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ABSTRACT 

In this paper, we present two new algorithms in residue number systems for scaling and error correction. The first algo-
rithm is the Cyclic Property of Residue-Digit Difference (CPRDD). It is used to speed up the residue multiple error cor-
rection due to its parallel processes. The second is called the Target Race Distance (TRD). It is used to speed up residue 
scaling. Both of these two algorithms are used without the need for Mixed Radix Conversion (MRC) or Chinese Resi-
due Theorem (CRT) techniques, which are time consuming and require hardware complexity. Furthermore, the residue 
scaling can be performed in parallel for any combination of moduli set members without using lookup tables. 
 
Keywords: Chinese Remainder Theorem (CRT); Error Correction; Error Detection; Parallel Residue Scaling; Residue 

Number Systems (RNS); Target Race Distance (TRD); Target Residue-Digit Difference 

1. Introduction 

Because the residue number system (RNS) operations on 
each residue digit are independent and carry free prop-
erty of addition between digits, they can be used in high- 
speed computations such as addition, subtraction and 
multiplication. To increase the reliability of these opera-
tions, a number of redundant moduli were added to the 
original RNS moduli [RRNS]. This will also allow the 
RNS system the capability of error detection and correc-
tion. The earliest works on error detection and correction 
were reported by several authors [1-12]. Waston and 
Hasting [1,2] proposed the single residue digit error cor-
rection. Yau and Liu [3] suggested a modification with 
the table lookups using the method above. Mandelbaum 
[4-6] proposed correction of the AN code. Ramachan- 
dran [7] proposed single residue error correction. Len-
kins and Altman [8-10] applied the concept of modulus 
projection to design an error checker. Etzel and Jenkins 
[11] used RRNS for error detection and correction in 
digital filters. In [12-16] an algorithm for scaling and a 
residue digital error correction based on mixed radix 
conversion (MRC) was proposed. Recently Katti [17] has 
presented a residue arithmetic error correction scheme 
using a moduli set with common factors, i.e. the moduli 
in a RNS need not have a pairwise relative prime. 

In this study, we developed two new algorithms with-

out using MRD (Mixed-radix digit) or CRT (Chinese 
remained Theorem) for speeding-up the scaling proc-
esses and simplifying the error detection and correction 
in RNS. The first algorithm is used for these purposes, 
through the residue digit difference cyclic property 
(CPRDD) within the range of , where 0 1tx M  

r1 2 1t n n nM m m m m m     with r additional moduli. 
The moduli  1 2, , , nm m m  are called the nonredun-
dant moduli;  1 2n n r    are the redundant 
moduli. The interval, 

, ,m m , nm
 0, M

n
1 , is called the legitimate 

range, where 1i iM m   , and the interval, 
 ,  1M Mt  , is the illegitimate range, where 

1t r i n i
rM MM M m  , and t   M  is the total range. 

This paper is organized as follows: Section II will de-
scribe the scheme the cyclic property of residue digit 
difference (CPRDD). Section III describes the Target 
Race Distance (TRD) algorithm and followed by some 
examples. Section IV discusses residue scaling and error 
correction using the TRD and CPRDD algorithms. Fi-
nally, the conclusion is given in section V. 

2. Error Detection and Correction Using 
Residue Digit Difference Cyclic Property  

Any residue digit xi representation in moduli set 
 1 2 n  has its cyclic length with respect to its 
module number. For example, if the moduli set is (4, 5, 7, 

, , ,m m m
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9), then the cyclic lengths of any residue digits 
 1 2 3 4, , , x x x x  are 4, 5, 7 and 9, respectively. Since these 
cyclic lengths are not equal, they are very difficult to use 
as tools for error detection and correction. Actually, there 
exists the property of common (uniform) cyclic length in 
RNS between residue digital-differences (RDD). Con-
sider three moduli set    1 2 3, , 2,  3,  5m m m  . The resi- 
due representations and their corresponding digit-diffe- 
rences are shown in Table 1 and defined as the differ-  

ence in value between two digits, 
i

ij i j m
d x x  ,  

where ij s are all modulo to positive values with respect 
to 

d 

jm  if the cycle length of jm  is assigned. 

Note that the residue digit-differences ij id m  in Ta-

ble 1 are obtained from 
i

i j m
x x  if , and  im m j

from  
k

j k m
x x  if j km m . This difference of 

 i jx x  or  j kx x  in values may be positive or ne-  

gative, depending upon i jx x  or j km m  and 

i jx x  or ,j kx x  respectively 
All negative values must be modulo to positive values. 

For example, on starred row 28, as shown in Table 1, the 
digit difference in value for  and 1 0x  3 3x   is  

13 0 3 3d    . It results in 13 2
3 1d   

 
From the cyclic property of residue-digit difference 

(CPRDD) in RNS, we now have the following theorem.  
Theorem 1. For a moduli set 

 1 2, , , , , , ,i jm m m m m  


n  and residue representation 

for 1 2, , , , , ,i j nx x x x x x    in RNS, there exists a  
cyclic property in differences between two residue digits, 

i
ij i j m

d x x   or 
j

i j m
x x . The cyclic length can be 

assigned, either to i  or m jm
m

, depending upon modulo 
operation with respect to  or i jm . 

Proof: Consider the case respective to jm , the resi-
due-digit difference (RDD) between two digits in 

 1 2, , , , , ,i j n X x x x x x    can be in general expressed 
by the equation 

 
i i

ij i j i i j jm m
d x x x pm x qm       (2-1) 

where  0,1, , 1jp m 


 

0,1, , 1iq m   
and  are integers.  , , ,i j p q

For simplicity, we only consider the case of i jm m  
and assume j i , and the case of  can 
be obtained in a similar way. 

m m r  i jmm

The related theorem and algorithm are described as 
follows. 

1) In cycle 0, (the initial cycle), we have 
0,1, , 1j jX x m     with , 0q 

0 ?d x x   
i i

ij i j i i jm m
x x p m  As j ix x p 

 

Table 1. Cyclic property of Residue Digit Difference.
 

Decimal
1 2m 

1x  

2 3m 

2x  

3 5m   

3x  
13 2

d  23 3
d m3cycle

0 0 0 0 0 0 

1 1 1 1 0 0 

2 0 2 2 0 0 

3 1 0 3 0 0 

4 0 1 4 0 0 

0 

5 1 2 0 1 2 

6 0 0 1 1 2 

7 1 1 2 1 2 

8 0 2 3 1 2 

9 1 0 4 1 2 

1 

10 0 1 0 0 1 

11 1 2 1 0 1 

12 0 0 2 0 1 

13 1 1 3 0 1 

14 0 2 4 0 1 

2 

15 1 0 0 1 0 

16 0 1 1 1 0 

17 1 2 2 1 0 

18 0 0 3 1 0 

19 1 1 4 1 0 

3 

20 0 2 0 0 2 

21 1 0 1 0 2 

22 0 1 2 0 2 

23 1 2 3 0 2 

24 0 0 4 0 2 

4 

25 1 1 0 1 1 

26 0 2 1 1 1 

27 1 0 2 1 1 

28* 0 1 3 1 1 

29 1 2 4 1 1 

5 

30 0 0 0 0 0 

31 1 1 1 0 0 

32 0 2 2 0 0 

Out
of 

Range

 

im  with 0,  1, , j ip m m    , we have  0
i

ij m
d   

with mj’s 0s in cycle 0, where x    means the largest  
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integer less than or equal to x.  
i i

ij i j i i j jm m
d x x x pm x qm      where 

Thus, the RDD has mj’s “0” in the initial cycle for 
each modulus, i.e., in cycle 0,  0,0, ,0

i
ij m

d    for 
all .  i j

 0,1, 2, , 1 ,0,1, , 1i ix m r     

   0,1, 2, , 1 , , 1, , 1 1j i i i ix m m m m r mj         
2) Next consider each modulus , im

For RDD = 0 (for cycles 0, , 2 , ,i i j i i ) m m m m m  Since i ix X pm   and j jx X q  m , 
then then 

              0 0 , 1 1 , , 1 1 , 0 , 1 1 , , 1 1 0,0, ,0
i iii

ij i i i i im mmm
d m m m m m r r                  

    

with mj’s 0 s. 
For RDD = 1 (not necessary in cycle 1), 

         1 0 , 2 1 , , 1 , 1 , 1,1, ,1
ii

ij i i i i mm
d m m m m            

    with mj’s 1 s. 

… 
For RDD = mi − 1 

              1 0 , 1 , 1 2 , 1 , 1 , , 1
ii

ij i i i i i imm
d m m m m m m           

 
   

 
with  ’s 1j im m   s. cyclic length is . Thus the number of cycles within  i jm m

this cyclic length for  is iN i j
i j

i

m m
N

m
 Corollary 1. From the above theorem, we can immedi- 

ately obtain that each cycle in the residue-digit difference 
of x will start at location 0, and end at location 

m , and for 

, i j
j j i

j

m m
m N m

m
  .  1 1i j k pm m m M   . 

Corollary 2. It is easily shown that there exists mi 
number of cycles with respect to the cyclic length of Theorem 2. The algorithm of theorem 1 and its corol-

laries can be extended to two or more pair-wise residue- 
digit differences. 

pM . 
Proof. Since the residue-digit difference of 
 1 2, , , , , ,i j nx x x x x x    representation is pair-wise, 

the legitimate range of this pair-wise  RDD ,i jx x  is 
, (from 0 through i jm m m m 1i j  ). From corollary 1, the  

Proof: consider a three moduli set, we have two pair- 
wise moduli sets, whose RDD (Residue Digital Differ-
ence) is 

j k kk jk k

jk j j k km m mm mm m

d X X x qm x sm       

Assume 2k jm m r  , and also pair-wise numbers 

  
where  is again the referenced module. km

  20,1, 2,  1 ,0,1, , 1j j jm rFollow the same procedure as step (2) as above.  , 2 ,x m      and  

         20,1, 2, , 2 , 1 , , 1 , ,  1 1k j j j j jx m m m m m r m        k  . 

1) For  0, ,  0 , 1, 0j k j k k jkq s x x x x m d      
thus  

0,0, ,0, , , , ,
j j j jmjk j j jm m m

d m m m    


 

’sjm  “0” r2’s “ –
j

j m
m ”  0  

This shows that 
j

jk m
d  has also  “0”s in cycle 0

of 

km

 0,  1,  2, , 1k k km x m  . The cyclic length is 

    2j km m r   , and the number of cycles for jm  is 

 j k jm m m 2  ork j j k jm r m m m    

0q s

m . 

 
j

jk m
d  2) For  and h  (a constant for any 

RDD), if  j kx x

        
’ “ ”

0 ,  1 1 , , 0 , 1 1 ,
jj j

k

jk j m jm m

m s h

d h h m h m h            


 

for jm  is still  k j k jm m m m  . Combining these 

three moduli  , ,i j km m m  into one set, we have cyclic  

This shows that the 
j

jk m
d  h  in any location has  

also   in cycle i of . The number of cycles  ’skm “ ”h km
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length p i j kM m m m    (for example, 

1 2 3 2 3 5 30m m m      ). The number of cycles for 

1 2 3, ,m m m  are , 
1 2 3 3 5 15mN m m    

2 1 3 2 5 10mN m m     , and , 

respectively. As shown in Table 1, the RDD pairs of  
3 1 2 2 3 6mN m m    

           
 3 3

13 232 3

All 5 pairs in each  cycle.

,  are 0,0 , 1,2 , 0,1 , 1,0 , 0,2

m m

d d




, and  

(1, 1)  
In general, 1 2p k nM m m m m        and  

km pN M k m m with  rows and k  1 RDDn  in  

each row. 
This completes the proof.  
Example 2-1. 
Consider a moduli set    1 2 3 , , 4,5,7m m m  , 9X   

and its corresponding residue digits representation set is 
 1, 4, 2 . The cyclic length is  140 4 5 7  

2m m m
20N

 and the 
number of cycles for , and  are 1 3

, and 
,

1 2 3m35, 28m mN N   , respectively. 
Error detection and correction: 
Before the CPRDD algorithm used for error detection 

and correction is described, some basic terms in use must 
be defined. 

Definition 1: Stride distance ij : It is the incremental 
or decremental distance between moduli i  and 

S
m jm  in 

absolute value from ith cycle to  1 thi   cycle. 
For example: 23 5 7 2S   



. 
(1) Error detection 
Let the moduli set be 

 , , , , , , ,k k k rm m m m m  

’sijd
L

d

 1 2, , , km m m
, ,m 

1 2 1  where  
are the nonredundant moduli and 1k k r  are the 
redundant moduli. Since the cyclic lengths of CPRDD 

 are constant, it is thus easily found that the number 
of cycles on track ij  from the starting point 0 (or other 

ij ) to its target position. In turn the distance of RDD’s 
can also be found. 

m 

Theorem 3. The number of cycles on track ij  (col-
umn ij ) from any starting point (say ) to its target 
position  can be found using the equation below; 

L
d îjd

ijd

ˆ
i

ij ij ij ij
m

d S k d   

where ij  the stride distance between moduli im  
and j  and k = the number of cycles passing through 
from starting point  to the destination, ij

S 
m

ˆ
ijd d   on 

track ij  If , then the number of cycles are equal 
to the total cycles from the starting point “0” to its target 
position . 

L

d

ˆ 0ijd 

k
ij

Proof: Since ij  is the number of cycles from 0 to 

ij  with respect to module j , and j  is the cyclic 
length, thus ij j  is the total distance from the starting 
point ij  to its target position . The remaining 
distance for  on track  in the 

d m

ij

m

ij



k m
d̂  0

ijd
d

L ijk th cycle must 

be on the same row of  on track . Thus,  ijd ijL

     RDD RDDi j jij ijx x k d  m

, ,

. 

Once the RDD’s of 1 2 , ,n rx x  x x  are found, the 
error detection and correction for moduli can be found 
just by comparing the calculated cycles or RDD with the 
original residue representation, pair-wise so that the error 
module can be detected. 

The procedure for error detection by using CPRDD 
algorithm is summarized as follows. 

1) Choose two most significant (largest) moduli as the 
referred moduli among the n moduli, say  and . 1nm nm

2) Find the skip distance of a cycle 

   11   n nn nS m   m . 

3) Find the digit difference 

    1 1 21  from  , , , 1n n nn n mn
d x x X x x x x     ,n  . 

4) Create the equation of  

   1 1RDD , ,n n n nx x d x x 
nm  or 

         1 1,x 1 1RDD ,
nn

n n n nn n n n mm
x x S k d x     

(2-2) 

5) Solve for  from Equation (2-2) as the   1n nk 

  1n nS   and  1, ?
n

n n m
d x x  are known. The value of 

 must be less than or equal to   1n nk 

 1 2 2k nm m m m       . 

6) Find the corresponding  1RDD ,n nx x  distance 
from the starting point to 1nx  .  

7) Calculate  1 2 , , n,x x  x  from RDD1, RDD2, , 
and check the values of 



   1 2 1 21 2
, , , , ,, ,n nx x x x x  x , 

and …. If these sets’ numbers are equal, then no error 
occurs; otherwise, error exists. 

We take the similar numerical as example 2-1 to verify 
this algorithm. (CPRDD) 

Example 2-2. Assume that a moduli set 
   1 2 3 4, , , 4,5,7,9m m m m   and number X whose resi-
due representation is      1 2,x x 3 4 10

, , 1, 2,6 97x x , 7  . 
If an error occurs at  2m X, 1,3,6,7 , the error detec-
tion can be described as follows. 

Let us begin our procedures from the 
   3 4 3 4RDD , ,x x d x x . Since 

 34 3 4

13 4

23 5

le 7 9 2,

5 3,

3 2

S m m

d

d

    

  

  

 skip distance of a cyc

and

34 9 9
6 7 1 8d      . Then 

 34 34 34 349 9
2N d S k k 8     . Solve for , and 

let 

34k

 34 1 2 20k m m   within legitimate range 

 4 5 7 140   , then 34 4,13k  . 

Copyright © 2013 SciRes.                                                                                 WET 
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The corresponding  3 4RDD ,x x  primary distances 
for these two  are, respectively, 34k

 
 

1

2

RDD 4 4 7 6 34

RDD 13 13 7 6 97

   

   
 

Thus, the generated results of the residue representa-
tion from  1RDD 4  and  2RDD 13  are respectively 

     1 1 2 3 434 , , , 2, 4,6,7X x x x x  , 

     2 1 2 3 497 , , , 1, 2,6,7X x x x x  . 

Since the calculated results of X1 and X2 are not iden-
tical, there must be errors in one of these moduli. We 
cannot determine which one is erroneous. To locate the 
module where the error exists, at least one additional 
(redundant) module must be used.  

The procedure for error correction by using CPRDD 
algorithm is essential the same as the error detection. 
However, two additional redundant moduli 

1r  and 

2r  must be added for one error correction. Note that 
only one redundant modulus added for error detection. 

m
m

1) Choose  as a referred modulus. 1
or r rm m 2

2r

2r

2r

2) Find  as the same proce-          1 2 11 2, , ,r r rk k k

dures of error detection steps 2-7. 
3) Examine the values of . If 

common value exists among, ,  

        1 2 11 2, , ,r r rk k k

       1 21 2, , ,r rk k k 1r

then no error occurs. If there is one and only one, say 

  1i r  that has no common value with all other   1
k j r , 
then an error exits in modulus . This completes the 
error correction procedures. 

k

im

The following example is illustrated here to verify this 
algorithm. 

Example 2-3. Error correction 
As before we can further locate and correct a single 

error by adding two redundant moduli, 
1

 and . 
Let us use the same example. The moduli set 

rm
2r

m

   1 2 3 4 5 , , , , 4,5,7,9,11m m m m m 

1
9rm 

, where  and 5  
are redundant moduli  and , and the 
residue X representation, 

4m
11

m

2rm

     1 2 3 4 5 10
, , , , 1, 2,6,7,9 97x x x x x  

3m
. If a single error 

occurs at , e.g.  1, 2,5,7,9X  , and  is as-  4m
signed as a reference module, then 14 4 4

6 2d    , 

24 5 5
5 0d    , 34 7

2d    5 ,and 

45 1111
2d    9 . From CPRDD algorithm, we can 

find the number of cycles for these RDD’s. 

14 14 144 4
5 2S k k  , 

24 24 245 5
4 0S k k  , 

34 34 347 7
2 5S k k  , 

45 45 4511 11
2 9S k k   

Since the cycle length is 9, all above  values must  ijk

be less than 
140

16
9

    
. Thus we have 

14 2,6,10,14k    

24 0,5,10,15k   

34 6,13k  . 

45 10k   

If no errors occur, all kij’s are equal, i.e., 

14 24 34 45k k k k   . 
Compared to the above results with pairwise moduli, 

only 14 24 45 10k k k  
k

 meets this condition. There 
exists no such value in . 34

This shows that the module 3  is faulty, therefore 
we can correct it as follows: since , 
the 

m

10
14 24 45 10k k k  
9 7 97x14 4RDD cycle lengthk       . 

Thus 1 4
97 1,x   2 5

97 2,x   3 7
97 6,x  

 
4 9

97 7x   . 

This completes the error correction. 
Note that the above CPRDD’s for each residue-digit 

difference, ij , and ij  can be processed in parallel. In 
addition, if the referenced module is assigned to the er-
roneous module by chance, e.g., 3  this algorithm will 
fail to locate the error. In this case, there are no  
values that can be found to match this condition. The 
way to solve the problem is, of course, to assign any 
other moduli, e.g.,  or m . 

d k

m

m
’ijk s

1 2

The hardware design for the proposed algorithm in 
Example 2-3 is shown in Figure 1. 

3. The Target Race Distance (TRD) Scheme 

The conversion or decoding technique from residue rep-
resentation to X in binary is usually accomplished using 
the mixed-radix digit (MRD) or Chinese remained theo-
rem (CRT). An optimal matched and parallel converter 
of this kind can be seen in [13]. The MRD is shown by 
the following expression with weighted numbers: 

 

1 0 2 1 3 1 2 1 2 1

0 1 1 0
1

  with  1,

p
n n M

n

i i
i

x a m a m a m m a m m m

m m m m






    

 

 


 

where 1 2 1
n

p n i iM m m m m   , and  10,i im   is 

the mixed-radix conversion (MRC) of x. 
Optimization can be obtained using this method, as the 

accessed table lookup time is exactly equal to the right 
addition time, after immediate column stage for the tree 

etwork of the adders. n  
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m1

 

m5m2 m3 m4

1 9752

4 1975 1

x
'

1 x
'

2 x
'

5x
'

4
x

'

3
7 7

25
P2

0'
5

24 d2
414 d

514 s 234 s424 s
5

734 d 0
944 d

2'45 s

9
1145 d

14,10,6,214 k

2
41414 ks 0

52424 ks 5
73434 ks 2

52424 ks

Compare and match circuits

10*9
 multiplier

  adder
        

74 x

497  1197 997 797 597 

x =          1               2               6              7          9

1045 k15,10,5,0

5*024


 qk

 7
7

9
114545 ks

 

13,67*634  rk

10

9
10

77

90

 

Figure 1. The hardware implementation for the proposed error and correction location algorithm can be accomplished with-
out using lookup tables. 
 

However, time is still consumed reading a large num-
ber of lookup tables. Additional hardware complexity is 
required by the adder-tree networks. An algorithm called 
the target race distance was with a simpler structure was 
developed for high-speed conversion. 

TRD algorithm 
Suppose each residue number in the RNS

im
 has 

its own track i , and the distance over track  from 0 
(starting point) to i

i

iL
X

L
X  (end point) through  cycles 

can be expressed using  
ik

 ,  0,1, , 1 ,i i i i i iD x k m k m    . 

Obviously, the primary (no multiples of mi) distance of 

ix  is 
min

. To obtain the X from its 
residue representation of 

   0i i iD x k 
1 2, , , rx x 

r

x , we must find a 
target such that 1 2, , ,x x  x  traversing the same dis-

tances over tracks 1 2  respectively, i.e. when the 
TRD distance of each target i

, , , rl l l
x  is reached, then 

1 2 . rD D D    The TRD distance of X can be found 
from the following theorem: 

Theorem 4. Consider the simple case of two moduli 
sets  1 2,m m . Its residue representation and targets are 
x1 and x2 respectively. Let  1 p

D  be the primary dis-
tance of residue x1 from 0 to x1 on the track 1 , and L
 2D
L

p
 be the primary distance of x2 from 0 to x2 on track 

2 . Then the TRD distance for these two residues x1 and 
x2 that have the same TRD distances can be obtained by 
the following equation. 

     1 2TRD , 1 1 1 2 2 2x x x k  m k m        (3-1) x

In addition, k1 can be calculated from the equation 

 2 p2
1 1 1 m 2x k m xD     
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where m1 is the cyclic length of x1, and k1 is number of 
cycles, all of the integers,  

1 20,1,2, , 1k m  . 

Proof: It is easy to show that the above  1TRD ,  i ix x   
is the common target distance of x1 and x2, Since  

1
1 1 1 m 1x k m x   

And 
2 2

2 2 2 2 1 1 1m m
x k m x x k m X     , 

thus    
2

1 2 1 1 1 1 1 1TRD ,
m

x x x k m x k m     X  is the  

TRD distances for both of x1 and x2. 
Corollary: It is evident that the above theorem can be 

extended to n moduli set  1 2, , , nm m m  and residue 
number  1 2, , , nx x x . The corresponding TRD of 
 1 2, , , nx x  x  are therefore 

     
 
 

1 2 1 1 1 2 2 1 2

3 3 1 2 3

1 1 1 2 1

TRD , , , n

n n n

x x x x k m x k m m

x k m m m

x k m m m  

   

 

 



 
 

In addition, ki can be solved from the following equa-
tions. 

2
1 1 1 m 2x k m x    

… 

1
1 2 1

i
i i i im

x k m m m x
     

where   10,1, , 1i ik m  
, , ,Note that 1 2 nx x x  are the targets of moduli 

1 2  respectively and the , , , nm m  m  1 2TRD , , , nx x x  
is the distance that has equal track lengths, i.e.  

1 2 nL L L L    . That is; 

1 2 3
1 2 3, , , ,

n
nm m m m

L x L x L x L    x . 

Example 3-1 Let the moduli set be 
   1 2 3 4, , , 4,  5,  7,  9m m m m   and the residue represen-
tation be    1 2 3 4, , , 3,x x x x   1,  2,  5 . The procedures to 
find the TRD distance can be described as follows: 

1) Find the primary distance  1D  of residue 

 
2

1 1 3
p m

x D   since  and 2m  1m 1 5
3 4k  1  

is required , thus 1 2k  , and 
   1 2TRD , 3 2 4 11x x      

2) Repeat the procedure 1 to find the number of cycles 
k2 and k3 and the last TRD distances (destinations),  

 1 2 3TRD , ,x x x  and  1 2 3 4TRD , , ,x x x x .  

Since 3 7
ˆ 11 4x    

3 2 7
ˆ 4 5 2x k     

2 7
4 4 5k 2     

2 2k   

thus  3TRD 2 4 5 40x      

and  1 2 3TRD 11 40 51x x x     

4 9
ˆ 51 6x    

3 9
6 4 5 7 5k      

3 7k   

thus  4TRD 7 4 5 7 980x       

and  1 2 3 4TRD 51 140 7 1031x x x x      

The final TRD distance is the common distinction of 
this system for targets 1 2 3, ,x x x  and 4x  i.e. 

 1 2 3 4TRD 1031x x x x X  . This result can be verified 
as follows: 

4
1031 3 ,

5
1031 1 ,

7
1031 2  and 

9
1031 5  

Figure 2 Shows the TRD’s on tracks  and  
respectively. 

1 2 3, ,l l l 4l

Error detection and correction by TRD algorithm 
A redundant residue number system with 1r   re-

dundant moduli will allow detection of any single error 
[4,14]. Consider the moduli set  
   1 2 3 4, , , 4,5,7,9m m m m   and the correct residue re- 
presentation    1 2 3 4, , ,X x x x 1, 2,6,7 97x   . Let us 

 
 

Track   L1 L2 L3 L4

(x1 = 3)  (x2 = 1)  (x3 = 2)  (x4 = 5)

3 = TRD(x1) 

8 = TRD(x2)

40 = TRD(x3) 

980 = TRD(x4) 

TRD(x1) 

TRD(x1, x2) 

TRD(x1, x2, x3) 

TRD(x1, x2, x3, x4)

3 

11 

51 

1031 

K1 = 2 

K2 = 2 

K3 = 7 

 3      1      2      5 

.........

.........

.........

.........

.........

.........

L1 L2

3 1

3 1 2 4 = 6 

3 = 4 

2 = 3 

 

Figure 2. TRD’s on track L1, L2, L3 and L4. 
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assume that  is the redundant moduli with a sin-
gle error 

4 9m 
   1, ,FX x x2 3 4  residue represen- 

tation. The TRD theorem can be used to detect this error. 
We find that final TRD for 1 2 3

, 1,3,6,7x x 

, ,x x x  and 4x  does not 
fall into the legitimate range as follows i.e. 

 4 5 7 140FR    

 

 
   
 

 

 

1 1

2 2 1

1 2 1 2

3 37

3 3

4 9

3 9

3

4 4

TRD 1 1

TRD 3 12 3

TRD TRD TRD 13

ˆ 13 6

TRD 6 0

ˆ 13 4

4 140 7

6

TRD 7 6 140 840.

x

x k

x x

x x

x

x

k

k

x

 

  

  

  

 

 

  



    

 

The final TRD distance 
 1 2 3 4TRD , , , 13 840 853 140x x x x     . If we need to 

locate and correct this module error, another redundant 
module must be added. Let us assume that 5 11m   for 
this requirement in the above residue representation. 

The current redundant moduli set is 
   1 2 3 4 5, , , , 4, 5, 7, 9, 11m m m m m   and the correct resi-
due representation is 

     1 2 3 4 5, , , , 1,  2,  6,  7,  9 97x x x x x x 
9m  5 11m 

 . Let us as-
sume that 4  and  are the redundant mo- 
duli. With a single error  

   1 2 3 4 5, , , , 1,3,6,7,9Fx x x x x x 



. The TRD theorem 
can again be used to locate and correct this error. We 
find that final TRD’s for   1 2 4, , ,x x x x



5  dose 
not fall in the legitimate range, but other final TRD’s for 

1,3,7,9

  1 2 3 4, , , 1,6,7,9x x x x   do, falls in the legitimate 
range: 

1) TRD for 1 2 4, ,x x x  and 5x  

 
 
 

 


1 1

2 1 2

4 1 2 4

5 11

4 5 411

5 1 2 4 5

TRD 1 1

TRD , 13

TRD , , 133

ˆ 133 1

1 180 9 , 2

, , , 133 360

      493 140 out of legitimate range .

x

x x

x x x

x

k x k

TRD x x x x

 





 

    

 

  

 

2) TRD for 1 3 4, ,x x x  and 5x  

 
 

1 1

3 3 2

4 9

TRD 1 1

TRD 6 12; 3

ˆ 13 4

x

x k

x

 

  

 
 

 

 
 

3 39

4 1 3 4

5 511

5 1 3 4 5

4 28 7, 3

TRD , , 13 84 97

ˆ 97 9

, , ,

      97 140 within legitimate range .

k k

x x x

x x

TRD x x x x

   

  

  



 

 

Thus, the error is located at module m2 and must be 
corrected to 2 5

97 2x   .This algorithm can also be  

used for multiple error corrections. However, at least 
three redundant moduli are required. The procedures are 
similar. 

4. Scaling with Error Correction  

The above proposed algorithm used for error detection 
and correction has the advantage of not requiring lookup 
tables. No CRT (Chinese residue theorem) decoding pro- 
cesses are required. However, it is still time consuming 
and requires extensive hardware complexity for each 
module having multiple-value inputs to the match unit 
and selecting a correct one as a output. To improve this 
drawback, an optimal matching algorithm is proposed 
here for the error correction. The following two theorems 
will be used and an example follows. 

Theorem 5. Let m1 and m2 be two relative prime num-
bers in RNS for module 1 and module 2 respectively. 
Then there must exist the relation represented by the  
equation 

2 1
1 1 2 2m m

m x m x k  , where 

2 1
1 1 2 2 2 10 ,   0

m m
m x m m x m     so 

that 2 0 k m  , assuming . The 2m m 1 1, 2x x  and k  

are restricted to integers. 
Proof: As a first step, let . It is easily seen that 

2

0k 
1 x m  and 2 1x m  will be satisfied. Next consider 

0k  . Since there are two different pair combination  

2
1 1 2m

m x m  and 
1

2 2 1m
m x m , thus the difference  

between  and  of k will always be satisfied  1 1m x 2 2m x
for 20 k m  , where k is restricted in integers. 

Theorem 6. If the values of m1 and m2 and k in the  
equation 

2 1
1 1 2 2m m

 are known, then p1  m p m p k 
and p2 can always be determined from equation  

 
1

2 1 1 m
m m p k   or  

2
2 1 2 m

m m p k  , where p1,  

p2 and k are within the range:  1 10  or  kp m m  2

Proof: Let the difference value of 
 

2 1m m  be equal 
to d, then d will be the integers within the range between 
0 and m2, i.e.,  1 10,1, 2, , 1p m  , or  

 2 0,1, 2, , 1p m2  . These two expressions show that 

we can always select an integer value p, within the inter- 
val between 0 and  1 1m   or  2 1m   to satisfy the 
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conditions 

1
1 m

dp k  or 
2

2 m
dp k  

Example 4-1 Let 1 , and 2 . Find the mi- 
nimum values of p1 and p2 respectively from the follow-
ing equation : 

 m  5

3

7m 

1 27  5p p   

Since  and , we have 1 5m 
m 

2 7m 
22 1 7 5d m   , 

and  

1 5
2p 3                (4-1), 

or 

2 7
2p 3                (4-2), 

from Equation (4-1) 

1 5
2 3p   so  1 4,  2 4 5 3p     , 

from Equation (4-2)  

2 7
2 3p  , so  2 5 for 2 5 7 3p     . 

This result can be verified by substituting 
7 4 5 5 3     into the above equation. Theorem 6 is 
very useful as shown in the following example. 

In Theorem 3 of Section III, the number of cycles on 
track  from the starting point “0” to its target posi-
tion “ ” can be expressed by setting , i.e. 

ijL

ijd ˆ 0ijd 

,  or 
i

ij ij ij ij ij i i ijm im
s k d s k p m  d    (4-3), 

where ijs  is the module i stride distance referring to 
module j. Similarly, the number of cycles on track jk  
from the starting point ”0” to its target position “

l

kx ” can 
be expressed by setting , i.e.; ˆ 0ijd 

2
 or 

j
jk jk jk jk jk k j jkm m

s k d s k p m  d   (4-4)  

Since, from theorem 3, the cyclic length of the residue 
digits differences reference to module mj is constant 
(uniform), then there must exist a condition, 

ij ij ij jk jk jk  Eliminating the above terms 
from Equations (4-3) and (4-4), 
c s k c s k    

ij i i jk jk k ij ij jk jk ikc p m c p m c d c d D           

i i i k ikp m p m D     

where i ij ip c p  , k jk kp c p 
d

 and 

ik ij ij jk

Example 4-2 
jkD c d c    

Let the moduli set    1 2 3 4 5, , , , 4,5,7,9,11m m m m m 


 
  1 2 3 4 5, , , ,x x x x x x


1, 2,6,7,9 , and the error 
  1 2 3 4 5, , , , 1, 2,5,7,9x x x x x x       , the error occurs at 

m3.  
Follow the same procedures of the Example 4-1 to use 

this algorithm. 

14 14 14 14 14 4 4
5 2,  or 5 4S k k k p  

24 24 24 24 25 5 5
4 0,  or 4 5S k k k p 0       (4-6) 

34 34 34 34 37 7 7
2 5,   or 2 7S k k k p 5       (4-7) 

45 45 45 45 511 11 11
2 9,   or  2 11S k k k p 9     (4-8) 

Eliminating  and  from Equation’s (4-5) 
and (4-6) 

145k 244k

1 216 25 8p p 
13,  and  p p

, 

1 2 8,   
solve for  from (4-5), 14k

14 4
5  4 13 2,k     

   14 10,k 

or 24 4 5 8 4k 0,     
  24 10,k  . 

Check from Equation (4-5), 

11
2 10 9,   

7
2 10 6 5.    

This shows that the error occurs at module m3. From 
this result, we can immediately obtain 

7
2 10 6  . 

Noting that it may happen that the assigned referenced 
memory moduli falls coincidentally with error memory 
module m3. In this occurrence, we cannot find the correct 
(integers) values of P1 and P2 within the legitimate range. 
It seems that this algorithm can only detect error. To 
complete the error correction procedure, we can simply 
change the referenced module to any other and follow the 
same procedure as before. This guarantees that the pro-
posed algorithm in Theorem 4 will also work well in this 
case. The hardware structure for illustrating this algo-
rithm is shown in Figure 3. 

The proposed TRD (target Race Distance) scheme 
used for error correction can be used for scaling and as-
signing numbers in a residue number system. A redun-
dant residue number system (RRNS) is defined as before 
in an RNS with r additional moduli. The moduli 
 1 2, , , , ,im m m m  k , are called the nonredundant mo- 

duli, while the extra r moduli,  1 2, , ,k k k rm m m    are 

the redundant moduli. The interval,  0,  1kM  , is 

called the legitimate range where 
1

k

k ii
M m


  and the 

interval,  ,  1k krM M  , is the illegitimate range, where 

1

r

kr k r k i k iM M M M m 
   is the total range. In the  

RRNS, the negative numbers within the dynamic range 
are represented as states at the upper extreme of the total 
range, which is part of the illegitimate range. The posi-  

tive members are mapped to the interval 
 1

0,
2
kM 

 
 

, 

if Mk is odd, or 0,
2

kM 
  

, if Mk is even. The negative 

umbers are mapped to the interval 2    (4-5) n   
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'
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2
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734 d

0
744 d
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9
1145 d
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1m 2m 3m 4m
5m

77 7

 

Figure 3. In the block diagram using optimal matching between multiples Pi m and Pkmk, the residue digits are corrected by 
xi - x4 = di4. 
 

 1
,

2
k

kr kr

M
M M
 

 
 

1  if Mk is odd or 

,
2

k
kr kr

M
M M
  

1
   if Mk is even [14].  

The one-to-one correspondence between the integers 
of the dynamic range and the states of the legitimate 
range in the RRNS can be established using a polarity 
shift. [11], The polarity shift is defined as below. 

k k

1
 for  even   for  odd.

2 2
k k

p

M M
X X M X M


     

where pX  denotes the value X after a polarity shift and 

,
2 2

k kM M
X

 


 
k if M  is odd, so that  0,pX M k ,  

a polarity shift needs to be performed prior to correcting 
or scaling since pX  belongs to the legitimate range. If a  
single residue digit error  0,0, , ,0, ,0j je e    is in-  

troduced and corresponds to modules mj, then, after a 
polarity shift.  

,

j

kr
p p j p j jMkr m krj

kr
p j

j Mkr

M
x X E X w e

Mm

M
X e

m

    

 

 

where jw  is the multiplicative inverse of kr

j

M

m
 moduli 

mj i.e. 1

j

kr

j wj m

M

m

 
 and 

j
j j j m

e w e   The   
 

p   x

denotes a single residue digit error and must fall within 
the illegitimate range , k pm x m kr   [11]. 

Since p
r p k r

k

x M x m m
M

 
   

 
, and can be repre-
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sented uniquely by  1 2, , ,k k k ra a a  

1

1

k r

,where   ’sk ra 

are the coefficient from the Chinese Remainder Theorem  

(CRT), i.e, 
1

k r

p i j
j ii

x a m
 

 
 0

k ka a 





   , where . 

Note that the redundant digits  are  

1,0m a 

1 2, ,

i i

, k ra 

m

zeros if no error is introduced, while at least one redun-
dant digit is not equal to zero if a single error is intro-  

duced. Therefore, it has the same meaning that p

k r

x

M

 
 
 

  

or  1 2  is used to be the entries of the 
error correction. 

, , ,k k ka a a   r

1 ,   1  , ani k s r    
,   1 ,   ,i j

1) ,  5 ,   dr i kM m m 

2   a2) nd  r i jM m m m m i j k  

, ,m m

i j  
Although the errors detection and correction described 

in section II have been simplified the processes due to no 
need of CRT conversion. It is still hardware complex and 
time consuming for the residue scaling operation. To 
improve this drawback, a direct residue-scaling algorithm 
can be used. It is flexible and direct to detect and prevent 
the errors. The flexibility means that the scaling factor 
can be arbitrary chosen any single module such as i , 
i.e. not necessarily beginning from 1 2  to k . in 
order. The direct capability means no requirement for 
CRT extension processes for decoding or lookup tables. 
The following theorem (theorem 7) and example are 
clarified. 

m
 m

Theorem 7. If the scaling factor K is one of the module 
set  1 2, , ,m m m  

1 2, ,x x

, , , ,  i k k rm m 

, , , , ,i k k rx x x   

i

 and the residue 

digits are   , respectively, 

then the residue digit x  scaled by a factor 

, ,  i
j i j i

i

x
m y

m

 
  
 

 can be obtained using the equation 

j
i i im

m y x            (4-9). 

Proof: It is easy to show that when 1 2 , and 
Equation (4-9) is divided by  on both side, we have 

m m
im

j

i i i
i

i im

m y x
y

m m
            (4-10). 

Example 4-3. For convenient comparison of the pro-
posed TRD algorithm to other schemes such as appeared 
in [14], we take the same numerical example in [11]. Let 
the moduli set    1 2 3 4 5 6, , , , , 2,5,7,9,11,13m m m m m m  , 

where  1m m2 3 4, , ,m m  are regular moduli and 
 5 6 ,m m

2 5M  
 are redundant moduli. Then 

7 9 630k   
630 1M M M 

, , 11 13 143rM   
43 90090 kr k r , and 

, 315,3
2 2

k k
p

M M
X

      

tions for correcting single residue digits errors are  
1)   1, 2,3r i k sM m m i 

max
, or 4, , or 2, 1s 

4k  , The maximum 
 4 6 9 13 117 143i k s rm m m m M      

{2 } , 1,2,3M m m m m i j   
, and 

2)  max ,or 4,r i j i j

 

 

3 4 3 4The max  2 2

2 7 9 7 9

110 143 .

i j i j

r

m m m m m m m m

M

    

    

  

 

Thus the moduli set satisfies the necessary and suffi-
cient conditions for correcting single errors digit. As-
sume  311 1, 4, 4, 4,8,1X     and a single digit error 

2 4e   is introduced, then  1,3, 4, 4,8,1 53743 X  .  

After a polarity shift,  0,3, 4,4,4,4 .
2

k
p

M
X X     

Follow the same procedures as shown in Example 4-2. 
CPRDD is applied for correction without the need for 
using a table. 

1) Assign the moduli 4  as the reference moduli, 
the following residue digit references and its correspon-  

9m 

ding CPRDD equations: 
i i

ij ijm
sk d

m
 are obtained  

14 142 2
1, 7 1;d k   

24 245 5
4, 4 4;d k   

34 347 7
0, 2 0;d k   

45 4511 11
7, 2 7;d k   

46 4613 13
3, 4 3.d k   

2) Choose two highest digit difference as one pair for 
equal target race distance e.g. 

45 4611 13
2 7 and 4k k 3  . Then the true primary  

RDD equations are  

45 1 11
2 11k p 7             (4-11), 

And 46 2 13
4 13k p 3                     (4-12), 

where 1  and  are selected so that the two RDD are 
equal distances. 

p 2p

3) Eliminating k terms in Equation’s (4-11) and (4-12) 
by putting 45 46k k  

   1 2 22 13 11,p p   
 2

1

11 13

22

p
p


  where  

2 11p  , then 1

11 143
7

22
p


  . 

4) Substituting p1 and p2 into equations (4-9) and (4-10) 
respectively, we have 452 11 7 7k 70      , then 

45 35k   , and 46k4 13 11 3   , also,  

46

143 3
35

4
k

 
   . 15 . The sufficient condi-  
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5) Checking other three RDD’s  

 24 5 5
4 4 4 35k      4,  

 34 7 7
2 0 2 35k      0,  

 14 2 2
7 1 7 35k     1.  

The only different module residue occurs on module 
number at 2 , i.e., 24 245m  4 0 4x x    

9 35 4 3x

. The three 
target distances, can be from any module residue, say, 
(except ), . 2 5m 7m  11      . 

The residue representation of X is therefore, 
 1, 4, 4, 4,8,1X  . If a single digit error 2  is intro- 

duced, then, 
4e 

 53743 1,3, 4, 4,8,1 X  .The correspon- 
ding error is therefore  

        2 1 1 2 2 3 3 6 6, , , ,e x x x x x x x x        .



  

    0, 1,0,0,0,0 0, 4,0,0,0,0X X      

After a polarity shift, 

  54058 1,3, 4, 4,8,1 0,3, 4, 4, 4, 4
2p

M
x x      

 
and the scaling factor 

1

K
 to px  is  

85 2 5 7 9 p
k

x
M

K

 
     

 
630 . The final step must 

use a lookup table to obtain the result, px

K

 
 
 

 [13].  

For verifying our proposed algorithm, the table of the  

corresponding px

K

 
 
 

 is not required as in [13]. The pro-  

cesses for finding and correcting a single error based on 
our method are described below. 

1) Find the residue digit difference to a selected mod-
ule, say 4  as before m  53743 1,3, 4, 4,8,1x   . For 
verifying that our proposed algorithm detects and cor-
rects single error without using a table, the same numeri- 
cal example is used to describe the procedure as follows: 

14 2
3 1d    , 

24 5
1 4d    , 

34 7
d 0  0,  

45 11
4 7d    ,  

46 13
3 3d   .  

Then 

14 2
7 1k ,  

24 5
4 4k ,  

34 7
2 0k

45 11
2 7k  ,  

46 13
4 3k  .  

2) Choose two highest digit differences as one pair for 
equal target race distances. e.g.  

45 11
2k 7  and 46 13

4k  3 , the following two  

equations can be obtained: 

45 1 11
2 11k p 7          (4-13a) 

46 2 13
4 13k p 3         (4-13b). 

3) Eliminating k terms in (4-13a) and (4-13b) by put-
ting 45 46k k  

1 222 013p p   then  13  and . 1 2

4) Substituting  and  into Equation’s (4-13a) 

and (4-13b) respectively, we have , then 

p 
p

22p 
1p 2

452 11 13k    0

45

143

2
k


 , and 46k4 1 23 2 0   , also, 

46

143

2
k




  

2p

M
X X    311 315 4

2p

M
X X       

2
1 1 0   

5
0 3 3   

7
0 4 4   

9
0 4 4   

11
7 8 4   

13
3 1 4   

2
4 0  

5
4 4  

7
4 4  

9
4 4  

11
4 4  

13
4 4  

Obviously, the error is located at  thus 2 5m 
2 3 4 1p pe X X      . 

Furthermore, the CPRDD algorithm can be used di-
rectly and in parallel for residue scaling and error correc-
tion. Thus the process is greatly speeded up.  

Example 4-4 For convenient comparison, the same 
numeric example as in [13] is illustrated here. Consider 
   1 2 3, 4 5 6, , , , 2,5,7,9,11,13m m m m m m 

1 2 2 5 10K m m
, and scaling  

factor      . If an input 
 205 1,0,5, 2, 4,3X  

1e
 and a single residue digit 

error 3  , corresponding to , 3 7m 
Then  25535 1,0X    , 6, 2, 4,3 .  
After a polarity shift,  

 25850 0,0,6, 2,0,6
2p

M
x x      

1) Dividing by 1 2m   after subtracting 
1p 0x   

from 2 3 6, , ,x x x  

2 5
2p 0 , this leads , 2 0p ,  
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3 37
2 6,p p  3 , 

4 49
2 2,p p 1 , 

5 511
2 0,p p  0 , 

6 613
2 6,p p  3 . 

2) Dividing by  after subtracting  2 5m 
, , ,

2
0px   from 3 4 6x x x  

3 37
5 3, 2,9,16  , ;k k  

4 49
5 1, 2,11,20,k k  ;  

5 511
5 0, 0,11, 22,k k  ;  

6 613
5 3, 11,24,37,k k  .  

Since from above only k3 does not match with all 
other’s ki, i.e. 3 4,5,6  and 0k k  4 5 6 11k k  

7
. 

Therefore, there occurs an error at 3 . Once this 
error is detected, it is easily found and corrected from the 
above equations, 

m

3 77
5 5 11 6k    , which in turn 

3 3 6p k    and 3 77
2 2 6 5X p   .  

  2 5 7 9 11 13im   

 205 1 0 5 2 4 3ix x  ,  

 630 2 315 1 0 0 0 7 3
2

M
    

 205 315, 0 0 5 2 0 6 110
2

M
x      

that    1 2 3 4 5 6 0 0 5 2 0 6p p p p p p   

Divided by “2”,  

2 2 25
2 0,p p p    0;  

3 3 37
2 5,p p p    6;  

4 4 49
2 2,p p p   1;  

5 5 511
2 0,p p p    0;  

6 6 613
2 6,p p p    3;   

     2 3 4 5 6 0 6 1 0 3 55 110 2p p p p p        . 

Divided by “5” 

3 3 37
5 6,p p p     4 ; 

4 4 49
5 1,p p p     2;  

5 5 511
5 0,p p p     0;  

6 6 613
5 3,p p p    11  

     3 4 5 6 42011 11 55 5p p p p       . 

The hardware structure of this example for the residue 
scaling is shown in Figure 4. 

Actually this algorithm can be divided by any arbitrary 
moduli. 

Example 4-5 
Divided by any arbitrary moduli, say , it must 

subtract  from X 
4 9m 

4 2px 

1 4 22
0 2 0,p px x      

2 4 5 55
0 2 2 3,p px x        

3 4 77
6 2 4,p px x      

5 4 1111
0 2 9,p px x      

6 4 1313
6 2 4,p px x      

Then 

1 12
9 0,k k 0;   

2 25
9 3,k k 2;   

3 37
9 4,k k 2;   

5 511
9 9,k k 1;   

6 613
9 4, 1k k  2;  

check  25850 2 9 2872  . 

This results 

1 2 32 5
2872 0, 2872 2, 2872 2,x x x  

7
       

5 611 13
2872 1,  and  2872 12.x x      

It can be seen from above that 

1 1 2 2 3 3 4 4 5 5 6, , , 0, ,  and  6x k x k x k x k x k x k            ,  

which are equal each other as expected. 
Example 4-6 
For processing two residue scalings and error correc-

tions in parallel, we take Example 4-4 as an illustration. 
Let scaling factor 2 5 10K    , i.e., the first residue 
scaling factor is 2 and the second one is 5 or verse versa. 
It is easily shown that the extended CPRDD algorithm is 
used and can be completed in one cycle. That is 

2 2 25
10 0, 0,1, ,11,12, ;p p p       

3 3 37
10 5, 4,11,18, ;p p p      

4 4 49
10 2, 2,11,20, ;p p p    

 

5 5 511
10 0, 0,11, 22, ;p p p      

6 6 613
10 6, 11, 24,37, .p p p      

The result is identical 

205 315 1102 11
10 10 10p

M
x

X
  

    , i.e.,  

7 9 11
11 4, 11 2, 11 0   , and 

13
11 11 , which 

are identical results as shown in Example 4-4. 
Example 4-7 For error correction 

2 3 4 5 6m m m m m    5 7 9 11 13  

 * 552 0 3 1 0 3 55,  
2 1ij 1

M
x

k


  
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er
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6315 m 
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Figure 4. Hardware structure of the residue scaling number for Example 4-4. 
 

From above results, this checks that scaling 
25 25 25 255

0, 6, 6 0, 0,5;d S k k      
315

11 20.5
10

x

k
     which is within the accuracy of  35 35 35 357

3, 4, 4 3, 6,13;d S k k      

45 45 45 459
1, 2, 2 1, 5,14;d S k k      the residue scaling factor. 

56 56 56 561313 13
3 10, 2, 2 10, 5,18;d S k k        In a general case, 0i jx x  , this time we must 

modify the subtraction of ix  and jx  from the X, be-
fore the process of the scaling. If i j  is the 
scaling factor, then the subtraction must change to 

k m m the correct   ,5 5ik   RDD 11 5 55   , and  

35 77
55k  6.   

 i jX X x x    , where j i ix m k   so that This shows  25 45 56 355k k k k   . Therefore the er-

ror correction is made by 35 7
4 5 6,d     and  

j
j i i i m

x x m k   or .
j

i i j im
m k x x   Let us consi-  

3 35 5 6 0 6X d X     , which corresponds to the va-  der the following example:  
Example 4-8 lue in Example 4-4, in scaling factor , (dividing 

by “5” part).  
10k 

 1,0, 2,0,3,5 135X    of moduli set  
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 2,5,7,9,11,13
2 7K m m  

. The scaling factor 

1 3 14 
2

. is assumed. Then, residue 

1j i ix m k k   k, and  can be found from  i

 1 37
2 2 1 1ik x x     . 4r

i i
i j

M
k k

m m

 
   

 
. Thus 

3 2 4 8,  x    and   1 8 9i jx x    . 
Alternatively, it could be from other module , 3m

2
7j jx k  , where 

1 3 2 22
7 1 2jk x x      1 1,


 and  

7 7jk     2 7 9i jx x      which has the same 
number to be subtracted. 

1 2 3 4 5 6m m m m m m  

2 5 7 9 11 13im  

1 0 2 0 35 135ix   

2 5 7 9 11 13
9 8 9 7 9 6 4ix          

0 1 0 0 5 9 135 9 126   

From CPRDD algorithm, the scaling processes are 
performed as before, we then have the following results 
by scaling factor ;  1 3 2 7 14K m m    

2 25
14 1, 4,9, ;P P    

3 37
14 0, 0,1, 2, ,9, ;P P     

4 49
14 0, 9,18, ;P P    

5 511
14 5, 9, ;P P    

6 613
14 9, 9,P P    

Thus , which is exactly the value 9X 
126

9
14

  and 

is the most closed to 
135

9
14

    
. 

This result can be checked using sequential steps as 
follows: 

For  1, 1,2,3, ,6;ix i  

 2 5 7 9 11 13im   

 1 0 2 0 3 5ix   

 1 0 1 1 1 2 4ix      

Divided by 2: 

2 25
2 1,k k   3;  

3 37
2 1,k k  4;  

4 49
2 1,k k   5;  

5 511
2 2,k k  1;  

6 613
2 4,k k  2.  

  5 7 9 11 13im   

 2 3 4 5 6 k k k k k  

   3 4 5 1 2ik     

 5 7 9 11 13
4 7 0 9 3 2ik        

30     0           811 
Divided by 7: 

2 25 5
7 2 3,q q 9;     

3 37
7 0,q q 9;   

4 49
7 0,q q 9;   

5 51111
7 3 8,q q 9;     

6 613
7 11,q q 9.   

This result of 135
9

14
q

    
 shows that the CPRDD  

algorithm has the capability of parallel processing opera-
tions in residue scaling and error corrections, i.e., any 
combination moduli scaling factors for Ks of moduli set 
{m1, m2, , mk} can be performed simultaneously. 

5. Conclusions 

The arithmetic operations in the residue number system 
for addition, subtraction, and multiplication can be spee- 
ded up by using its parallel processing properties. How-
ever, some difficult operations, such as error detection 
and correction, must go through conversion or decoding 
processes from the residue representation to the regional 
binary number x. This is because the decoding technique 
is usually accomplished using the mixed-radix digit 
(MRD) or Chinese Remained Theorem (CRT), which are 
time consuming processes requiring hardware complex-
ity. We proposed two algorithms for scaling and error 
correction without the need for lookup tables or increas-
ing the encoding process. 

The Cyclic property of the Residue-Digit Difference 
(CPRDD) algorithm can detect and correct errors from 
the RNS cyclic property. Any residue moduli set has a 
specific cycle length, which can be obtained from the in- 
dividual residue number, difference, each pair, to a ref-
erence memory module mi. Once the cyclic length is 
known, then the original value x is easily found, and in 
turn, the errors can be detected and corrected. 

The TRD (Target Race Distance) algorithm combined 
with CPRDD is used for scaling and for error detection 
and correction. The scaling results and error correction 
can be directly performed by these two algorithms with-
out using MRD or CRT. Thus, the decoding process is 
significantly reduced, and the hardware structure is 
greatly simplified. Several examples are illustrated and 
verified for these two algorithms. 
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