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ABSTRACT 

Recently Elliott studied the distribution of primes in arithmetic progressions whose moduli can be divisible by high- 
powers of a given integer and showed that for integer a  nd real number A  here is a B   ch that 2  a  T su0 .   0B A  
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33 exp log logq x x   holds uniformly for moduli that are powers of . In this paper we are able to improve his 
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 33 exp log logq x x   holds uniformly for moduli  
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that are powers of 
When  result recovers the Bombieri- 
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and 1 10, ,M M  be positive real numbers such that 
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5. Proof of Lemma 2.1 
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