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ABSTRACT 

An algorithm complexity, or its efficiency, meaning its time of evaluation is the focus of primary care in algorithmic 
problems solving. Raising the used memory may reduce the complexity of algorithm drastically. We present an exam-
ple of two algorithms on finite set, where change the approach to the same problem and introduction a memory array 
allows decrease the complexity of the algorithm from the order O(n2) up to the order O(n). 
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1. Introduction 

An algorithm efficiency understood as the time of its 
execution is the focus of primary care in the design and 
analysis of algorithms ([1, 2]). The lower bond of the 
execution time of an algorithm directly correlated with 
the order of complexity of the algorithm. A different 
approach to the solution to the problem allows sometimes 
to change the algorithm and to reduce its complexity by 
introduction an additional memory, for example ([3]). 
Such a method requires some further analysis of the 
problem at hand. We illustrate this case with the following 
example. 

2. The Problem 

Given two n-digit natural numbers (n > 0). One needs to 
find the number of matching digits at the same positions 
in both numbers, alongside with overall count of matching 
digits over the numbers. If a digit has already participated 
in a matching pair, it is ignored in further encounter. 
Consider, for example, two numbers 172345 and 287376. 
The amount of matching identical digits in the equivalent 
positions is 1 (this is the digit 3). The count of matching 
identical digits in the various positions is 2 (digit 2 and 
digit 7). If the same digit in the numbers appears more 
than once, the count is defined as the minimum number 
of occurrences in one of the positions of the numbers. 
For example: 22275 and 86322 specifies the repetition of 
the number 2 twice. 

2.1. The First Approximate 

To address the first part of the task (counting the digits 

on the same positions) we use quite a simple approach: 
check the number of the units digit in both numbers (the 
remainder of these numbers divided by 10 gives the 
number of units in those numbers), and if they are equal, 
then the corresponding counting variable is increased by 
1. Then we “delete” the units digit in both numbers 
(integer divide by 10). If a match was encountered, the 
digits are not returned to the original numbers. The 
performance of this algorithm requires    2 1O n O  
operations. The detailed first approximate algorithm is as 
follow: 

Equals Digits In Position ( num1, num2 ) 
count_pos=0, tmp_num1=0, tmp_num2=0 
while ( num1> 0 ) 
if (num1%10 = num2%10 ) {if digits match, we 

counting them without storing into temporary variables} 
count_pos  count_pos+1 
else {if digits differ, we store them in temporary 

 variables} 
tmp_num1  tmp_num1*10+num1%10 
tmp_num2  tmp_num2*10+num1%10 
{In any case, we delete the “right” units digits} 
num1  num1 mod 10 
num2  num2 mod 10 
end while 
while ( tmp_num1 > 0 ) {restoring original numbers, 

without replicable digits } 
num1  num1*10 + tmp_num1%10,  

tmp_num1 tmp_num1/10 
num2  num2*10 + tmp_num2%10,  

tmp_num2 tmp_num2/10 
end while 
return count_pos 
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end algorithm 
Note that in the above algorithm to the presented 

problem, it is not significant that the variables tmp_num1 
and tmp_num2 include digits of the original numbers in 
reverse order. One can just assign as desired.  

For the second part of the solution, an auxiliary 
algorithm-function that receives two parameters: the 
number and the digit which will be used. The second 
algorithm checks if the digit is presented in the number. 
If so, the algorithm deletes its first occurrence from the 
right (of unit’s digit) and returns the number lower by 
one order, else it returns the number unchanged.  

DeleteDigit ( num, dig ) 
if ( num<10 )  
if ( num==dig ) return 0 
else return num; 
tmp_digitnum % 10; { remainder of division by 10} 
if ( tmp_digit == dig )  
return num div 10  

{ return number without the given digit} 
 tmp_num DeleteDigit ( num div 10, dig )  

{ check number without units digit (one order lower)} 
if ( tmp_num < num div 10 )  

{ digit was deleted, and digit tmp_dig is missing 
 Return the missing digit} 
tmp_num  tmp_num * 10 + tmp_digit  
return tmp_num 
else 
return num   

{ return the number without change} 
end if 
end algorithm 
The number of actions needed to run this algorithm is 

about  runtimes in the worst case scenario 
(see [1, 2]). Using this algorithm, one can count the total 
number of occurrences of digits in different positions 
(matched digits in same positions were “deleted” in the 
first part of the solution) 

   1O n O

countEqualsRegular ( num1, num2 ) 
count_eq  0; 
while ( num1 > 0 )  
digit  num1 % 10 
tmp_num2  DeleteDigit ( num2, digit ) 
if ( tmp_num2  num2 )  
 {If deletion occurred, count as digits match} 
count_eq  count_eq + 1 
num1  num1 div 10  {deleting reviewed digit} 
return count_eq 
end if 
end while 
end algorithm 
The number of actions required to perform this 

algorithm with the auxiliary algorithm will be of 
order . Finally counting, for both parts 

the runtime will approach . In 
other words, the final value of the asymptotic limit of the 
above functions is of 

     1O n O n O

      22 1O n O n O

 2O n . 
A question is, if one can to reduce the order of 

operations amount in order to solve the problem under 
consideration (see [3])? To answer is yes, but the using 
memory should be extended. 

2.2. The second Approximate 

The idea behind the second solutions is based on the idea 
of the quick sort method like “counting sort”, where we 
count equal elements in the array, based on the property 
of the studied values limits. For the first part of the task 
we construct two auxiliary arrays, which are equal to the 
length of the given numbers, hence of length n. Thus, 
equal digits on matching positions give us the matching 
digits on same positions. By presenting the numbers as 
digits in arrays, we are not obliged to use digits standing 
on same positions. 

For the second part of the problem we use the same 
idea, but considering the length of the given numbers. 
We know that all decimal numbers consist of digits from 
0 to 9. Thus, creating an auxiliary array of size 10 we can 
place in it the amount of counted corresponding digits. 
Checking the corresponding numbers of such arrays for 
each of these numbers will give us the result of matching 
numbers ([3, 4]). 

CountEquals2 (num1, num2) 
{two arrays of length n for digits of first part of the 

solution. Arr_num1 [n], arr_num2 [n], the lengths of our 
numbers are given – n.  
count_pos0 count of position matches 

count_eq 0 count of total matches} 
for ( i  1, i ≤ n, ii+1 )  

{ operations of order O(n)*5. 
  Counting the number of matches } 
if ( num1%10 = num2%10 ) 
 count_pos  count_pos + 1 
else 
{storing the number of units digit in the proper vari-

able } 
arr_num1 [i]num1%10 
arr_num2[i]num2%10 
{ "deleting" digit of units } 
num1num1 div 10 
num2num2 div 10 
end if 
end for 
n  n – count_pos { the remained amount of digits in 

the original numbers. All the digits of our numbers are 
stored in the arrays, with the exception of. Those, 
matched by position. Create two arrays of 10 elements 
each and initiate its values with 0 (digits are not counted 
yet.) Then recount the amount of remaining different dig-
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its with} 
{counting arrays - [1], [2] } 
arr_count1={ 0 }, arr_count2={ 0 } 
for (i1, i ≤ n, i  i+1 { operations of order O(n)*2 } 
arr_count1[arr_num1[i]]arr_count1[arr_num1[i] ]

+1 
arr_count2 

[arr_num2[i]]arr_count2[arr_num2[i] ]+1 
end for 
{counting matches ([1], [2], [4]) } 
for (i1, i ≤ n, i  i+1) { operations of order 

O(n)*3 } 
if ( arr_count1[i]>0 AND arr_count2[i>0] ) 
count_eqcount_eq +min(arr_count1[i], 

arr_count2[i]) 
end for 
return count_pos, count_eq 
end algorithm 
The number of operations required to perform the 

algorithm is of an order 

      5 2 3 10O n O n O n O n     . 

The final value of the asymptotic function that limits our 
result from above is  comparing with  O n  2O n  in 
the previous versions. 

3. Conclusions 

For small values of n, the second solution may require 
even more operations than the first solution. There is a 
range of values of the segment closest to the origin of the 

function y a n   while above will limit the function by 
2y b n  , where a and b are appropriate constants. 

However, when n tends to infinity (or became sufficiently 
large), the square function grows faster than linear 
obviously ([3]).  

With this simple example, we wanted to show how the 
runtimes of different algorithms solving the same problem 
can be different drastically, when the problem is correctly 
formulated and the right model and built solution are 
properly matched. 
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