, 7.]1=%7..[7,.7 ]=-27,,
[k K] = 2K, [K, K] = -2K,,

all the others are vanishing.
The transformed number operators which commute
with the generators of the su(1,1) algebra are issued by

M=4a'a, N=a'a. (131)
If the representations are characterized by fixed num-
bers a'a, =x and &'a =v, with #,v=012,-,

then the transformed su(1,1) generators may be expre-
ssed in term of one boson operator. One finds

J.=h",

(129)
(130)

J =(1+u)b +b'b b, (132)
Jo==(1+u+2b"0 ),

K, =b/,

K_=(1+v)b, +b/b,b,, (133)

satisfying the commutation relations (129) and (130).
These generators play an important role in the formu-
lation of the exact solutions for the angular momentum.
To achieve this goal, let us define the following diffe-
rential representions of these generators in terms of the
bosonic variables in the Bargmann-Fock space (see [32]),

5 -9 prox, (134)
s =, TR
a -2 & -y, (135)
e gy, T
Consequently, we get
d 2
=1+uy)—+x —,J =X,
J.=( ﬂ)dx_ “dx? Jo=x
(136)
J. 1 2X i+l+
o2 T dx #
K =(1+v)i+x i,/c =X,
+ X+ +dxf — +
(137)
K 1 2X l+1+v
S22\ dx, '
M=u, N=v. (138)

_Therefore, the transformed NC quantum Hamiltonians
H, and H; , and the transformed NC angular momenta

L, and L5 are respectively given by,
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1 d 1
le—h~ 2X h— 1 _h~ ’
b= a)( ’dx7+ +,uj+2 @, 1
1 d 1 (1%9)
HE = Zhd| 2x, —+1+v [+ = ha,v,
2 dx, 2
2 = nu+rmoomn | x e w) -t
o ZIHE MG X e TG
(140)
+x—/1[2xi+,uﬂ,
dx_
2
2=nv-roon | x, Lt (iv) L
4 dx; dx,
(141)

+X, —/1[2& i+vﬂ.
dx,

_The eigenvalue equations for the operators 7%; and
H, can be written as follows

Fow () = Eaw (x.), How (x.) = Edw (x.), (142)

providing the corresponding eigenvalues and eigenstates,

E; (a,,u) :%h@(2a+,u+l)+%ha~)cﬂ,

Ej(ﬁ,v)=%hcb(2/3+v+1)+%ha”)cv, (143)

w(x)=Ax"y(x)=Ax, a,=01,2,- (144)

where A, A, are the normalization constants. Concern-
ing the NC angular momenta L, and L3, the eigenva-
lue equations are given by

Lip(x.)=Ex(x.),
Lip(x.)=Ed(x.),
providing the eigenstates and eigenvalues [33],
#(x)=e" (x. )% z, (ixfxl/l2 —1),

2 (146)

(ix+\/m),

(145)

p(x.) =" (x.)22

N <

g (1)= h,u+grﬁa~)/l+,
49 (147)
&)= —hv—zmcbxt,

respectively. Here

Z, (ixfx/m) and Z

Y
2 2

(ix+\/ﬂ)

are the Bessel functions satisfying the following diffe-
rential equations

Copyright © 2013 SciRes.

dx_

{(ix_\/m)2 %+(ix_ A° —1)i

i (148)
+(ix_ A2 —1—%]} Z% (ix_\/ﬂz_—l) -0,
(1) e )
N . (149)

+(ix+«//12_—l—V7:HZ (ix+\//12_—l):0,

2
The general solutions of (148) and (149) are given by

zﬁ(ix_m) - AJﬁ(ix_\/H)

(150)
+BN, (ix_x//lz —1)
2
and
z (ix+x//12 —1) ~cJ, (ix+\/ﬂ,2 —1)
2 2 (151)
N DNK(ixn//Iz —1),
2
where

J, (ix_ﬁ) and N

4
2 2

77

are the Bessel and Neumann functions of order s

respectively, and A,B,C and D are constants to be
determined via application of the boundary conditions.
Since the solution must be finiteat x_ =0, and

N, (ix V22 -1) > as x -0,
2

the coefficient of
N, (ix 2 —1)
must be vanished, implying B =0, leaving

Z”(ixfm)

2

NI

to be expressed as follows

2, (27 -1)= Ay, (ix V27 1),

2 2

(152)

By using similar arguments to those given above, we
set D=0 andwrite

z (ix+\//12 —1) ~cy, (ix+\//12 —1). (153)
2 2
Consequently, we find
JMP
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#(x_)= A" (x_ )% J (ix_m),

#(x.)=Ce™ (x.) 23, (ix V22 1),

N

(154)

N

where A and C are the normalization constants.

In comparison with the algebraic method developed in
Section (4.2), we can see that m, and n_ are related
to # and « by the following relations,

m =a+u and n_ =g, (155)
while m_ and n, arerelatedto v and S as follows,
m =4+v and n, =g (156)
Finally, the spectrum of the system is given by
H VXY, X,
Hl//y,a,v,ﬂ(y+ — y, ) (157)
:Eg(a’ﬂl/ulv)l//y,a,v,ﬂ(y+’x—’y—’x+)’
L XYL X
H¢y,a,v,ﬂ(y+ — y— +) (158)
:69(a’ﬂ’/u’v)¢y,a,v,ﬁ(y+’x—ly—vx+)y
with
Eg(a,/;’,,u,v)=%ha~)(2a+2/}+,u+v+2)
2
+%ha“)c(,u+v)— E, 5 : (159)
2£1+1B.9J Ma?
2
Ey(a, pouv)=n(u—v), (160)
XYL X ) =STT i (x ) ®w (X, ),
l//(y+ — y— +) !//( *) W( +) (161)

PV, X, Y%, )= ST (x ) ®g(x,).

_ From the expression (62), we obtain that when 7 =1,
6 =0,s0 4, =1 and A=1, which corresponds to NC
space where only momentum-momentum is commuting,

Eit (a. B uv)

1 Mma, m? e’
==ho|1l-—=0+ 0> |(2a+2p+u+v+2
2“{ 2n 1672 j(aﬁyv)
2 E-2
+lha)C 1- 12 (u+v)-—=,
2 4haw, 2may;
(162)
& (. pouv)=h(u-v). (163)

If =0 and 6 =0, then the results return to those
of the quantum dipole in the commutation space

Eo (. B 11,v) =%hw(2a+2ﬂ+,u+v+2)
) (164)

i
2|
@

+%ha)c(y+v)—
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Ela,Bouv)=n(u-v). (165)

The energy shift caused by the noncommutativity of
both space-space and momentum-momentum can be
given as follows

AE :%h(@—w)(2a+2ﬁ+,u+v+2)

(166)
+=h(@,—w,)(u+v),

which can be rewritten as follows,

AE =1h on’ —ime59+%mzw256’2 -
2 2h 167°n

x(2a+2f+u+v+2)

1. (_ 1 2 .,
+—h|l on——Bw. ——Mmw;0 — o +v),
2 ( c’7 4h7] c A 0 cj(:u )

(167)
while the angular momentum does not present the shift
term caused by the noncommutativity of both space-
space and momentum-momentum

AE =0. (168)

Finally, we note that our method allows to solve rigo-
rously the angular momentum in noncommuting phase
space eventhough this operator does not commute with
the NC phase space quantum Hamiltonian.

5. Conclusions

In this paper, we have studied a generalization of the two
dimensional quantum dipole coupled to external uniform
electric and magnetic background fields. We started in
studying the model in the ordinary commutating varia-
bles space. The Hamiltonian and the angular momentum
operators are diagonalized in the standard Fock space
basis. Then, the quantum dipole is studied in the NC pha-
se space. We have found that the NC quantum Hamil-
tonian and angular momentum do not form a complete
set of commuting observables since the specification of
their two eigenvalues do not specify uniquely a state of
the considered basis of states, here the Fock basis. Subse-
quently, the eigenstates and the corresponding eigen-
values of the NC quantum Hamiltonian and angular mo-
mentum have been derived through algebraic and analy-
tical methods. Specifically, the analytical solutions have
been made possible by means of the similarity transfor-
mation of the su(1,1) algebra identified through the
system.

Note interestingly that when 7 =1, we have 6 =0,
which corresponds to the case where only the space-
space is noncommuting, while when =0 and 6 =0,
the results return to those of the quantum dipole coupled
to external electric and magnetic background fields in
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commuting space. We have obtained explicitly the
energy shift due to the description of the model in NC
phase space. At the opposite, the NC phase space angular
momentum doesn't have such a shift term. Our study
shows that the alternative choice that constitutes the NC
phase space is compatible with this model. Furthermore,
we have shown that with a careful observation of the
hidden symmetries, it is possible to diagonalize an obser-
vable, in this case the angular momentum. This shows, if
necessary, the importance of the theory of groups. In pro-
spect, we envisage to study the thermodynamic pro-
perties of this model.
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