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ABSTRACT 

There are currently many approaches to identify the community structure of a network, but relatively few specific to 
detect overlapping community structures. Likewise, there are few networks with ground truth overlapping nodes. For 
this reason, we introduce a new network, Pilgrim, with known overlapping nodes, and a new genetic algorithm for de- 
tecting such nodes. Pilgrim is comprised of a variety of structures including two communities with dense overlap, which 
is common in real social structures. This study initially explores the potential of the community detection algorithm 
LabelRank for consistent overlap detection; however, the deterministic nature of this algorithm restricts it to very few 
candidate solutions. Therefore, we propose a genetic algorithm using a restricted edge-based clustering technique to 
detect overlapping communities by maximizing an efficient overlapping modularity function. The proposed restriction 
to the edge-based representation precludes the possibility of disjoint communities, thereby, dramatically reducing the 
search space and decreasing the number of generations required to produce an optimal solution. A tunable parameter r 
allows the strictness of the definition of overlap to be adjusted allowing for refinement in the number of identified 
overlapping nodes. Our method, tested on several real social networks, yields results comparable to the most effective 
overlapping community detection algorithms to date. 
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1. Introduction 

Many complex systems, such as social networks, autono- 
mous systems, and html structures, can be usefully rep- 
resented as graphs of edges and nodes. Communities, 
defined as subsets of nodes with more internal edges than 
external edges, reveal interrelated subgroups within net- 
work structures. Information on these community struc- 
tures can provide useful information about systems them- 
selves. A variety of methods for detecting these commu- 
nities have been proposed. Unfortunately, most commu- 
nity detection algorithms treat communities as discrete 
sets of nodes, not allowing for overlap. However, this 
classification does not represent the actual structure of 
many complex systems; in social networks for example, 
many people belong to more than one social group. 

Some community detection algorithms have been 
adapted to find overlapping community structures. Label 
Propagation Algorithm, or LPA, for example was modi- 
fied into the Speaker-Listener Label Propagation Algo- 

rithm, or SLPA to increase accuracy and enable overlap 
detection. By assigning communities based on a belong- 
ing threshold, instead of by strongest belonging, nodes 
can be part of more than one community [1]. Other algo- 
rithms, such as Community Overlap Propagation Algo- 
rithm (COPRA) [2], Greedy Clique Expansion (GCE) [3], 
and Order Statistics Local Optimization Method (OSLOM) 
[4] use various methods to determine overlapping mem- 
berships. 

COPRA uses LPA as a basis for its overlapping detec- 
tion. Instead of assigning each node a single label based 
on its neighbor’s labels, COPRA assigns each node a 
belonging coefficient for each community. Whenever a 
coefficient falls below a threshold it is removed and the 
remaining coefficients are normalized. If the node does 
not have any memberships greater than this threshold, it 
maintains only the coefficient with the highest belonging. 
The nodes that retain multiple labels at the termination of 
the algorithm are overlapping nodes. 

GCE uses maximal cliques as seeds for detecting 
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community structure. A maximal clique is defined as a 
group of nodes that is entirely connected, and is not part 
of a larger set of entirely connected nodes. The algorithm 
begins with as many communities as there are maximal 
cliques that are larger than the parameter k and greedily 
expands each, absorbing nodes that maximize a local 
fitness function. All communities that are too similar to 
one another are discarded. Because each community ex- 
pands independently they can absorb the same nodes; 
these nodes are the overlap between two or more com- 
munities. 

OSLOM works by finding the smallest significant 
communities in the network and building up a hierarchi- 
cal structure. In each iteration, the smallest significant 
communities are detected. In the following iteration each 
of these communities is treated as a node, with the con- 
nections between communities refactored into weighted 
edges. The process is repeated until the entire network is 
joined together. Again, like in GCE, overlapping nodes 
may be identified because each community is detected 
independently, and the optimal structures for two com- 
munities might both contain a single node. 

These algorithms demonstrate the variety of methods 
employed to detect overlapping community structure. 
Unfortunately there are only a few networks with known 
overlapping structure on which these algorithms may be 
compared. As a substitute, social networks with unknown 
overlapping structure may be used along with overlap- 
ping fitness functions to make a rough comparison in the 
same way that networks with unknown ground truths can 
still be analyzed using modularity. Our study introduces 
a new community detection technique based on genetic 
algorithms, and evaluates it on networks with and with- 
out known overlapping structures, producing both high 
modularity scores and accurate detection of known over- 
lapping nodes. 

2. Networks 

This study makes use of a total of seven real-world social 
networks: karate [5], lesmis [6], dolphins [7], books, 
football [8], jazz [9], and Pilgrim. Karate is a well-known 
friendship network of a karate club in the 1970’s. Lesmis 
represents the co-appearance of characters in Victor 
Hugo’s Les Miserables. Dolphins are a collection of the 
associations of dolphins studied off the coast of New 
Zealand. Books represent the co-purchasing of political 
books on Amazon at the time of the 2004 US presidential 
election. Football is composed of the games played by 
Division IA college football teams in 2000. Jazz repre- 
sents the collaboration network of a selection of Jazz mu- 
sicians. Finally Pilgrim is a newly introduced network 
built on the social intertions of a high school class. 

The Pilgrim high school network is composed of 34 

nodes and 128 edges based on the friendship structure of 
a single class. It was created by two members of the class, 
Dickinson and Lieb, from experience in different com- 
munities within the class. The density of the graph is not 
uniform, resulting in a variety of different community 
structures. Some portions of the graph are very sparsely 
connected, while others form cliques. There is also a 
heavy amount of overlap between two of the larger com- 
munities presenting an interesting problem for algorithms 
designed to produce overlapping partitions. The basic 
ground truth community structure of this network is 
known, as is the overlapping community structure. Be- 
cause it is a relatively small network, the overlap may be 
easily represented and studied as in Figure 1. 

3. Modularity 

Probably the most widely used measure for evaluating 
the goodness of a community structure without a ground 
truth is Newman’s modularity function [10]. Modularity 
is a metric of the difference in the internal density of the 
community structures before and after a random rear- 
rangement of the edges of the graph (1). The full defini- 
tion of the function has been omitted because of its 
common use. This function is only compatible with dis- 
joint communities in a graph. There are, however, two 
variations of modularity designed specifically for evalu- 
ating overlapping community structures. 
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In [11], Shen introduced EQ, an adaptation of New- 
man’s modularity function designed to support overlap- 
ping communities. The equation for EQ strongly resem- 

 

 

Figure 1. Pilgrim high school friendship network ground 
truth. 
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bles the original modularity function (2) (1). In this equa- 
tion, m is defined as the number of edges in the graph. C 
is the set of communities, and Ov is the number of com- 
munities to which the node v belongs. The presence of an 
edge between two nodes v and w is represented as the 
value in the corresponding position of the adjacency ma- 
trix Avw. This equation reduces to the same value as 
modularity when each node is a member of only one 
community. 
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Another metric proposed in [12] by Nicosia provides a 
more complex and potentially more accurate evaluation 
of the goodness of an overlapping community structure 
(3). This measure makes use of several additional func- 
tions defined in [12]. For its arbitrary function f = 2px − 
p, the recommended p value of 30 has been adopted. As 
in EQ, C is the set of communities, and V is the set of 
nodes. In addition to this, rijc and sijc are weights based on 
the proportion of belonging to a community. A full ex- 
planation of them is available in [12]. The time complex- 
ity of this fitness function is almost O(n3) making it un- 
suitable for use inside of an algorithm. 
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4. Algorithms 

In this section, we present two different approaches to 
overlapping community detection. The first is LabelRank, 
a deterministic variation of SLPA based on the properties 
of matrix multiplication. The second is a variation of 
genetic algorithms designed to provide a large variety of 
potential solutions. The first approach is more efficient, 
while the second is more thorough. 

4.1. LabelRank 

LabelRank was proposed by Xie as a stabilization of 
SLPA [13]. Its results compare favorably with SLPA 
with the additional benefit of being deterministic. La- 
belRank works in four phases: propagation, inflation, 
cutoff, and conditional update. The first phase, propaga- 
tion, generates a new probability matrix, P', by multiply- 
ing the current probability matrix by the adjacency ma- 
trix of the graph. In the initialization of P, each node has 
an equal probability of belonging to each of its immedi- 
ate neighbors. The next stage, inflation, accelerates the 
process of gravitating nodes toward communities by in- 
creasing high probabilities while simultaneously de- 
creasing low ones. This function takes a value of and  '

ijP

sets it equal to ij

i

P

P
 where in is the chosen inflation pa- 

rameter, and Pi is a row in P. Once the values of P' have 
been inflated, the cutoff phase sets all values smaller than 
some threshold  0,1r  equal to 0. This reduces the 
amount of memory necessary to maintain the matrix 
without having an effect on the results of the algorithm. 
The final phase is the conditional update in which only 
nodes meeting certain conditions have their rows of the 
probability matrix altered. This function requires that the 
set of most probable labels for node i be a subset of the 
most probable label sets of a certain threshold q of its 
neighbors. A conditional update is used to prevent the 
quality of the partition from decreasing after it reaches its 
peak. The algorithm terminates when the number of 
nodes changing their labels stabilizes. 

Because LabelRank produced similar, and often better, 
performance when compared to SLPA, it showed pro- 
mise for being adapted to detect overlapping communi- 
ties. In fact, the only necessary modification was the in- 
troduction of a proportion of membership threshold α. 
After termination instead of assigning each node its ma- 
ximum probability label, each node is assigned every 
label for which it has a probability greater than α. If no 
probabilities are greater than α, then the maximal prob-
ability label is allotted. This simple modification was 
designed to enable LabelRank to detect overlap in the 
same way that SLPA does. 

4.2. Overlap-Detection Genetic Algorithm 

LabelRank has the distinct property of being determinis- 
tic. Because our initial testing showed that in many cases 
this could be a disadvantage, a new algorithm for detect- 
ing overlapping communities was developed based on 
previous genetic algorithms. The genetic algorithm for 
overlap detection, abbreviated OGA, unlike LabelRank 
provides a variety of potential solutions. It requires sev- 
eral parameters defined as follows: a specified number of 
iterations iter, a proportion of the population to maintain 
as the fittest f, a crossover rate q, a mutation rate mut, and 
a membership threshold r. This algorithm uses an edge- 
based representation for clustering in order to detect 
overlapping communities of nodes [14]. In order to re- 
duce the search space to likely partitions, a similar rep- 
resentation to that of [15] is used. The gene is the same 
length as the edge set of the graph. Each index represents 
an edge, and the corresponding value also represents an 
edge. The pairing of two edges in the gene indicates that 
they share a community. The pseudo code for OGA is 
presented in Algorithm 1. 

Algorithm 1: OGA 
Input: graph, popSize, iter, f, q, mut, r  
# n is the number of nodes in the graph 
# A is the adjacency matrix of the graph 
 
main() 
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    population  matrix(n, popSize)  
 
    for each row in population: 
       row = generate_individual() 
    end for 
    for i in 1 to iter: 
        fittest  evaluate(population, f) 
        population  crossover(fittest, q) 
        population  mutate(population, mut) 
    end for 
 
generate_individual() 
    for i in 1 to n: 
        individual[i]  random(neighbors(graph, i)) 
    end for 
    return individual 
 
evaluate(population, f) 
    population  sort(population, fitness) 
    fittest  list() 
    for i in 1 to popSize ×f: 
        fittest.add(population[i]) 
    end for 
    return fittest 
 
crossover(fittest, q) 
    for each individual in population: 
        father  random(fittest) 
        mother  random(fittest) 
        for i in 1 to n: 
            if random(0 to 1) > q: 
                individual[i]  father[i] 
            else 
                individual[i]  mother[i] 
        end for 
    end for 
    return population 
 
mutate(population, mut) 
  for each individual in population: 
      for i in 1 to n: 
          if random(0 to 1) < mut: 
            individual[i]  random(neighbors 

(graph, i)) 
      end for 
   end for 
    return population 
The first step of OGA is to generate a random, safe 

population. In this context, safe means that an edge pair- 
ing can only take place between adjacent edges in the 
network. In generating the random safe population the 
value at each position of the gene is selected randomly 
from the edge sets of the two nodes connected to that 
edge. In doing so, the total search space for the algorithm 
is greatly reduced without removing possibly-maximal 

solutions. An example of this structure in relation to a 
graph is given in Figure 2. 

The next several operations of the algorithm are re- 
peated for the predefined number of iterations, iter. First 
the fittest members of the population are selected out of 
the population. This requires a fitness function through 
which to compare genes, and a percentage threshold to 
determine the size of the fittest. The chosen fitness func- 
tion is the faster of the two overlapping modularity func- 
tions, EQ. Results should be improved by maximizing 
one of the measures of the goodness of overlapping par- 
titions. 

In order for this function to be useable, however, the 
membership must be converted to a node-based format. 
The transformation is done using a recursive tracing 
function. Because each edge in the representation is as- 
sociated only with one other edge, these connections 
must be traced outward from a starting edge to discover 
the entire community. If the edges were treated as nodes, 
and their associations taken from the gene as edges, the 
edge communities would be the disjoint sub graphs of the 
network as seen in Figure 3. This provides a non-over- 
lapping community partition of the edges. In order to 
determine the required node membership, a simple per- 
centage is calculated. The membership to each commu- 
nity is the number of labels matching that community in 
the edge set of the node divided by the degree of that 
node. If this value is higher than some threshold r then 
the node belongs to that community. Nodes without any 
memberships greater than r are assigned to the commu- 
nity to which they have the highest membership. For 
example, in the sample graph node four would belong to  

 

 
(a) 

 

(b) 

Figure 2. (a) Example graph; (b) A safe gene for the net- 
work in (a) for example 31 implies a pairing of edges 3 and 1 
and places them in the same community. A quick check 
verifies that they are adjacent via node 2 so this is a safe 
connection. The same is true of every index-value pair in 
this gene since it is a safe gene. 
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(a) 

 
(b) 

Figure 3. (a) Representation of an edge-based gene where 
edges are represented by nodes. Edges in the graph link 
edges paired in the gene; (b) Gene from which the network 
(a) was created. Note that gene1 = 3 so there is an edge be- 
tween 1 and 3. 

 
both communities because half of its edges are in each 
community Figure 2. 

The next step of OGA is to generate a new population 
from the fittest by selecting two parents and crossing 
them over. The crossover is performed using a crossover 
rate q. For each position in the gene, the child has a q 
probability of receiving the value from the first parent, 
and a 1 − q probability of receiving it from the second. 
Because both parents were initialized with safe genes, the 
child is necessarily safe. If the value exists at a position 
in the parent, then the two edges must share a node.  

Crossover is followed by a repaired mutation [15]. A 
normal mutation, in which random values are assigned to 
randomly selected positions in genes, would explore 
unlikely solutions and make genes unsafe. Instead, the 
value at any edge randomly selected according to the 
mutation rate is set to the index of an adjacent edge. In 
doing this, the population remains safe, and the search 
space does not expand unnecessarily. Following this step, 
the process is repeated for the specified number of itera- 
tions, after which the fittest gene of the entire process is 
returned. 

The approximate time complexity of the initialization, 
crossover, and mutation functions is . 
Because the search space is greatly reduced by the safe 
representation used, the number of iterations required 
scales linearly as well, keeping the time complexity be- 
low . The only remaining bottleneck on the run- 
time is the fitness function itself, which in this case has a 
time complexity of . Therefore the overall run- 
time of OGA is . 

 SizeO m pop

 2O n

 2O n
 2O n

5. Results 

In this section, we first experiment with our adaptation of 

LabelRank as an overlapping community detection algo- 
rithm before concluding that the efficiency gains due to 
its deterministic nature were less important than the 
maximal accuracy which was lost. In response to this, we 
present the results of our proposed overlapping commu- 
nity detection algorithm alongside SLPA across several 
real world social networks using EQ and Qov modularity 
scores as our evaluation criteria. To further demonstrate 
the performance of our algorithm, and the flexibility pro- 
vided by its r parameter, we compare our identified over- 
lapping communities to those of the ground truth on the 
Pilgrim network. 

5.1. LabelRank on Overlapping Communities 

The modified LabelRank algorithm was tested on our 
selected networks against SLPA. SLPA was chosen as a 
baseline for comparison because of its affinity with La- 
belRank, and its excellent performance in comparison 
with other algorithms for detecting overlapping commu- 
nity structures [16]. Both algorithms were tuned on a full 
range of parameters. LabelRank used the following pa- 
rameter ranges: {1,1.5, 2}in , , {0.5,0.6}q {0.1}r , 
and {0.1,0.15,0.2,0.25,0.3}  . SLPA was run with 
varying numbers of iterations , and 
various thresholds 

{25,50,75,it
.15,0.2,0.25,0.3

100}
}{0.1,0  . During 

the tuning phase, SLPA was run ten times with each pos- 
sible combination of its parameters on every graph. The 
parameter set that resulted in the highest overlapping 
modularity values for each graph was then used to pro- 
duce a final result. Using these parameters, SLPA was 
run nine more times recording the minimum, median, 
and maximum modularity scores for each modularity 
function. LabelRank too was run using its optimal pa- 
rameters to produce the modularity scores recorded in 
Tables 1-3. 

From these results, it appears that LabelRank generally 
performs close to the median modularity of SLPA. These 
results are illustrated in Figures 4 and 5. When Label- 
Rank is optimized to perform its function with as little 
unnecessary overhead as possible, its runtime is linear 
[13]. This is approximately the same runtime as SLPA 
[1]. Since both algorithms have approximately the same  

 
Table 1. LabelRank and SLPA modularity. 

 LabelRank SLPA min SLPA median SLPA max

karate 0.371466 0.28709 0.37147 0.40204 

Pilgrim 0.437805 0.08859 0.36905 0.43732 

lesmis 0.444812 0.23090 0.526668 0.540796 

dolphin 0.491515 0.33794 0.47076 0.49017 

books 0.492297 0.44860 0.49359 0.50878 

football 0.603070 0.58062 0.59874 0.60307 

jazz 0.281997 0.28100 0.33084 0.44272 
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Table 2. LabelRank and SLPA EQ. Table 3. LabelRank and SLPA Qov. 

 LabelRank SLPA min SLPA median SLPA max

karate 0.415516 0.340155 0.410092 0.450362 

Pilgrim 0.391510 0.126343 0.369591 0.474091 

lesmis 0.451008 0.246385 0.543144 0.570444 

dolphin 0.421700 0.369536 0.494279 0.504252 

books 0.489592 0.459739 0.500836 0.508527 

football 0.607479 0.524923 0.594251 0.611182 

jazz 0.290611 0.286760 0.300419 0.446170 

 LabelRank SLPA min SLPA median SLPA max

karate 0.634439 0.503739 0.632735 0.667816 

Pilgrim 0.648807 0.257710 0.604430 0.731975 

lesmis 0.646621 0.131625 0.748242 0.768513 

dolphins 0.613071 0.470771 0.697240 0.744916 

books 0.692267 0.693832 0.741700 0.756844 

football 0.692091 0.595320 0.683301 0.715176 

jazz 0.332284 0.345375 0.496795 0.712619 
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Figure 4. LabelRank and SLPA modularity scores on karate. 
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Figure 5. LabelRank and SLPA modularity scores on football. 
 

runtime LabelRank is better suited for detecting overlap-
ping partitions on large networks. This is because the 
result of LabelRank is deterministically approximately 
that of the median SLPA score. It would likely take seve- 
ral runs of SLPA to produce a higher score, and doing so 
would take several times as much processing time and 
power. 

This does not change the fact that SLPA can produce 
higher modularity scores given more opportunities to run. 
Since LabelRank simulates the spread of labels strictly 
according to probabilities it is unsurprising that it results 
in scores near the median SLPA scores. Because SLPA 
allows these probabilities to act on the spread of labels 
randomly it produces some variation from that median 
point. Many of these variations will influence the quality 
of the partition negatively, but some will have a positive 
influence on the result allowing SLPA to produce higher 
maximal scores. SLPA is able to perform better over 
multiple runs because it has an enlarged search space 
which generates a pool of candidates from which to 

choose the preferred solution. 

5.2. OGA in Overlapping Community Detection 

Because the larger selection of candidate solutions in 
SLPA produced higher optimal results, we implemented 
OGA, a genetic algorithm which maximizes EQ. By 
enlarging the search space to include all possibilities in 
which communities are not disjoint, we hoped to create 
better overlapping partitions. OGA uses several tunable 
parameters, the most important of which we discovered 
was r, the percentage of edges belonging to a given com- 
munity a node needs to be considered part of that com- 
munity. Other parameters such as population size, pro- 
portion considered the fittest, and number of iterations 
remained relatively constant. The optimal value for r for 
every graph tested was 0.2. Higher values tended to pro- 
duce too little, if any, overlap, while lower values re- 
sulted in the detection of too many overlapping nodes. 
The results of our genetic algorithm are comparable to 
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the highest results of SLPA after 9 runs as can be seen in 
Table 4 and Figures 6 and 7. 

The overlapping modularity scores of OGA are very 
close to those of SLPA on every network. This implies a 
particularly good partitioning considering [16] deter- 
mined that SLPA is one of the most consistently accurate 
algorithms for detecting overlapping community struc- 
ture. Of the fourteen algorithms tested in [16] SLPA was 
among the top performers on each network. 

Analyzing the identified overlap in the Pilgrim net- 
work yields interesting results. The only detected over- 
lapping node in the optimal modularity solution for Pil- 
grim was 21. In the next run, with a slightly lowered r 
value OGA produced a slightly lower modularity result, 
but a much more accurate list of overlapping nodes. This 
second list included the following nodes: 5, 15, 24, 21, 
and 22. Of these 5 nodes, 3 are overlapping in the ground 
truth, while the other 2 are very close to the community 
borders. When the r parameter was reduced slightly fur- 
ther, it produced a larger list of overlapping nodes, now 
including 4, 11, and 27, and removing 22. This list in- 
cludes all 5 ground truth overlapping nodes, including 
only 2 additional nodes that are not quite overlapping. 
All of these results are displayed in Figure 8. The colors, 
red, orange, and yellow, correspond to the lowest r value 
0.2, 0.1, and 0.08, under which a given nodes was cate-  

gorized. Outline colors show the ground truth of the net- 
work. 

Further analysis of these results was done using the 
F-score to evaluate the detection of overlapping nodes. A 
correctly identified overlapping node is a true positive, or 
TP. Similarly a node incorrectly identified as overlapping  
is a false positive or FP. Inversely nodes not identified as 
overlapping which in fact are constitute false negatives, 
FNs, and nodes correctly identified a  s not overlapping 
are true negatives, TNs. These counts are used to calcu-  

late precision and recall which are 
TP

TP FP
 and  

TP

TP FN
, respectively. Precision then represents the  

percentage of nodes classified as overlapping which are 
in fact overlapping, and recall is the percentage of ground 
truth overlapping nodes identified. These two metrics  
may be combined into an F-score,  

precision recall
2

precision recall





 

producing scores between 0 and 1 where 1 is the optimal 
result. This metric balances the optimization between 
two goals, discovering all overlapping nodes and only 
discovering truly overlapping nodes. The relationship  

 
Table 4. OGA and SLPA overlapping modularities on several real social networks. 

Modularity Algorithm karate Pilgrim lesmis dolphins football 

OGA 0.445225 0.472687 0.578773 0.540742 0.603323 
EQ 

SLPA 0.450362 0.474091 0.570444 0.504252 0.611182 

OGA 0.637640 0.735629 0.746658 0.752494 0.712163 
Qov 

SLPA 0.667816 0.731975 0.768513 0.744916 0.715176 
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Figure 6. OGA and SLPA EQ on several real social networks. 
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Figure 7. OGA and SLPA Qov on several real social networks. 
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Figure 8. Pilgrim network with nodes detected by OGA and 
ground truth overlapping nodes. The nodes identified by 
OGA are colored in yellow, orange, and red. Colored out- 
lines represent the ground truth overlapping communities 
in which overlapping nodes are encompassed by multiple 
colored outlines. 
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Figure 9. F-score comparison between overlapping nodes 
identified by OGA and the ground truth overlapping nodes 
on the Pilgrim network. The accompanying EQ and Qov 
scores correspond to the F-score at a given r value. 

 
between modularity and F-score is pictured in Figure 9. 

As may clearly be seen there is an inverse relationship 
between the F-score and the two overlapping modularity 
values, EQ and Qov. This indicates that the ground truth 
structure of the network is not the same as the optimal 
modularity solution. This is quite similar to the disparity 
between the optimal Newman’s modularity clustering of 
karate which includes four communities, and the ground 
truth of only two communities. Our genetic algorithm, by 
varying the threshold r, is able to detect these other struc- 
tures. In addition to this, should another more accurate 
metric be developed, all portions of OGA, excluding the 
current fitness function, would be useful for maximizing 
any global fitness function. 

6. Conclusion 

This paper has presented a genetic algorithm for overlap- 
ping community detection, OGA, comparable to SLPA, 
one of the best existing algorithms, in performance. Us- 
ing a restricted representation to limit the number of pos- 
sible partitions, the time complexity is reduced to  2O n . 
In addition to this the genetic structure of OGA provides 
flexibility to introduce new fitness functions. The EQ and 
Qov scores of this algorithm are on par with SLPA, one of 
the premier algorithms for detecting overlapping com- 
munity structure in social networks. Comparing this dis- 
covered overlap with the ground truth overlapping struc- 
ture of Pilgrim reveals some disparity between optimal 
modularity and ground truth community structures. This 
demonstrates the usefulness of networks with ground 
truth overlapping structure for the evaluation of commu- 
nity detection algorithms. 
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