
Social Networking, 2013, 2, 193-201
http://dx.doi.org/10.4236/sn.2013.24019 Published Online October 2013 (http://www.scirp.org/journal/sn)

A Genetic Algorithm for Identifying Overlapping
Communities in Social Networks Using an Optimized

Search Space

Brian Dickinson, Benjamin Valyou, Wei Hu
Department of Computer Science, Houghton College, Houghton, USA

Email: Wei.Hu@houghton.edu

Received July 21, 2013; revised August 25, 2013; accepted October 14, 2013

Copyright © 2013 Brian Dickinson et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

There are currently many approaches to identify the community structure of a network, but relatively few specific to
detect overlapping community structures. Likewise, there are few networks with ground truth overlapping nodes. For
this reason, we introduce a new network, Pilgrim, with known overlapping nodes, and a new genetic algorithm for de-
tecting such nodes. Pilgrim is comprised of a variety of structures including two communities with dense overlap, which
is common in real social structures. This study initially explores the potential of the community detection algorithm
LabelRank for consistent overlap detection; however, the deterministic nature of this algorithm restricts it to very few
candidate solutions. Therefore, we propose a genetic algorithm using a restricted edge-based clustering technique to
detect overlapping communities by maximizing an efficient overlapping modularity function. The proposed restriction
to the edge-based representation precludes the possibility of disjoint communities, thereby, dramatically reducing the
search space and decreasing the number of generations required to produce an optimal solution. A tunable parameter r
allows the strictness of the definition of overlap to be adjusted allowing for refinement in the number of identified
overlapping nodes. Our method, tested on several real social networks, yields results comparable to the most effective
overlapping community detection algorithms to date.

Keywords: Overlapping Community Detection; Genetic Algorithm; Social Networks

1. Introduction

Many complex systems, such as social networks, autono-
mous systems, and html structures, can be usefully rep-
resented as graphs of edges and nodes. Communities,
defined as subsets of nodes with more internal edges than
external edges, reveal interrelated subgroups within net-
work structures. Information on these community struc-
tures can provide useful information about systems them-
selves. A variety of methods for detecting these commu-
nities have been proposed. Unfortunately, most commu-
nity detection algorithms treat communities as discrete
sets of nodes, not allowing for overlap. However, this
classification does not represent the actual structure of
many complex systems; in social networks for example,
many people belong to more than one social group.

Some community detection algorithms have been
adapted to find overlapping community structures. Label
Propagation Algorithm, or LPA, for example was modi-
fied into the Speaker-Listener Label Propagation Algo-

rithm, or SLPA to increase accuracy and enable overlap
detection. By assigning communities based on a belong-
ing threshold, instead of by strongest belonging, nodes
can be part of more than one community [1]. Other algo-
rithms, such as Community Overlap Propagation Algo-
rithm (COPRA) [2], Greedy Clique Expansion (GCE) [3],
and Order Statistics Local Optimization Method (OSLOM)
[4] use various methods to determine overlapping mem-
berships.

COPRA uses LPA as a basis for its overlapping detec-
tion. Instead of assigning each node a single label based
on its neighbor’s labels, COPRA assigns each node a
belonging coefficient for each community. Whenever a
coefficient falls below a threshold it is removed and the
remaining coefficients are normalized. If the node does
not have any memberships greater than this threshold, it
maintains only the coefficient with the highest belonging.
The nodes that retain multiple labels at the termination of
the algorithm are overlapping nodes.

GCE uses maximal cliques as seeds for detecting

Copyright © 2013 SciRes. SN

B. DICKINSON ET AL. 194

community structure. A maximal clique is defined as a
group of nodes that is entirely connected, and is not part
of a larger set of entirely connected nodes. The algorithm
begins with as many communities as there are maximal
cliques that are larger than the parameter k and greedily
expands each, absorbing nodes that maximize a local
fitness function. All communities that are too similar to
one another are discarded. Because each community ex-
pands independently they can absorb the same nodes;
these nodes are the overlap between two or more com-
munities.

OSLOM works by finding the smallest significant
communities in the network and building up a hierarchi-
cal structure. In each iteration, the smallest significant
communities are detected. In the following iteration each
of these communities is treated as a node, with the con-
nections between communities refactored into weighted
edges. The process is repeated until the entire network is
joined together. Again, like in GCE, overlapping nodes
may be identified because each community is detected
independently, and the optimal structures for two com-
munities might both contain a single node.

These algorithms demonstrate the variety of methods
employed to detect overlapping community structure.
Unfortunately there are only a few networks with known
overlapping structure on which these algorithms may be
compared. As a substitute, social networks with unknown
overlapping structure may be used along with overlap-
ping fitness functions to make a rough comparison in the
same way that networks with unknown ground truths can
still be analyzed using modularity. Our study introduces
a new community detection technique based on genetic
algorithms, and evaluates it on networks with and with-
out known overlapping structures, producing both high
modularity scores and accurate detection of known over-
lapping nodes.

2. Networks

This study makes use of a total of seven real-world social
networks: karate [5], lesmis [6], dolphins [7], books,
football [8], jazz [9], and Pilgrim. Karate is a well-known
friendship network of a karate club in the 1970’s. Lesmis
represents the co-appearance of characters in Victor
Hugo’s Les Miserables. Dolphins are a collection of the
associations of dolphins studied off the coast of New
Zealand. Books represent the co-purchasing of political
books on Amazon at the time of the 2004 US presidential
election. Football is composed of the games played by
Division IA college football teams in 2000. Jazz repre-
sents the collaboration network of a selection of Jazz mu-
sicians. Finally Pilgrim is a newly introduced network
built on the social intertions of a high school class.

The Pilgrim high school network is composed of 34

nodes and 128 edges based on the friendship structure of
a single class. It was created by two members of the class,
Dickinson and Lieb, from experience in different com-
munities within the class. The density of the graph is not
uniform, resulting in a variety of different community
structures. Some portions of the graph are very sparsely
connected, while others form cliques. There is also a
heavy amount of overlap between two of the larger com-
munities presenting an interesting problem for algorithms
designed to produce overlapping partitions. The basic
ground truth community structure of this network is
known, as is the overlapping community structure. Be-
cause it is a relatively small network, the overlap may be
easily represented and studied as in Figure 1.

3. Modularity

Probably the most widely used measure for evaluating
the goodness of a community structure without a ground
truth is Newman’s modularity function [10]. Modularity
is a metric of the difference in the internal density of the
community structures before and after a random rear-
rangement of the edges of the graph (1). The full defini-
tion of the function has been omitted because of its
common use. This function is only compatible with dis-
joint communities in a graph. There are, however, two
variations of modularity designed specifically for evalu-
ating overlapping community structures.

 
,

,
1

2 2
i j

i j ij
i j V

k k
Q c c A

m m










 
  (1)

In [11], Shen introduced EQ, an adaptation of New-
man’s modularity function designed to support overlap-
ping communities. The equation for EQ strongly resem-

Figure 1. Pilgrim high school friendship network ground
truth.

Copyright © 2013 SciRes. SN

B. DICKINSON ET AL. 195

bles the original modularity function (2) (1). In this equa-
tion, m is defined as the number of edges in the graph. C
is the set of communities, and Ov is the number of com-
munities to which the node v belongs. The presence of an
edge between two nodes v and w is represented as the
value in the corresponding position of the adjacency ma-
trix Avw. This equation reduces to the same value as
modularity when each node is a member of only one
community.

,

1 1

2
i j

ij
c Ci c j c i j

k k
EQ A

m O O  

 
 

 
 

2m  (2)

Another metric proposed in [12] by Nicosia provides a
more complex and potentially more accurate evaluation
of the goodness of an overlapping community structure
(3). This measure makes use of several additional func-
tions defined in [12]. For its arbitrary function f = 2px −
p, the recommended p value of 30 has been adopted. As
in EQ, C is the set of communities, and V is the set of
nodes. In addition to this, rijc and sijc are weights based on
the proportion of belonging to a community. A full ex-
planation of them is available in [12]. The time complex-
ity of this fitness function is almost O(n3) making it un-
suitable for use inside of an algorithm.

,

1
out in
i j

ov ijc ij ijc
c Ci j V

k k
Q r A s

m m 

 
  

  
  (3)

4. Algorithms

In this section, we present two different approaches to
overlapping community detection. The first is LabelRank,
a deterministic variation of SLPA based on the properties
of matrix multiplication. The second is a variation of
genetic algorithms designed to provide a large variety of
potential solutions. The first approach is more efficient,
while the second is more thorough.

4.1. LabelRank

LabelRank was proposed by Xie as a stabilization of
SLPA [13]. Its results compare favorably with SLPA
with the additional benefit of being deterministic. La-
belRank works in four phases: propagation, inflation,
cutoff, and conditional update. The first phase, propaga-
tion, generates a new probability matrix, P', by multiply-
ing the current probability matrix by the adjacency ma-
trix of the graph. In the initialization of P, each node has
an equal probability of belonging to each of its immedi-
ate neighbors. The next stage, inflation, accelerates the
process of gravitating nodes toward communities by in-
creasing high probabilities while simultaneously de-
creasing low ones. This function takes a value of and '

ijP

sets it equal to ij

i

P

P
 where in is the chosen inflation pa-

rameter, and Pi is a row in P. Once the values of P' have
been inflated, the cutoff phase sets all values smaller than
some threshold  0,1r equal to 0. This reduces the
amount of memory necessary to maintain the matrix
without having an effect on the results of the algorithm.
The final phase is the conditional update in which only
nodes meeting certain conditions have their rows of the
probability matrix altered. This function requires that the
set of most probable labels for node i be a subset of the
most probable label sets of a certain threshold q of its
neighbors. A conditional update is used to prevent the
quality of the partition from decreasing after it reaches its
peak. The algorithm terminates when the number of
nodes changing their labels stabilizes.

Because LabelRank produced similar, and often better,
performance when compared to SLPA, it showed pro-
mise for being adapted to detect overlapping communi-
ties. In fact, the only necessary modification was the in-
troduction of a proportion of membership threshold α.
After termination instead of assigning each node its ma-
ximum probability label, each node is assigned every
label for which it has a probability greater than α. If no
probabilities are greater than α, then the maximal prob-
ability label is allotted. This simple modification was
designed to enable LabelRank to detect overlap in the
same way that SLPA does.

4.2. Overlap-Detection Genetic Algorithm

LabelRank has the distinct property of being determinis-
tic. Because our initial testing showed that in many cases
this could be a disadvantage, a new algorithm for detect-
ing overlapping communities was developed based on
previous genetic algorithms. The genetic algorithm for
overlap detection, abbreviated OGA, unlike LabelRank
provides a variety of potential solutions. It requires sev-
eral parameters defined as follows: a specified number of
iterations iter, a proportion of the population to maintain
as the fittest f, a crossover rate q, a mutation rate mut, and
a membership threshold r. This algorithm uses an edge-
based representation for clustering in order to detect
overlapping communities of nodes [14]. In order to re-
duce the search space to likely partitions, a similar rep-
resentation to that of [15] is used. The gene is the same
length as the edge set of the graph. Each index represents
an edge, and the corresponding value also represents an
edge. The pairing of two edges in the gene indicates that
they share a community. The pseudo code for OGA is
presented in Algorithm 1.

Algorithm 1: OGA
Input: graph, popSize, iter, f, q, mut, r
n is the number of nodes in the graph
A is the adjacency matrix of the graph

main()

Copyright © 2013 SciRes. SN

B. DICKINSON ET AL. 196

 population  matrix(n, popSize)

 for each row in population:
 row = generate_individual()
 end for
 for i in 1 to iter:
 fittest  evaluate(population, f)
 population  crossover(fittest, q)
 population  mutate(population, mut)
 end for

generate_individual()
 for i in 1 to n:
 individual[i]  random(neighbors(graph, i))
 end for
 return individual

evaluate(population, f)
 population  sort(population, fitness)
 fittest  list()
 for i in 1 to popSize ×f:
 fittest.add(population[i])
 end for
 return fittest

crossover(fittest, q)
 for each individual in population:
 father  random(fittest)
 mother  random(fittest)
 for i in 1 to n:
 if random(0 to 1) > q:
 individual[i]  father[i]
 else
 individual[i]  mother[i]
 end for
 end for
 return population

mutate(population, mut)
 for each individual in population:
 for i in 1 to n:
 if random(0 to 1) < mut:
 individual[i]  random(neighbors

(graph, i))
 end for
 end for
 return population
The first step of OGA is to generate a random, safe

population. In this context, safe means that an edge pair-
ing can only take place between adjacent edges in the
network. In generating the random safe population the
value at each position of the gene is selected randomly
from the edge sets of the two nodes connected to that
edge. In doing so, the total search space for the algorithm
is greatly reduced without removing possibly-maximal

solutions. An example of this structure in relation to a
graph is given in Figure 2.

The next several operations of the algorithm are re-
peated for the predefined number of iterations, iter. First
the fittest members of the population are selected out of
the population. This requires a fitness function through
which to compare genes, and a percentage threshold to
determine the size of the fittest. The chosen fitness func-
tion is the faster of the two overlapping modularity func-
tions, EQ. Results should be improved by maximizing
one of the measures of the goodness of overlapping par-
titions.

In order for this function to be useable, however, the
membership must be converted to a node-based format.
The transformation is done using a recursive tracing
function. Because each edge in the representation is as-
sociated only with one other edge, these connections
must be traced outward from a starting edge to discover
the entire community. If the edges were treated as nodes,
and their associations taken from the gene as edges, the
edge communities would be the disjoint sub graphs of the
network as seen in Figure 3. This provides a non-over-
lapping community partition of the edges. In order to
determine the required node membership, a simple per-
centage is calculated. The membership to each commu-
nity is the number of labels matching that community in
the edge set of the node divided by the degree of that
node. If this value is higher than some threshold r then
the node belongs to that community. Nodes without any
memberships greater than r are assigned to the commu-
nity to which they have the highest membership. For
example, in the sample graph node four would belong to

(a)

(b)

Figure 2. (a) Example graph; (b) A safe gene for the net-
work in (a) for example 31 implies a pairing of edges 3 and 1
and places them in the same community. A quick check
verifies that they are adjacent via node 2 so this is a safe
connection. The same is true of every index-value pair in
this gene since it is a safe gene.

Copyright © 2013 SciRes. SN

B. DICKINSON ET AL. 197

(a)

(b)

Figure 3. (a) Representation of an edge-based gene where
edges are represented by nodes. Edges in the graph link
edges paired in the gene; (b) Gene from which the network
(a) was created. Note that gene1 = 3 so there is an edge be-
tween 1 and 3.

both communities because half of its edges are in each
community Figure 2.

The next step of OGA is to generate a new population
from the fittest by selecting two parents and crossing
them over. The crossover is performed using a crossover
rate q. For each position in the gene, the child has a q
probability of receiving the value from the first parent,
and a 1 − q probability of receiving it from the second.
Because both parents were initialized with safe genes, the
child is necessarily safe. If the value exists at a position
in the parent, then the two edges must share a node.

Crossover is followed by a repaired mutation [15]. A
normal mutation, in which random values are assigned to
randomly selected positions in genes, would explore
unlikely solutions and make genes unsafe. Instead, the
value at any edge randomly selected according to the
mutation rate is set to the index of an adjacent edge. In
doing this, the population remains safe, and the search
space does not expand unnecessarily. Following this step,
the process is repeated for the specified number of itera-
tions, after which the fittest gene of the entire process is
returned.

The approximate time complexity of the initialization,
crossover, and mutation functions is .
Because the search space is greatly reduced by the safe
representation used, the number of iterations required
scales linearly as well, keeping the time complexity be-
low . The only remaining bottleneck on the run-
time is the fitness function itself, which in this case has a
time complexity of . Therefore the overall run-
time of OGA is .

 SizeO m pop

 2O n

 2O n
 2O n

5. Results

In this section, we first experiment with our adaptation of

LabelRank as an overlapping community detection algo-
rithm before concluding that the efficiency gains due to
its deterministic nature were less important than the
maximal accuracy which was lost. In response to this, we
present the results of our proposed overlapping commu-
nity detection algorithm alongside SLPA across several
real world social networks using EQ and Qov modularity
scores as our evaluation criteria. To further demonstrate
the performance of our algorithm, and the flexibility pro-
vided by its r parameter, we compare our identified over-
lapping communities to those of the ground truth on the
Pilgrim network.

5.1. LabelRank on Overlapping Communities

The modified LabelRank algorithm was tested on our
selected networks against SLPA. SLPA was chosen as a
baseline for comparison because of its affinity with La-
belRank, and its excellent performance in comparison
with other algorithms for detecting overlapping commu-
nity structures [16]. Both algorithms were tuned on a full
range of parameters. LabelRank used the following pa-
rameter ranges: {1,1.5, 2}in , , {0.5,0.6}q {0.1}r ,
and {0.1,0.15,0.2,0.25,0.3}  . SLPA was run with
varying numbers of iterations , and
various thresholds

{25,50,75,it
.15,0.2,0.25,0.3

100}
}{0.1,0  . During

the tuning phase, SLPA was run ten times with each pos-
sible combination of its parameters on every graph. The
parameter set that resulted in the highest overlapping
modularity values for each graph was then used to pro-
duce a final result. Using these parameters, SLPA was
run nine more times recording the minimum, median,
and maximum modularity scores for each modularity
function. LabelRank too was run using its optimal pa-
rameters to produce the modularity scores recorded in
Tables 1-3.

From these results, it appears that LabelRank generally
performs close to the median modularity of SLPA. These
results are illustrated in Figures 4 and 5. When Label-
Rank is optimized to perform its function with as little
unnecessary overhead as possible, its runtime is linear
[13]. This is approximately the same runtime as SLPA
[1]. Since both algorithms have approximately the same

Table 1. LabelRank and SLPA modularity.

 LabelRank SLPA min SLPA median SLPA max

karate 0.371466 0.28709 0.37147 0.40204

Pilgrim 0.437805 0.08859 0.36905 0.43732

lesmis 0.444812 0.23090 0.526668 0.540796

dolphin 0.491515 0.33794 0.47076 0.49017

books 0.492297 0.44860 0.49359 0.50878

football 0.603070 0.58062 0.59874 0.60307

jazz 0.281997 0.28100 0.33084 0.44272

Copyright © 2013 SciRes. SN

B. DICKINSON ET AL.

Copyright © 2013 SciRes. SN

198

Table 2. LabelRank and SLPA EQ. Table 3. LabelRank and SLPA Qov.

 LabelRank SLPA min SLPA median SLPA max

karate 0.415516 0.340155 0.410092 0.450362

Pilgrim 0.391510 0.126343 0.369591 0.474091

lesmis 0.451008 0.246385 0.543144 0.570444

dolphin 0.421700 0.369536 0.494279 0.504252

books 0.489592 0.459739 0.500836 0.508527

football 0.607479 0.524923 0.594251 0.611182

jazz 0.290611 0.286760 0.300419 0.446170

 LabelRank SLPA min SLPA median SLPA max

karate 0.634439 0.503739 0.632735 0.667816

Pilgrim 0.648807 0.257710 0.604430 0.731975

lesmis 0.646621 0.131625 0.748242 0.768513

dolphins 0.613071 0.470771 0.697240 0.744916

books 0.692267 0.693832 0.741700 0.756844

football 0.692091 0.595320 0.683301 0.715176

jazz 0.332284 0.345375 0.496795 0.712619

0

0.2

0.4

0.6

Modularity Qov EQ

Label Rank

SLPA Min

SLPA Med

SLPA Max

Figure 4. LabelRank and SLPA modularity scores on karate.

0

0.2

0.4

0.6

0.8

Modularity Qov EQ

Label Rank

SLPA Min

SLPA Med

SLPA Max

Figure 5. LabelRank and SLPA modularity scores on football.

runtime LabelRank is better suited for detecting overlap-
ping partitions on large networks. This is because the
result of LabelRank is deterministically approximately
that of the median SLPA score. It would likely take seve-
ral runs of SLPA to produce a higher score, and doing so
would take several times as much processing time and
power.

This does not change the fact that SLPA can produce
higher modularity scores given more opportunities to run.
Since LabelRank simulates the spread of labels strictly
according to probabilities it is unsurprising that it results
in scores near the median SLPA scores. Because SLPA
allows these probabilities to act on the spread of labels
randomly it produces some variation from that median
point. Many of these variations will influence the quality
of the partition negatively, but some will have a positive
influence on the result allowing SLPA to produce higher
maximal scores. SLPA is able to perform better over
multiple runs because it has an enlarged search space
which generates a pool of candidates from which to

choose the preferred solution.

5.2. OGA in Overlapping Community Detection

Because the larger selection of candidate solutions in
SLPA produced higher optimal results, we implemented
OGA, a genetic algorithm which maximizes EQ. By
enlarging the search space to include all possibilities in
which communities are not disjoint, we hoped to create
better overlapping partitions. OGA uses several tunable
parameters, the most important of which we discovered
was r, the percentage of edges belonging to a given com-
munity a node needs to be considered part of that com-
munity. Other parameters such as population size, pro-
portion considered the fittest, and number of iterations
remained relatively constant. The optimal value for r for
every graph tested was 0.2. Higher values tended to pro-
duce too little, if any, overlap, while lower values re-
sulted in the detection of too many overlapping nodes.
The results of our genetic algorithm are comparable to

B. DICKINSON ET AL. 199

the highest results of SLPA after 9 runs as can be seen in
Table 4 and Figures 6 and 7.

The overlapping modularity scores of OGA are very
close to those of SLPA on every network. This implies a
particularly good partitioning considering [16] deter-
mined that SLPA is one of the most consistently accurate
algorithms for detecting overlapping community struc-
ture. Of the fourteen algorithms tested in [16] SLPA was
among the top performers on each network.

Analyzing the identified overlap in the Pilgrim net-
work yields interesting results. The only detected over-
lapping node in the optimal modularity solution for Pil-
grim was 21. In the next run, with a slightly lowered r
value OGA produced a slightly lower modularity result,
but a much more accurate list of overlapping nodes. This
second list included the following nodes: 5, 15, 24, 21,
and 22. Of these 5 nodes, 3 are overlapping in the ground
truth, while the other 2 are very close to the community
borders. When the r parameter was reduced slightly fur-
ther, it produced a larger list of overlapping nodes, now
including 4, 11, and 27, and removing 22. This list in-
cludes all 5 ground truth overlapping nodes, including
only 2 additional nodes that are not quite overlapping.
All of these results are displayed in Figure 8. The colors,
red, orange, and yellow, correspond to the lowest r value
0.2, 0.1, and 0.08, under which a given nodes was cate-

gorized. Outline colors show the ground truth of the net-
work.

Further analysis of these results was done using the
F-score to evaluate the detection of overlapping nodes. A
correctly identified overlapping node is a true positive, or
TP. Similarly a node incorrectly identified as overlapping
is a false positive or FP. Inversely nodes not identified as
overlapping which in fact are constitute false negatives,
FNs, and nodes correctly identified a s not overlapping
are true negatives, TNs. These counts are used to calcu-

late precision and recall which are
TP

TP FP
 and

TP

TP FN
, respectively. Precision then represents the

percentage of nodes classified as overlapping which are
in fact overlapping, and recall is the percentage of ground
truth overlapping nodes identified. These two metrics
may be combined into an F-score,

precision recall
2

precision recall






producing scores between 0 and 1 where 1 is the optimal
result. This metric balances the optimization between
two goals, discovering all overlapping nodes and only
discovering truly overlapping nodes. The relationship

Table 4. OGA and SLPA overlapping modularities on several real social networks.

Modularity Algorithm karate Pilgrim lesmis dolphins football

OGA 0.445225 0.472687 0.578773 0.540742 0.603323
EQ

SLPA 0.450362 0.474091 0.570444 0.504252 0.611182

OGA 0.637640 0.735629 0.746658 0.752494 0.712163
Qov

SLPA 0.667816 0.731975 0.768513 0.744916 0.715176

0
0.2
0.4
0.6
0.8

karate pilgrim lesmis dolphins football

EQ OGA

SLPA

Figure 6. OGA and SLPA EQ on several real social networks.

0

0.2

0.4

0.6

0.8

karate pilgrim lesmis dolphins football

Qov OGA

SLPA

Figure 7. OGA and SLPA Qov on several real social networks.

Copyright © 2013 SciRes. SN

B. DICKINSON ET AL. 200

Figure 8. Pilgrim network with nodes detected by OGA and
ground truth overlapping nodes. The nodes identified by
OGA are colored in yellow, orange, and red. Colored out-
lines represent the ground truth overlapping communities
in which overlapping nodes are encompassed by multiple
colored outlines.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.1 0.08

M
et

ri
c

Sc
or

e

r Threshold

EQ

Qov

F-score

Figure 9. F-score comparison between overlapping nodes
identified by OGA and the ground truth overlapping nodes
on the Pilgrim network. The accompanying EQ and Qov
scores correspond to the F-score at a given r value.

between modularity and F-score is pictured in Figure 9.

As may clearly be seen there is an inverse relationship
between the F-score and the two overlapping modularity
values, EQ and Qov. This indicates that the ground truth
structure of the network is not the same as the optimal
modularity solution. This is quite similar to the disparity
between the optimal Newman’s modularity clustering of
karate which includes four communities, and the ground
truth of only two communities. Our genetic algorithm, by
varying the threshold r, is able to detect these other struc-
tures. In addition to this, should another more accurate
metric be developed, all portions of OGA, excluding the
current fitness function, would be useful for maximizing
any global fitness function.

6. Conclusion

This paper has presented a genetic algorithm for overlap-
ping community detection, OGA, comparable to SLPA,
one of the best existing algorithms, in performance. Us-
ing a restricted representation to limit the number of pos-
sible partitions, the time complexity is reduced to  2O n .
In addition to this the genetic structure of OGA provides
flexibility to introduce new fitness functions. The EQ and
Qov scores of this algorithm are on par with SLPA, one of
the premier algorithms for detecting overlapping com-
munity structure in social networks. Comparing this dis-
covered overlap with the ground truth overlapping struc-
ture of Pilgrim reveals some disparity between optimal
modularity and ground truth community structures. This
demonstrates the usefulness of networks with ground
truth overlapping structure for the evaluation of commu-
nity detection algorithms.

7. Acknowledgements

We would like to thank the Houghton College Summer
Research Institute for the funding and opportunity to
perform this research. Also, thanks to Dr. Jierui Xie at
Samsung for providing the C++ source for LabelRank.
Finally we would like to thank Keith Lieb for contribut-
ing to the construction of the Pilgrim high school net-
work.

REFERENCES
[1] J. Xie, B. K. Szymanski and X. Liu, “SLPA: Uncovering

Overlapping Communities in Social Networks via A
Speaker-listener Interaction Dynamic Process” Proceed-
ings of Data Mining Technologies for Computational
Collective Intelligence Workshop at ICDM, Vancouver,
2011, pp. 344-349.

[2] S. Gregory, “Finding Overlapping Communities in Net-
works by Label Propagation,” New Journal of Physics,
Vol. 12, 2010, Article ID: 103018.
http://dx.doi.org/10.1088/1367-2630/12/10/103018

[3] C. Lee, F. Reid, A. McDaid and N. Hurley, “Detecting
Highly Overlapping Community Structure by Greedy
Clique Expansion,” eprint arXiv, 2010.

[4] A. Lancichinetti, F. Radicchi and J. Ramasco, “Finding
Statistically Significant Communities in Networks”, PLoS
One, Vol. 6, No. 4, 2011, p. e18961.
http://dx.doi.org/10.1371/journal.pone.0018961

[5] W. W. Zachary, “An Information Flow Model for Con-
flict and Fission in Small Groups,” Journal of Anthropo-
logical Research, Vol. 33, No. 4, 1977, pp. 452-473.

[6] D. E. Knuth, “The Stanford Graph Base: A Platform for
Combinatorial Computing,” Addison-Wesley Reading,
Boston, 1993.

[7] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E.
Slooten and S. M. Dawson, “The Bottlenose Dolphin
Community of Doubtful Sound Features a Large Propor-

Copyright © 2013 SciRes. SN

http://dx.doi.org/10.1088/1367-2630/12/10/103018
http://dx.doi.org/10.1371/journal.pone.0018961

B. DICKINSON ET AL. 201

tion of Long-Lasting Associations,” Behavioral Ecology
and Sociobiology, Vol. 54, No. 4, 2003, pp. 396-405.
http://dx.doi.org/10.1007/s00265-003-0651-y

[8] M. Girvan and M. E. J. Newman, “Community Structure
in Social and Biological Networks,” Proceedings of the
National Academy of Sciences of USA, Vol. 99, No. 12,
2002, pp. 7821-7826.

[9] P. Gleiser and L. Danon, “Community Structure in Jazz,”
Advanced Complex Systems, Vol. 6, No. 4, 2003, p. 565.
http://dx.doi.org/10.1142/S0219525903001067

[10] M. E. J. Newman, “Finding and Evaluating Community
Structure in Networks,” Physical Review E, Vol. 69, No.
2, 2004, p. 026113.

[11] H. Shen, X. Cheng, K. Cai and M. B. Hu, “Detect Over-
lapping and Hierarchical Community Structure in Net-
works,” Physica A, Vol. 388, No. 8, 2009, pp. 1706-1712.
http://dx.doi.org/10.1016/j.physa.2008.12.021

[12] V. Nicosia, G. Mangioni, V. Carchiolo and M. Malgeri,
“Extending the definition of modularity to directed graphs
with overlapping communities,” Journal of Statistical
Mechanics, Vol. 2009, 2009, Article ID: P03024.

http://dx.doi.org/10.1088/1742-5468/2009/03/P03024

[13] J. Xie and B. K. Szymanski, “LabelRank: A Stabalized
Label Propagation Algorithm for Community Detection
in Networks”, Proceedings of IEEE Network Science
Workshop, West Point, 2013, pp. 138-143.

[14] Y. Cai, C. Shi, Y. Dong, Q. Ke and B. Wu, “A Novel
Genetic Algorithm for Overlapping Community Detec-
tion”, 7th International Conference Advanced Data Min-
ing and Applications, Vol. 7120, December 2011, pp.
97-108. http://dx.doi.org/10.1007/978-3-642-25853-4_8

[15] C. Pizzuit, “A Multi-objective Genetic Algorithm for
Community Detection in Networks,” 21st International
Conference on Tools with Artificial Intelligence, Newark,
2-4 November 2009, pp. 379-386.
http://dx.doi.org/10.1109/ICTAI.2009.58

[16] J. Xie, S. Kelley and B. Szymanski, “Overlapping Com-
munity Detection in Networks: The State of the Art and
Comparative Study,” ACM Computing Surveys, Vol. 45,
No. 4, 2013, pp. 1-35.
http://dx.doi.org/10.1145/2501654.2501657

Copyright © 2013 SciRes. SN

http://dx.doi.org/10.1142/S0219525903001067
http://dx.doi.org/10.1016/j.physa.2008.12.021
http://dx.doi.org/10.1088/1742-5468/2009/03/P03024
http://dx.doi.org/10.1007/978-3-642-25853-4_8
http://dx.doi.org/10.1109/ICTAI.2009.58
http://dx.doi.org/10.1145/2501654.2501657

