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ABSTRACT 

Recently Elliott studied the distribution of primes in arithmetic progressions whose moduli can be divisible by high- 
powers of a given integer and showed that for integer a  nd real number A  here is a B   ch that 2  a  T su0 .   0B A  
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33 exp log logq x x   holds uniformly for moduli that are powers of . In this paper we are able to improve his 
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 33 exp log logq x x   holds uniformly for moduli  
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that are powers of 
When  result recovers the Bombieri- 

Vinogradov theorem. And obviously his result gives a 
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and 1 10, ,M M  be positive real numbers such that 
1

5
1 10 6 10and 2 , , 2 .Y M M X M M X        (5) 

For  define 

   

where is the Möbius function. Then we define 
the fu

1, ,10j  

 
 

1, if 2, ,5,

, if 6, ,10,
ja m j

m j


 
 




 

log , if 1,m j 



    (6) 

 n  
nctions 

     
,

j

j
j s

m M

a m m
f s

m


  


 ,

,

and 

     1 10, , ,F s f s f s           (7) 

where   is a Dirchlet character, s  a complex 
variable. 

mma 3.1. Let Le  ,F s   be as in (7), and 1A   
0 ,arbitrary. Then for an  and y 1  2 AR X AT X   

 mod
|

32

log

d r

R R
T

 
 

    ) 
1 1

102 2
1 2

2

,

r R r T

cT X X X
d d

   

 
 




  (8

where is an absolute constant independent of 

1
, d

T

F it t    

0c   A , 
but th mplied in  depends on e constant i  .A  

Proof of Lemma 3.1. This lemma with 1d   was 
established in [6], and in this general form We 
mention that in general the exponent 3/10 to 

 [7]. 
X  in the 

  o
ix n value of 

D

second term on the right-hand side is the best possible n 
considering the lack of s th power mea  

irchlet L-functions. 
Now we complete the proof of Lemma 2.2. 
Proof of Lemma 2.2. In (5), we take 

2

5 , .Y x X x   

Define    , ,j ja m f s   and  ,F s   as above. To 
go s identity [8], 
whic   and 

 further, we first recall Heath-Brow
k

n’
2n z  with h states that for any 1z 

1,k   

     
1 2 2

1 2

1 1 2
1

lo
j

j j

k

   1
1 g

j

j j
j n n n n

n n z

n n n
j




 


 

 


k
n    

     


The  for 

. 

n
2

52 2Y x y X x     ,

 ,y   
of which is of t

         
1 1 10 10

1 10

1 1 1 10 10 10
, ,

2

: ,
m M m M

y m m y

a m m a m m 
 

 



 
 

S  

where 



  denotes the vector 1 2  with  10, , ,M M M
jM  as in (5). Obviously some of tervals the in

 , 2j jM M   may contain on using 
mmation form Propo-

sition 5.5 in [1]), and then shifting the contour to the left, 
we have 

ly integer 1. By 
ula with T y  (see Perron’s su  

       

   

1 1 2

1 1

1 2 1 2 1 1 2

1 1 1 2 1 2

21
, d

2
1

.
2

ss
L iy

L iy

iy iy L

L iy iy iy

y y

iy

F s s O L
i s

O L
i






 

 

  

   


 

   



  


 

On usin



S

g the trivial estimate 

     
 

1 10

1 1 1 1
1 2 10

, ,

,

F iy f iy f iy,

M L M M x L   

     
   

   

  
 

the integral on the two horizontal segments above can be 
estimated as 

 
1 2 1 1

31 1
1 102 2

1 2 1 1
max .

L

max ,
L

y
F iy

y

y
x L x y L x L

y  
  

Then we ha








 
  




 

ve 

 

 
1 1

32 2
10

31

102

21 1
, d

12 2
2

1 d
, .

2 1

it it
y

y

y

y

y y
F it t O x L

it

t
y F it x L

t






 





            

     





S

 

 ,F s   does not depend on , we have yNoting that 

 
31

10 11102

2 <

1 d
max , , .

2 1

x

xY y x

t
y L x F it x

t
  



       L

(9) 

hand weOn the other  have 

 
2

max , .
y Y

y Y 


             (10) 

From (9) and (10), we have 

 
 

 
 

 
 

mod

max ,
y xQ Dd

y


 

is a linear combination of  terms, each 
he form 

 10O L
 

2 <mod mod

2
2 52

mod

max ,

d
, .

2 1

d

Y y xd Q Dd d Q Dd

x
d Q Dd

y y

t
L x F it Q Dx

t

 



2
max ,
y Y

1
10 1x

  





 

  






    



   

  





  




 

Copyright © 2013 SciRes.                                                                                 APM 



R. T. GUO 28 
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5. Proof of Lemma 2.1 
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