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ABSTRACT 

Recently devised new symplectic and differential-algebraic approaches to studying hidden symmetry properties of 
nonlinear dynamical systems on functional manifolds and their relationships to Lax integrability are reviewed. A new 
symplectic approach to constructing nonlinear Lax integrable dynamical systems by means of Lie-algebraic tools and 
based upon the Marsden-Weinstein reduction method on canonically symplectic manifolds with group symmetry, is 
described. Its natural relationship with the well-known Adler-Kostant-Souriau-Berezin-Kirillov method and the associ- 
ated R-matrix method [1,2] is analyzed in detail. A new modified differential-algebraic approach to analyzing the Lax 
integrability of generalized Riemann and Ostrovsky-Vakhnenko type hydrodynamic equations is suggested and the cor- 
responding Lax representations are constructed in exact form. The related bi-Hamiltonian integrability and compatible 
Poissonian structures of these generalized Riemann type hierarchies are discussed by means of the symplectic, gradient- 
holonomic and geometric methods.  
 
Keywords: Lie-Algebraic Approach; Marsden-Weinstein Reduction Method; R-Matrix Structure; Poissonian Manifold; 

Differential-Algebraic Methods; Gradient Holonomic Algorithm; Lax Integrability; Symplectic Structures; 
Compatible Poissonian Structures; Lax Representation 

1. Introduction 

It is well known that hidden symmetry properties, related 
to symplectic, differential-geometric, differential-alge- 
braic (D-A) or analytical structures of nonlinear Hamil- 
tonian dynamical systems on functional manifolds, such 
as an infinite hierarchy of conservation laws and com- 
patible Poissonian structures, often give rise to their Lax 
integrability. This fact was extensively worked out by 
many researchers during the past half century and a very 
powerful so called inverse Lie-algebraic orbit method 
[1,3-6] of constructing hierarchies of a priori Lax inte- 
grable nonlinear dynamical systems was devised. A re- 
lated direct problem of retrieving these hidden intrinsic 
symmetries for a priori given well posed nonlinear dy- 
namical system, which are suspected to be Lax integrable, 
proved to be a very complicated task, whose solution is 
still far from being solved. Among different approaches 
to coping with it one can mention, for instance, the clas- 
sical Kowalewskaya-Painlevé method and its modifica- 
tions, the Mikhaylov-Shabat [7] recursion operator 
method, based on analyzing the Lie-Backlund symme- 
tries and some other techniques, which appeared to be  

reasonably effective in diverse applications, especially 
for classifying nonlinear integrable dynamical systems 
possessing special structure. Recently, when studying 
integrability properties of infinite so called Riemann type 
hydrodynamical hierarchies, a new direct approach to 
testing the Lax integrability of a priori given nonlinear 
dynamical systems with special structure, based on treat- 
ing the related symplectic and differential-algebraic 
structures of differentiations, was suggested [8] and de- 
vised in [9]. By means of this technique the direct inte- 
grability problem was effectively reduced to the classical 
one of finding the corresponding compatible representa- 
tions in suitably constructed differential rings. 

Concerning the inverse Lie-algebraic orbit method, as 
its name suggests, it consists [1,3,6,10-12] in studying 
invariant orbits of the coadjoint group  action on a 
specially chosen element  where  is the con- 
jugate space to the Lie algebra  of a suitably chosen, 
in general formal, group  In other words, the main 
Lie-algebraic essence of this approach consists in con- 
sidering functional invariance and related symplectic 
properties of these extended orbits in  generated by 
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the given element  and inherited from the stan- 
dard Lie algebra structure of  

l 
.

From this point of view, subject to this extension 
scheme of constructing a priori Lax integrable dynamical 
systems, it was natural to search for another way of con- 
structing such systems, but based on a suitably chosen 
reduction construction of the corresponding coadjoint 
group  action on the general element Ĝ .l   Hap- 
pily, in modern symplectic geometry such a reduction 
method was well developed many years ago by Marsden 
and Weinstein [13,14] and effectively applied to studying 
integrability properties of some nonlinear dynamical 
systems [15,16] on finite-dimensional symplectic mani- 
folds. Thus, a next step, consisting in developing this 
Marsden-Weinstein reduction method and applying it to 
the case of infinite-dimensional dynamical systems on 
functional manifolds, was quite natural and effectively 
realized in [17]. The latter, in particular, made it possible 
to substantially generalize results of [18] and apply them 
to studying a new physically feasible and important 
model in modern quantum physics. As all of the topics, 
mentioned above and recently studied in our publica- 
tions, are closely connected to each other, we tried in this 
work to review those main essentially used analytical, 
Lie-algebraic and differential-algebraic structures which 
proved to be algorithmically effective for studying Lax 
integrability of nonlinear dynamical systems on func- 
tional manifolds. 

As an important example of applying these recently 
devised techniques, a new generalized Riemann type hy- 
drodynamic system is studied by means of a novel com- 
bination of symplectic and differential-algebraic tools. A 
compatible pair of polynomial Poissonian structures, a 
Lax representation and a related infinite hierarchy of 
conservation laws are constructed. Also analyzed is the 
complete Lax integrability of the important (for applica- 
tions) Ostrovsky-Vakhnenko Equation, studied by means 
of symplectic, gradient-holonomic and differential-alge- 
braic tools. A compatible pair of polynomial Poissonian 
structures, Lax representations and related infinite hier- 
archies of conservation laws are also presented. 

2. Lax Integrability via Marsden-Weinstein 
Reduction and the AKS-BK and R-Matrix 
Approaches 

Loop Group, Canonically Symplectic Manifold 
and Hamiltonian Action 

As it is well-known [1,6,13,14], the most popular ca- 
nonically symplectic manifolds are supplied by cotangent 
spaces  :M T  P  to some “coordinates” phase spaces 

, which can often possess additional symmetry proper- 
ties. If this symmetry can be identified with a Lie group 
P

G  action on the phase space  and its natural exten- 
sion on the whole manifold 

P
M  proves to be symplectic 

and even more, Hamiltonian, the Marsden-Weinstein 
reduction method [10,13] makes it possible to construct 
new Hamiltonian flows on the smaller invariant reduced 
phase space :M M G    subject to the group invari- 
ant constraint :p     for some specially chosen 
element   , where  is the related mo- 
mentum mapping on the symplectic manifold 

:p M 
M  and 

  is the adjoint space to the Lie algebra  of the 
group Lie . 


G

As the corresponding Hamiltonian flows on the re- 
duced phase space M  often possess very interesting 
properties important for applications in many branches of 
mathematics and physics, they were topics of many in- 
vestigations during the past decades. As a result of our 
interest in the mathematical properties of the Lax inte- 
grable flows, we observed that their modern Lie alge- 
braic description by means of the Hamiltonian group 
action classical Lie-Poisson-Adler-Kostant-Berezin-Ki- 
rillov scheme on the adjoint space  to the Lie algebra 

 of a suitably chosen group  is a natural conse- 
quence of applying the Marsden-Weinstein reduction 
method to the canonical symplectic phase space 

ˆ
G̂

 M T P . The basis space , has to be a specially 
chosen Lie algebra  with the naturally related Hamil- 
tonian group  action on the symplectic phase space 

P


G
.M  Moreover, such classical integrability theory ingre- 

dients as -structures [19] and the related commutation 
properties of the related transfer matrices are also natu- 
rally retrieved from the Marsden-Weinstein reduction 
method via the scheme specified above. 

R

Consider a complex matrix Lie group  ; ,G SL    
  , its Lie algebra , and a related [1,4,6] formal 
loop group 


  1 l ;G C G 

1
;Ho  of G-valued func- 

tions on the circle , meromorphically depending on 
the complex parameter   . Its Lie algebra  can 
be viewed as the completion  



 1:
n

j
j j

jn

X X C 



; .
 

  
 
   


       (1) 

By the standard procedure [1,10] one can construct the 
centrally extended current algebra , on which 
the adjoint loop group G -action is defined: for any 

ˆ :   


g G   

    
1

: , , ,xg T c gTg c g g T


 1 1  .        (2) 

Here   ˆ,T c   and  , :


      
1

 is the fol- 
lowing nondegenerate symmetric scalar product on : 

        2

1 10
, : res tr ; ; ,A B A x B x B A 



 
  ,   (3) 

for any ,A B  . The scalar product (3) is ad-invariant, 
that is 

Copyright © 2013 SciRes.                                                                                  AM 



D. BLACKMORE  ET  AL. 97

    
1

, , , , 
1

A B C A B C




           (4) 

for any elements ,A B  and .C   
Define now the canonically symplectic phase space  

   ˆ ˆ ˆ:M T    ,   with the corresponding Liouville  

1-form on :M  

     1

1
, ; , ,d d ,T c l k l T k c


             (5) 

whose exterior derivative gives the symplectic structure 
on the functional manifold M : 

       
 

2 1

1

, ; , : d , ; ,

d , d d d .

T c l k T c l k

l T k c

 





   
       (6) 

Similarly to (2) one can naturally extend the group 
-action on the whole phase space G M , having 

   1 1: , ,x g l k glg kg g k               (7) 

for any    and ˆ,l k  g G   as the corresponding 
co-adjoint action of the current group  to the adjoint 
linear space  The following lemma is almost self- 
evident. 

G
ˆ .

Lemma 1 The -group action (2) and (7) on the 
symplectic phase space 

G
M  is symplectic and Hamil- 

tonian. 
It is easy to check that the canonical Liouville 1-form 

(5) on the manifold M  is -invariant: G
   

 

  
  

 

  

 

     

1

1 1 1

1

1

1

1 1 1 1

1

1

1

1 1 1 1

1

1

1

1

1

, ; ,

, d

d ,d

, d , d

d ,d

, d ,d

d ,d

,d d = , ; , .

x

x

x

x

x

x

g T c l k

glg kg g g Tg

k c g g T

glg g Tg k g g g Tg

k c k g g T

l g g Tg g k g g g g T

k c k g g T

l T k c T c l k






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





   







   









 

 

 

 

 

 

 




1



    (8) 

From (8), owing to the expression (6), one obtains the 
symplectic form invariance 

      2 2, ; , , ; ,g T c l k T c l k            (9) 

for any element   , ; , .T c l k M

To define the Hamiltonian G-action on the symplec- 
tic manifold M we take the group flow    : expg t t

 

        
        

      

1 1

1

1 1

=0

1

, ; ,

d
: ,

d

,

, , , ; , ,0 ,

X

x

x t

x x

K T c l k

g t Tg t c g t g t T
t

g t lg t kg t g t k

X T X T X l kX

 



 



 



 

, ;
    (10) 

by a Hamiltonian function  owing to the  :XH M  
 2canonical relationship  d :

XX KH i  

   

    
 

1 1

1 1

1

d ,d ,

d d

, ,d d , ,

, d .

X X

X X

x

x

H H l l H T T

H k k H c c

X l kX T l X T

X T k



d
 

 



       

    

  



    (11) 

As a consequence of (11), one obtains 

 
 

 
1

, ,

, ,

, ,

0

X

X x

X x

X

H l X T

H T kX X l

H k X T

H c


  

   

  

  

           (12) 

for any point  , ; , .T k l c M  From (12) it follows that 

     
11

, , : , ; , ,X xH T l kT X p T c l k X


   ,   (13) 

is linear with respect to the generator element .X    
This means that the loop group  action on the sym- 
plectic manifold 


M  is Hamiltonian by definition 

[12,13].  

The corresponding mapping  where :p M   ,

   , ; , , ,xp T c l k T l kT            (14) 

is called the momentum mapping [10,12,13] which can 
be constrained to be fixed for further applications to the 
phase space M  in the Marsden-Weinstein reduction 
procedure [13]. 

Let us describe in detail the related symplectic struc- 
ture on the  -level submanifold 

    : , ; , : , xM T c l k M T l kT           (15) 

for a fixed element .  
.

 As a more natural case we 
take that 0     The corresponding isotropy group  

G G   , as 0Ad  0  holds for any element .g G    g   

To proceed further, we need some additional properties 
of the submanifold ,M M   which we describe next. 

X  
for , , and find the generated vector field t

:
X  
 XK M T M  on the phase space M : 

3. Marsden-Weinstein Reduction and 
Poisson Brackets 

In this section we shall be interested in describing the 
submanifold M M   parameterized by the points of 
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the reduced phase space :M M G   . It is known 
[13,14] that this parametrization uniquely determines the  

points  , ; , ,T c l k M M   which are invariant with  

respect to the appropriate loop group  action (2) and 
(7). The last property makes it possible [10,13,14,20] to 
define on the phase space 

G

M  the reduced nondegener- 
ate symplectic structure on the phase space M  by 
means of the appropriate symplectic structure on the sub-  

manifold M . Let us consider the point  , ; , ,T c l k M   

where the elements T   , ,k   according to the 
definition (15), satisfy the differential expressions: 

, 0,x xT l kT k      0,             (16) 

for all  Consider now a Hamiltonian vector field 1.x
d d ,  ,k   on the submanifold ,M  generated by 

the element X l     owing to the expressions 

, , ,

.

x

x

kT l T T l kT

k l k l





           
 

      (17) 

From (17) it follows that the equality 
d d

d dx
  holds  

on the reduced phase space .M  Let us also compute 
the evolution of the element c   with respect to this 
vector field d d  on :M  

   
 
 

1 1

1

1

1

1

, ,

, ,

, , 0

x xkc l T l T

l k T l

k l l T

  









   

    

    ,

          (18) 

coinciding with the a priori assumed condition 
d d 0c x   for any  1.x

Define similarly a vector field d d ,t   on the 
reduced phase space 

,t
,M  generated by the Lie algebra 

element   ,q l    depending on the basis element 
l    such that 

   
  

1

, , ,

, , 0.

t t

t x t

T q l T l q l l kl

c q l T k


       

 

,x
     (19) 

This, in particular, means that the flows d dt  and 
d dx  on the reduced phase space M  possess the  

countable set    : tr ,n
n l T l    of conserva- ,n

tion lows, where by definition, the element  T l    
satisfies for a given element l    the determining 
equation 

   ,xkT l l T l  

             (20) 

for all  From the Equation (20) one easily finds 
that upon the reduced phase space 

1.x
M  

     
    
    

   
 

1

1 1

1 1

1

1 1

11

1 1

1 1

1

1

, ,

, , ,

, , ,

, ,

d
, .

d

t tx

t

t

t t

c q l T k q l l l T

k q l l T k l T

k T q l l k l T

k l T k l T

k l T
t




,



 



 



 

 





    

   

   

  

 

  (21) 

Thus, from the t -evolution (21) of the parameter 
c   one finds that the constraint 

 1

1
= ,c k l T


                (22) 

holds on the reduced phase space M  subject to the 
vector field d dt  generated by the element   .q l    
Moreover, as it is easy to observe, these two vector fields 
d d  and d dt  on the reduced phase space M  com- 
mute: 

 d d ,d d 0.t                  (23) 

This is very promising, since the condition (23) results 
in a differential relationships on the components of the 
reduced matrix ,l    for which the related evolution 
equation 

,xF lF                      (24) 

and the differential Equation 

 tF q l F                   (25) 

for the matrix F G   are compatible. These Equations 
(24) and (25) realize the well-known [1,4-6,10,12] gen- 
eralized Lax spectral problem, allowing to integrate the 
above differential relationships by means of either the 
inverse scattering or the spectral transform methods 
[1,4,5,21] and algebraic geometry methods [4,5], or their 
modern generalizations [6]. 

To make this aim more constructive, it is necessary to 
describe the evolution of the vector field d dt  on the 
reduced phase space M  in more detail subject to its 
dependence on the phase space element .l    Taking 
into account that the vector fields d dt  and d dx  sat- 
isfy the commutation condition (23) on the reduced 
manifold M , we will apply Marsden-Weinstein re- 
duction theory to our symplectic manifold M  with the 
fixed value of the moment mapping 0   for comput- 
ing the Poisson bracket 

    1
, , ,T X T Y

1  
             (26) 

of the functions  ,T X  and  ,T Y   on the reduced 
phase space M  for arbitrary  It can be 
shown [10,20,22] that this Poisson bracket on 

,X Y   .
M  in 

eneral is g  
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            
11 1 1 1

, , , , , , , ,X YMT X T Y T X T Y V V



   

  ,M
                (27) 

 
where, by definition, the mappings , :X YV V M    
denote the solutions to the relationship 

where we made use of the property     ,g a l ag l  
.l    This holds owing to the definitions (29) and (7): 

    
    

11

11

, , , ,

, , , ,

X Z

Y Z

Z V K T X

Z V K T Y











           (28) 

        
        

          

       

1 1

1 1 1 1

1 1 1

1 1

1 1
,

x

x x

x x

x

x

a l ala ka a

a g l lg l kg l g l a ka a

ag l l ag l kag l g l a ka a

ag l l ag l k ag l ag l

g a l lg a l kg a l g a l

 

   

  

 

 

 

  

 

 

 



   

which holds for all  The functions .Z    
1

 , ,T X
   ,T Y M

1 
 should be extended to the whole 

phase space 


M  in such a way that their restrictions on 
the submanifold M M

1



 (32) 


To apply the Marsden-Weinstein reduction, we will 

take into account that, by definition, there exists a group 
element 

 are -invariant. G

 g l G   such that for arbitrarily chosen 
 the expression l G  giving rise to relationship   g a l ag l  for any 

a G   and .l             1 1

xl g l l l g l kg l g l
        (29) 

Returning to the Poisson bracket (27), we can replace  
holds and satisfies the normalization condition  g l   

. By considering the function Id G  the functions  
1

,T X


 and   
1

,T Y M 
  with their  

G
 -invariant extensions  Before calcu- 

lating the corresponding Poisson bracket 
 .Xf M

    1

1
: ,Xf T g l Xg l




  ,            (30) 

one can observe that  
1

,X M
f T X

 
  and, by con-        

 
1

, , , ,

, ,
X

X Y X Y X Y
M

X Y V YM M

f f f f V V

f f K f



 





 

 
       (33) struction, it is -invariant. This means that G  Xf M

G
 

for any  In fact, for any  .l  a G  
1   

   
    

1

11

1

1

: ,

,

, ,

X

X

a f a T g a l Xg a l

aTa ag l Xg l a

T g l Xg l f









 

 

 

  
1



        (31) 

where  :
XVK M T M  is the vector field generated 

on M  by the element  we need to calculate 
the action 

,X  V

Z YK f  for any element  Just as with 
the calculations from [22], one finds that on the sub-
manifold 

.Z  

M  

 

          
               

1

0
1

1 1

1

d
exp exp exp exp

d

, , ,

Z Y

x

K f Z T Z g Z l Yg Z l

T g l g l g l Z l kZ g l Zg l Y g l

   







 



 

    

 

1

                 (34) 

 
Thus, on the reduced phase space M  the general expression (34) implies 

 

 
1

d
, , ,

dXV Y x x XM
K f T g l V l k V V Y

x
.



               


                           (35) 

 

Therefore, the Poisson bracket (33), in view of the relationships      2,
X YX Y V Vf f K K  ,  and (35), becomes 

 

             

      
1

1

1

d
, , , , , , , , ,

d

, , , ,

X X XT X T Y T g l Y X Y g l X T g l V l k V V Y
x

T g l Y X Y g l X

 




                         

        

    (36) 

 
where we take into account that owing to (28) and (35), the expression 
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 

 
1

0
1

d
, , ,

d

, , 0.
X

X X X X

V Y

T g l V l k V V Y K f
x

K V 




              

   

V Y



  

Now one can rewrite the Poisson bracket (36) as 

       
1

, , , , ,
D

T X T Y T X Y
 
 ,        (37) 

where, by definition, we have introduced the classical 
-matrix structure in the Lie algebra : D 

     , : , ,
D

X Y D X Y X D Y      ,       (38) 

where  and the linear homomorphism 
 is defined as 

,X Y  
  :D 

    : .D X g l X             (39) 

The mapping (39) should satisfy [23] the well-known 
condition 

      
     

1
, , , ,

, , , , , cycles

D
T X D Y D Z D Y Z

T X T Y T Z


   

    0




    (40) 

for any  and  ,X Y   .Z  
Now it is useful to recall that the mapping 
:g G    satisfies the relationship (29), which im- 

plies [24] the following differential expression 

       d
,

d
g l X l k g l X X

x
           (41) 

for any  where ,X     :g l     is the deriva- 
tive mapping depending on the chosen reduction 

.l l      
The mapping (39) satisfies an additional relationship, 

which can be obtained from the group -action on the 
element 

G
  :T l    

        1
,T l g l T l g l

            (42) 

following naturally from (29). Differentiation of (42) 
with respect to  at the point l   ,l l  gives rise to 

       ,T l X g l X T l             (43) 

for an arbitrary .  Moreover, since the matrix (42) 
satisfies the relationship (20), its differentiation with re- 
spect to 

X  

l    yields the differential expression: 

       d
,

d
k T l Y l T l Y T l Y

x
       , ,    (44) 

which holds for any . The above results can be 
formulated as the following proposition. 

Y  

Proposition 1 The Poisson bracket (26) on the 
reduced phase space M  represented as a -struc- 
ture (37) on the linear space , naturally generated by 

the gauge transformation (29), which reduces the arbi- 
trary element 

D


l    to the element ,l    is uni- 
quely defined on .M  

As a consequence of representation (37) we find that 
there exists an another infinite hierarchy of mutually 
commuting functionals with respect to the Poisson 
bracket on the phase space M . The latter follows from 
the tensor form of the Poisson bracket (26) in the space 

 :  

      
       

T l

l T l


 ,

, ,

T l

D T  



    
    (45) 

 

which holds for arbitrary ,    and where 
 , :D     

:D


.

 denotes the tensor form of the - 
structure 

D
   The trace operation in (45) 

causes the Poisson bracket to vanish on the phase space 
M  for the functionals   trT l   and   trT l   
for arbitrary , .    

4. Monodromy, R-Structure and Lie-Poisson 
Brackets 

Next we analyze possible forms of the -mapping (39) 
as a function on the reduced phase space 

D
.M  Since 

k   is constant, its value for convenience is set at 
1.k    Thus, taking into account the definition (39), 

the determining -structure Equation (41) takes the 
form: 

D

     d
, 0

d
D l Y l D l Y Y

x
           (46) 

for any element .Y    
Let us consider the linear matrix Equation 

    , ; ; , ; ,xF x s l x F x s             (47) 

where  ; ,l x F G   ,  with Cauchy data at a point 

 1 :x s 
 , ; .

x s
F x s 


                 (48) 

The corresponding normalized monodromy matrix 

     1; : 2 , ; tr 2 , ;T x F x x F x x ,          (49) 

for 1x  and arbitrary    satisfies 

,xT T l  0,                  (50) 

exactly coinciding with (20). Thus, if by the co-adjoint 
transformation (7) this chosen matrix l    is trans- 
formed into the matrix ,l    then the corresponding 
monodromy matrix of (24) transforms into the mono- 
dromy matrix of (47), which satisfies (50). 

In view of the relationships (47), (48) and (50), one 
can recalculate the Poisson bracket (37) as 

Copyright © 2013 SciRes.                                                                                  AM 
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   ;T l z T z for arbitrary 1z  and  It yields the following 
tensor expression for the reduced phase space 

1. 
:M  

;              (51) 

 

      
            

               

            

2 2

2 2

2 2

; ;,

d d 2 , ; ; , ; 2 , ; ; , ;,

d d 2 , ; ; , ; , 2 , ; ; , ;

d d 2 , ; 2 , ; ; ; , ; , ;,

z z

z z

z z

z z

z z

z z

T l z T l z

x y F z x l x F x z F z y l y F y z

x y F z x l x F x z F z y l y F y z

x yF z x F z y l x l y F x z F y z









 

     

    

     

   

   

   







    

          

      

 

 

 

     

   



     
2 2

d d 2 , ; 2 , ; , ; , , ; , ; ,
z z

z z

x yF z x F z y x y F x z F y z      
   

       

(52) 

 
where , 1z ,    and, by definition, 
 

         
, 0

; ; : , ; , , ; ,,
N

i k
ik x y

i k

l x l y x y x y x y


        


     .                       (53) 

 
The local functional matrices  for all , 1, , 1, ,x yi k N   ,  

,

 and the permu-

tation operator :P    

.

 acts as  

for any 

:BP B A  PA

,A B    Just as in the calculation from 
[1,25,26] one obtains from (53) that 

 , ; ,ik x y         

satisfy the antisymmetry property: 

  , ; , , ; ,ik kiP x y P x       y       (54) 

 

             
2

; ; d 2 , ; 2 , ; , ; , ; , ;,
z

z

T z T z xF z x F z x x F x z F x z


 ,      
 

               (55) 

 
where the matrix  , ; x      

,
 for all 

 depends only on 1, , x     .l   The expres- 
sion (55) allows the very compact representation 

      
1

1

d
, , , ,

d R

R
X Y l X Y X R Y

x 


    
 

 ,    (59) 

which holds for any ,X Y   , where we denoted 
    
     
     

; ;,

, ; ; ;

; ; , ;

T z T z

z T z T z

T z T z z


 

,

  

   



 

 





   , : , ,
R   .X Y R x Y X R Y               (60) 

           (56) 
The result (59) can be used for rewriting the Poisson 

bracket (56) as 

if the tensor -matrix  satisfies for 
 and 

     
1x ,    the differential relationship 

 

    
 

d
, ;

d

, ; , ; ;

, ; .

x
x

x l x l x

x

 

  

 

     
 

 





      
   

      
      

       

1 1

2 2 2 2
1

1

1

1

1

, , ,

, , ,
d

, , , ,

d
, , ,

d

d
, , , ,

d

R

R

X T l Y T l

R
l FXF FYF FXF FYF

x

l X T l Y T l

X T l R Y T l
x

R X T l Y T l
x

 

   












        

    

    
 

    
 

 (61) 



    (57) 

If we define the mapping  as :R  

       
2

0
0

: res d , ; ;R Y y y x y Y y


   



        (58) 

where for any , then the relationship (57) can be easily 
presented in the following operator form: 

Y  
     2: , ; , : 2 , ;F F l x y F F l y x G      ,  
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1, ,x y   ,  and we defined the gradients 
  ,X T l  and   ,Y T l   in the standard way 

as 

     0
1

d
, :

d
f l Z f l Z 

 
          (62) 

for any smooth functional  and  f    Z   . 
It is easy to observe that under the antisymmetry con-

dition  the right-hand side of (61) equals the 
Lie-Poisson bracket [1,2,4,6,10] for the functionals  

R  R

 , X T  and    ,Y T    .  Here the adjoint space  
     


 is with respect to a new commutator 

structure ,
R

 
ˆ :

 on the centrally extended Lie algebra 
 for any    with commutator   ˆ, , ,X c Y r 

   

     
1 1

, , ,

d d
, , , ,

d d

R

R

X c Y r

X Y X R Y R X Y
x x 

  

       
   

.



 (63) 

In (63) the classical -structure on the Lie algebra  R

     , : , ,
R

X Y R X Y X R Y     


 
  under some condi-  

tions on the mapping  can generate on  a 
new Lie structure (which it must not). 

:R   

The above results can be formulated as follows. 
Proposition 2 The Marsden-Weinstein reduced cano- 

nical Poisson structure on the phase space M  for the 
monodromy matrix  T l    exactly coincides with the 
corresponding classical Lie-Poisson AKS-bracket on the 
centrally extended basis Lie algebra  subject to the 

-structure (63) when it is antisymmetric. 
̂

R
If the antisymmetry property for the mapping 

 does not hold, the generated Lie-Poisson 
type bracket on the functional space  can be, 
owing to (61), defined as follows: for any 

:R  
  

 ,f g     
the bracket 

         
    

    

1

1

1

, : , ,

d
,

d

d
, ,

d

R
f l g l l f l g l

f l R g l
x

R f l g l
x

 





    

  
 

    







   (64) 

where the generalized -structure R  ,
R

   on  is 
given by the expression (60). 



5. D-Structure and Generalized R-Structure 

As stated above, the reduced Poisson bracket on the 
phase space M  is 

       
1

, , , , ,
D

X T Y T T X Y
 
 ,



R

       (65) 

where for any  the corresponding -struc- 

ture on the Lie algebra  is defined by the classical 
expression (38) and the mapping (39). It is natural to 
assume that there exists a relationship between the 
D-structure  and the R-structure  
described above in Section 3. 

,X Y   D



R

:D   : ,R   

Assume, for brevity, that the -structure (58) is 
antisymmetric, that is 

R
.   Then it is easy to check 

that the following algebraic relationship 

  1
:

2
D X R TX XT                 (66) 

holds for any .X    In fact, (56) is equivalent to 

       
  

1

1
, .

, , , ,T X T Y TX R TY

XT R YT

 






     (67) 

Now, substituting (66) into (37), one obtains that 

    
    

     

     
     

     

     

     
  

1

1

1 1

1 1

1 1

1

, , ,

1
, , ,

2
1 1

, , , ,
2 2
1 1

, , ,
2 2
1 1

, ,
2 2
1 1

, ,
2 2

1 1
, ,

2 2
1 1

, ,
2 2

,

T X T Y

T R TX XT Y X R TY

Y T R TX Y T R XT

T X R TY TX R YT

YT R TX TY R TX

YT R XT TY R XT

TX R TY XT R TX

TX R YT XT R YT

TX R TY




1

1 1

1

1

YT


 





    





 

 

 



 

       

      

 

 

 

 





 (68) 

  
1

, ,XT R YT




which coincides exactly with (67). 
It is convenient to rewrite the operator relationship (46) 

in the tensor form as 

    d
,

d
l D D l D

x
                 (69) 

where the tensor , owing to the action (66), 
equals 

D    

    1
.

2
D R T T R                (70) 

Substituting the expression (70) into the Equation (69) 
and taking into account the determining Equation (57) 

d
,

d
l l R R

x
  ,                   (71) 

one obtains the relationship for the tensor     : 
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   
   

2 ,

.

R Tl T R l

l R T

        

  

    
 

    (72) 
   ; ,x N t ND f l u f D f q f          (75) 

with    being a complex spectral parameter and 
 N ;f L    and matrices  

This makes two - and -structures on the Lie al- 
gebra  compatible. Observe that the -structure (66) 
is not antisymmetric even though the -structure was 
assumed to be antisymmetric. Concerning the -struc- 
ture determining Equation (69) one can anticipate that a 
study of its solutions would describe a set of nonlinear 
dynamical systems on the reduced phase space 

R D
 D

R
D

M  
possessing an infinite hierarchy of mutually commuting 
conservation laws. 

    2; , .N Nl u q End     

Here, by definition,  and the dif- 
ferentiations 

 2
1 :u u C   ;

1: , :t x xD t u D D x               (76) 

satisfy on the manifold NM  the following commutation 
relationship: 

  1,, .x t xD D u D x               (77) 

6. Generalized Riemann Systems: Lax 
Integrability and D-A Structures 

In particular, for N   the following result [8,41] 
was recently obtained. 

6.1. Setting the Problem Proposition 3 The Lax representation for the genera- 
lized Riemann type hydrodynamical system 

Recently, new mathematical approaches based on differ- 
ential-algebraic [27-31] and differential geometric me- 
thods and techniques, were applied in [8,32,33] for study- 
ing the Lax integrability of nonlinear differential equa- 
tions of the Korteweg-de Vries and Riemann type. In 
particular, many analytical studies [32,34-40] have been 
devoted to finding the corresponding Lax representations 
of the infinite Riemann type hydrodynamical hierarchy, 
suggested recently by M. Pavlov and D. Holm in the 
form 

1 2 2 3 1, , , ,t t t N N t ND u u D u u D u u D u 0      (78) 

is given for any arbitrary  by a set of linear 
compatibility equations (see Equation (79)),  

N 

where  2 ; Nf C    and    is an arbitrary 
complex parameter. Moreover, the relationships (79) 
realize a linear matrix representation of the commutator 
condition (77). 

In our work we study the complete integrability of a 
new dispersive Riemann type hydrodynamic flow 

,N
tD u z                 (73) 1 2 ,N

t x tD u z D z 0              (80) 

where the differentiation : ,tD t u x       ,N   
 and   2,x t    2 ;u C   

on a 2 -periodic functional manifold  
.



 It was found that 
the related dynamical system  2 ; N

NM C    ,  

where N   is an arbitrary natural number, the vector  
1 2 1, , , , 0,t t j j t ND u u D u u D u         (74) 

 2 1, , , , ,N
t t t Nu D u D u D u z M 


,  defined on a -periodic infinite-dimensional smooth 

functional manifold 
2

 2 ; N
NM C     ,  possesses 

[8,37] for an arbitrary integer  a suitable Lax 
representation 

N  the differentiations  

: ,xD x    :tD t u     x

x

 

 

 
 

1, ,

1, ,

1, ,
1 2

1, 2, 1,

0 0 0 0 0

0 0 0 0

,0 ... 0

0 0 0 0

0 0 0 0

0 0

0 2

0 ,

0 0 1

1

t

N x N x

N x N x

x

N x N x
N N

x N x N

D f f

u u

u u

D f f

u N u

N Nu Nu N u










   








 

 
  
  
 
 
  

 
 
 
 
 

 
     





 

   




                  (79)
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satisfy as above the Lie-algebraic commutator relation- 
ship (77) and t  is an evolution parameter. This 
system can be considered as a slight generalization of the 
dispersive Riemann hydrodynamic system (73), exten- 
sively studied by means of different mathematical tools 
in [8,9,32,35,37,41]. For the case  it is well 
known [10,12] that the system (80) is a smooth Lax inte- 
grable bi-Hamiltonian flow on the -periodic func- 
tional manifold 



2N 

2
2 ,M  whose Lax representation is given 

by the compatible linear system 

 
0

,

0 0
,

x
x

x x xx x

t
x x

z
D f f

u u z z z

D f f
z u





 
     
 

   

      (81) 

where  and  2 2;f C       is an arbitrary 
spectral parameter. 

For  the dynamical system (80) is equivalent to 
that on a -periodic functional manifold  

3=N
2

 3
3 2 ;M C     

for a vector   3, , :u v z M  
2, ,t t x tD u v D v z D z   0.        (82) 

This can be easily rewritten by means of the change of 
variables 2: xz z  as that on a -periodic functional 
manifold  

2

 3
3 2 ;M C     

for a vector    3, ,u v z M

D u v D v z , , 2t t tD z zu  ,x        (83) 

or in the form of the flow 

 
d d

d d , , : ,

d d 2

x

x

x x

u t v uu

v t K u v z z uv

z t u z uz

  
     

      





     (84) 

defining a standard smooth dynamical system on the in- 
finite-dimensional functional manifold 3 ,M  where 

33:

algebraic tools. 
Proposition 4 The Riemann type hydrodynamic flow 

(97) is a bi-Hamiltonian dynamical system on the func- 
tional manifold 3M  with respect to two compatible 
Poissonian structures     3 3, :T M T M   

1 2 1 2

1 1

1 1 1 1

1

0 1 0

: 1 0 0 ,

0 0 2

0

: 2

0 2 0

x

x

x x x x

x

z D z

u

u v v z z

z z





 

   



 
   
 
 
  
 

       
   

,

      (85) 

possessing an infinite hierarchy of mutually commuting 
conservation laws and a non-autonomous Lax represen- 
tation of the form (see Equation (86)). 
where    is an arbitrary spectral parameter and 

 3; .f C 2    

We demonstrate the effectiveness of the devised dif- 
ferential-algebraic tools and methods by means of appli- 
cation to the very interesting [42-47] nonlinear Ostrov- 
sky-Vakhnenko hydrodynamic equation 

 1 0x t xD D u D u                (87) 

on the 2 -periodic functional manifold  

 2 ;M C     

subject to which the following proposition is proved. 
Proposition 5 The Ostrovsky-Vakhnenko dynamical 

system (79) allows the standard differential Lax repre- 
sentation and defines on the functional manifold M  an 
integrable bi-Hamiltonian flow with two compatible 
Poisson structures. In particular, this dynamical system 
possesses an infinite hierarchy of mutually commuting 
nonlocal conservation laws. 

In particular, we construct by means of the differen- 
tial-algebraic tools a differential Lax representation, co- 
inciding with that found in [43], and given in the equiva- 
lent matrix Zakharov-Shabat form as 

K M T M
.

 is the corresponding vector field on 

3M  We succeeded in proving the following result 
based on symplectic gradient-holonomic and differential  

   ˆˆ ; , ;t xD h q u h D h l u h  ,          (88) 

where matrices (see Equation (89)) 
 

     

2

3 2

4 2 2 3 2 2

0 0 0

0 0 ,

0

2

t

x x

x

x x x

D f f

z u

u z v z z

D f tu z tv z tz f

tuv u u z v z tv uv z u tv z z




 

  

    

 
   
  
 
 
    
 
        

            (86)
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 

 

0 1

ˆ ; : 1 3 0 0

0 1 3

0 1 0
ˆ ; : 0 0 1 ,

0 0

x

x

u

q u

u

l u

u

,







 
   
  
 
   
  





         (89) 

2 2 3;h C    and    is an arbitrary spectral 
parameter. We also find a related pair of compatible 
polynomial Poissonian structures  

   , :T M T M     

 
1 3 1 2 1

2 2 1 1 2 2

,

4

2

u u u u

u u u u

2



      

     

 

       

       

    (90) 

with  and :xD    1 3 ,xxu u    with respect to 
which the Ostrovsky-Vakhnenko hydrodynamic equation 
(87) is equivalent to a suitable bi-Hamiltonian flow on 
the functional manifold .M  Also analyzed by means of 
the devised differential-algebraic tools is the Lax inte- 
grability of the interesting generalized Ostrovsky-Vakh- 
nenko type system of evolution equations 

 1

2

,

2

t

t

D u u z

D z u

  

 
                 (91) 

on a -periodic functional manifold  2

 2

2 2 ;M C    .  

6.2. Integrability of a Generalized Riemann 
Hydrodynamic System 

6.2.1. New Generalization of the Riemann 
Hydrodynamic Hierarchy 

In this section we shall study the complete integrability 
of the dispersiveness Riemann type hydrodynamic flow 
(80) 

1 2 ,N
t x tD u z D z  0             (92) 

on a -periodic functional manifold  2

 2 ; N
NM C    ,  

where  is an arbitrary natural number, the vector  N 
 2 1, , , , ,N

t t t Nu D u D u D u z M 


,  the differentiations  

: ,xD x    :tD t u     

1 ,N
t tD u z D z 0              (93) 

for N   and extensively studied in [8,9,32,35,37,41], 
where it was proved that it is a Lax integrable bi-Hamil- 
tonian flow on the manifold NM  and possesses an infi- 
nite hierarchy of mutually commuting dispersive Lax 
integrable Hamiltonian flows. 

For 2N   it is well known [10,12] that the system 
(92) is a smooth Lax integrable bi-Hamiltonian flow on 
the -periodic functional manifold 2π 2 ,M  whose Lax 
representation is given by the compatible linear system 

 
0

,

0 0
,

x
x

x x xx x

t
x x

z
D f f

u u z z z

D f f
z u





 
     
 

   

      (94) 

where  2 2;f C    and    is an arbitrary 
spectral parameter. 

Our focus here is an investigation of the Lax inte- 
grability of the Riemann type hydrodynamic system (92) 
for 3N   on a 2 -periodic functional manifold 

 3 3  for a vector 2 ; M C   3, ,u v z M . 
We treat this problem in the following extended form: 

2, ,t t x tD u v D v z D z 0.             (95) 

The flow (95) can be recast as a one on a 2 -periodic 
functional manifold  3

3 2 ;M C    

,x

 for a vec- 
tor  as   3, ,u v z M

, , 2t t tD u v D v z D z zu            (96) 

where, for further convenience, we have made the 
change of variables: 2: .xz z  We will also use the form 
of the flow (96): 

 
d d

d d , , :

d d 2

x

x

x x

u t v uu

v t K u v z z uv

z t u z uz

  
     

      





     (97) 

defining a standard smooth dynamical system on the in- 
finite-dimensional functional manifold 3 ,M  where 

 3: 3K M T M
.

 is the corresponding vector field on 

3M  
In the sequel, we shall prove by means of gradient- 

holonomic and differential algebraic tools Proposition 4, 
stating the Lax integrability of the dynamical system (97), 
in particular, we will devise an effective approach for 
constructing its exact Lax representation and related 
compatible Poissonian structures. x  satisfy, as above, the 

Lie-algebraic commutator relationship (77) and t  is 
an evolution parameter. The system can be considered as 
a slight generalization of the dispersiveness Riemann 
hydrodynamic system suggested recently by M. Pavlov 
and D. Holm in the form 

6.2.2. Symplectic Gradient-Holonomic Integrability 
Analysis: Poissonian Structure on M3 

Our first steps in proving Proposition 4 are fashioned 
using the symplectic gradient-holonomic method, which 
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takes us a long way towards the desired result. 
By employing the symplectic gradient-holonomic ap- 

proach [10,12,48] to study the integrability of smooth 
nonlinear dynamical systems on functional manifolds, 
one can find a set of conservation laws for (97) by con- 
structing analytical solutions    3: , ,u v z T M     
to the functional Lax gradient Equation: 

,d d gradt K   ,             (98) 

where , ,      is a suitable Lagrangian 
functional and the linear operator  

 3D M 

   ,
3 3:K T M T M     

is the adjoint with respect to the standard convolution 
 on  of the Fréchet derivative of 

a nonlinear mapping 
 ,     3 ,T M T M 

:
3

3 3K M T M ; namely, 

,

2

1

0 1

x x x x

x x

x x

uD v z zD

K u uD

u uD



  
    
   

0 .      (99) 

The Lax gradient Equation (98) can be, owing to (80), 
rewritten as 

 , , grad ,tD k u v z                (100) 

where the matrix operator is 

 
0 2

, , : 1 0 .

0 1

x x x

x

x

v z zD

k u v z u

u

  
 
 






      (101) 

The first vector elements 

   
   
 

     
0

1 2 1 2 2 3 2

0

, , , , , 0

, , , , 1 , 0,

, ,

, , 2 4

0,

x x

x x

x x xx x

u v z z uv v uu u

u v z v u

u v z

u z z v u z

 

 







  

    

   

  













 ,

 ,z

  (102) 

as can be easily checked, are solutions of the functional 
Equation (100). From an application of the standard 
Volterra homotopy formula 

   1

0
: d , , , , ,H u v z u v     


       (103) 

one finds the conservation laws for (80); namely, 

 
 

 

2 2 2

0

2

0

2 2 1 2
0 0

1
d 2 ,

2

: d 2 2

1
: d 2 .

2

x

x x

x x

H x uz v u v

,H x u v vu z

H x u v z









 

  

 

 







          (104) 

It is now quite easy, making use of the conservation 

laws (104), to construct a Poissonian structure 
   3:T M T M   3  for the dynamical system (97). If 

we use the representations 

 

  
 

2

0

1 2 1 1 2

d 2 2

: , , , ,

: 2, 2, 2

x x

x x x

x

H x u v vu z

u v z

v u z D z













 

  



 





,



     (105) 

it follows that the vector  satisfies the Lax 
gradient Equation (100): 

 3T M


 , , grad ,tD k u v z            (106) 

where the Lagrangian function  , .K H     
Thus, based on the inverse co-symplectic functional ex- 
pression 

1 ,

1 2 1 1 2

0 1 0

: 1 0 0

0 0 2xz D z
    

  

 
      
 
 

   (107) 

one readily obtains the linear co-symplectic operator on 
the manifold 3 :M  

1 2 1 2

0 1 0

: 1 0 0

0 0 2 xz D z


 
 
 
 

,          (108) 

which is the corresponding Poissonian operator for the 
dynamical system (80). It is also important to observe 
that the dynamical system (80) is a Hamiltonian flow on 
the functional manifold 3M  with respect to the Pois- 
sonian structure (108). 

 , , grad .K u v z H            (109) 

6.2.3. Poissonian Structure on M3  
In what follows, we shall find it convenient to construct 
other Poissonian structures for dynamical system (95) on 
the manifold 3 ,M  rewritten in the equivalent form 

  2d
, , : ,

d
0

x

x x

u v

v K u v z z uv
t

z

   
        
   
   

uu

      (110) 

where  3 3K : M T M  is the corresponding vector 
field on 3.M  To proceed, we need to obtain additional 
solutions to the Lax gradient Equation (100) on the func- 
tional manifold 3M  

 , , grad ,tD k u v z             (111) 

where the matrix operator is 

 
0

, , : 1 0 ,

0 2

x x

x

x x

v z

k u v z u

z u

  
 
   


         (112) 
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and which we may rewrite in the component form 
     

     

      

1 2 3

2 1 2

3 2 3

,

,

2 ,

t x x

t x

t x x
x

D v z u

D u v

D z u

    

    

z   

  

   

  





 

   (113) 

where the vector  

        1 2 3
3: , , T M     


.  

As a simple consequence of (113), one obtains the 
following system of differential relationships: 

     
 

     
     

2 23 2 2 1

1

2 1 1

3 2 1

2

grad , , , ,

,

2 .

t x x t

x x x

t

t x x

D z D

u v z

D v

D z z

v  

   

   









   



   

  

 

 

 













      (114) 

Here we have defined  

             1 2 3 1 2 3, , : , ,x x x        
 

 

and made use of the commutator relationship for differ- 
entiations  and tD :xD  

1,t xD D  0,               (115) 

which holds for the function : 1 ,xz   where 0.tD z   
It therefore follows that after solving the first equation of 
system (114), and one can recursively solve the remain- 
ing two equations. In particular, it is easy to see that the 
three vector elements 

 

    

    
 

0 0

2 2

1 2

, , 2 , 0;

,1 , 2 2 ,

0;

2, 2, 2 2 ,

, ,

x

x x x x x x

x x x

x

v u z

u z z u v z

u x v u z

D K H







  











   

  



     

 





















   (116) 

are solutions of the system (114). The first two elements 
of (116) lead to the Volterra symmetric vectors  

 
0 0

, ,
3 0 0

,

: ,

x xD D

T M

 

 

   

    

 

    

 

 

entailing the trivial conservation laws  

   0 , 0 , .K K    

The third element of (116) gives rise to the Volterra 
asymmetric vector ,: :xD  

1 ,:

0

1
0 0

1 1

2

x

x

x

x x x x

x x x x x x x x

u

z

z

u u u v

z z z z z z z z

      

 
  

 
 

  
 
 
         
 

.

1 xv

(117) 

Correspondingly, the Poissonian operator  

   3 3:T M T M    

is 
1 1

1 1 1 1

1

0

,

0 0

x

x x x x

x

u

u v v z

z



 

   



  
 

      
  

     (118) 

subject to which the following Hamiltonian representa- 
tion 

  2, , grad
xz z

K u v z H


          (119) 

holds on the manifold 3M . 

6.2.4. Hamiltonian Integrability Analysis 
Next, we return to our integrability analysis of the dy- 
namical system (97) on the functional manifold 3.M  It 
is easy to recalculate the form of the Poissonian operator 
(118) on the manifold 3M  to that acting on the mani- 
fold 3 ,M  giving rise to the second Hamiltonian repre- 
sentation of (97): 

 , , grad ,K u v z H           (120) 

where    3:T M T M   3  is the corresponding 
Poissonian operator. As a next important point, the Pois-
sonian operators (108) and (118) are compatible 
[1,3,10,12] on the manifold 3M ; that is, the operator 
pencil     3:T M T  

.
3  is also Poissonian 

for arbitrary 
M

  As a consequence, any operator of 
the form 

 1:
n

n                     (121) 

for all n  is Poissonian on the manifold 3M . Using 
now the homotopy formula (103) and recursion property 
of the Poissonian pair (109) and (118), it is easy to con-
struct the related infinite hierarchy of mutually commut-
ing conservation laws 

    
 

1

0
d grad , , , , , ,

grad , , : grad ,

j j

j
j

s su sv sz u v z

u v z H

 





 




    (122) 

for the dynamical system (97), where  and  j 
,         entailing the 

following inverse co-symplectic functional expression:   1
3 3: :T M T M        
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   : ,u x    t  is the corresponding recursion operator, which satisfies 
the so called associated Lax commutator relationship 

generated by a fixed functional variable   ,u x t  
and invariant with respect to two differentiations 

:xD

,d d , .             (123) t K     
x    and :tD t u x       that satisfy the 

Lie-algebraic commutator relationship (77) together with 
the constraint (96) expressed in the differential-algebraic 
functional form 

In the course of the above analysis and observations, 
we have proved the following result. 

Proposition 6 The Riemann hydrodynamic system (97) 
is a bi-Hamiltonian dynamical system on the functional 
manifold  with respect to the compatible Poissonian 
structures 

3M
   3 3, :T M T M    

3 22t tD u D uD u  .            (127) x

1 2 1 2

1 1

1 1 1 1

1

0 1 0

: 1 0 0 ,

0 0 2

0

: 2

0 2 0

x

x

x x x x

x

z D z

u

u v v z z

z z





 

   



 
   
 
 
  
 

       
   

Since the Lax representation for the dynamical system 
(97) can be interpreted [8,10] as the existence of a fi- 
nite-dimensional invariant ideal    u   u  realiz- 
ing the corresponding finite-dimensional representation 
of the Lie-algebraic commutator relationship (127), this 
ideal can be constructed as 

   (124) 

   


2 1 2
1 2 3: :

1 3, ,

ju uf vf z f u f

j

 



    

  
  ,

  (128) 

and possesses an infinite hierarchy of mutually commut- 
ing conservation laws (122). where t  and 2,tv D u z D u     is an arbitrary real 

parameter. To find finite-dimensional representations of 
the xD - and -differentiations, it is necessary [8] first 
to find the t -invariant kernel 

tD
D  ker tD  

Concerning the existence of an additional infinite and 
parametrically  -ordered hierarchy of conservation 
laws for the dynamical system (92), it is instructive to 
consider the dispersive nonlinear dynamical system 

   
 

   

0

2
1 2 1 2 1 2

d d ,d d ,d d , ,

: grad , ,

2
, ,

2
x x

xx x
x

u v z K u v z

H u v z

u v
z u z z

z

  



 



 

  
       





u  and 
next to check its invariance with respect to the xD -dif- 
ferentiation. It is easy to show that 

  3ker : , ,t tD f D f q f          (129) 

.

   (125) 

where the matrix  is 
given as 

     3
: , , ;q q u v z End u   

 
0 0 0

0 0

0 x x

q

z u

 


 
 
  

By solving the corresponding Lax equation 
.          (130) 

,d d 0t K                 (126) 

for an element  in a suitably chosen as- 
ymptotic form, one can construct an infinite ordered hi- 
erarchy of conservation laws for (92), which we will not 
delve into here. This hierarchy and the existence of an 
infinite and parametrically 

 3T M  

 -ordered hierarchy of 
conservation laws for the Riemann type dynamical sys- 
tem (92) provided compelling indications that it is com- 
pletely integrable in the sense of Lax on the functional 
manifold 3M . We shall study the complete integrability 
in the next section using rather powerful differential- 
algebraic tools that were devised recently in [8,9,37]. 

To obtain the corresponding representation of the 

xD -differentiation in the space  it suffices to find a  3 ,
matrix  that      3

: , , ;l l u v z End u   

 xD f l f                (131) 

for  3
f u  and the related ideal 

 
    3

33

:

, : ker ,t

u

g f f D u g u



  




 
   (132) 

is xD -invariant with respect to the differentiation (131). 
Straightforward calculations using this invariance condi-
tion then yield the following matrix 

6.3. D-A Integrability Analysis for  N 3

Consider a polynomial differential ring 
 

 
     

2

3 2

4 2 2 3 2 2

.

2x x x

u z v z z

l tu z tv z tz

tuv u u z v z tv uv z u tv z z

 

   

    

 
 
    
 
        

      (133) 
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Remark 1 Simple analogs of the above differential- 

algebraic calculations for the case  lead readily 
to the corresponding Riemann type hydrodynamic system 

2N 

2 ,t x tD u z D z 0             (134) 

on the functional manifold 2M , which possesses the 
following matrix Lax representation: 

 

0 0
,

0
,

t
x x

x
x

x x xx x

D f f
z u

z
D f f

u u z z z





 
   


   





  (135) 

where  
2  

 is an arbitrary spectral parameter and 
  2; .f C

As one can readily see, these differential-algebraic re- 
sults provide a direct proof of Proposition 4 describing 
the integrability of system (97) for  The matrices 
(133) are not of standard form since they depend explic-
itly on the temporal evolution parameter  None-
theless, the matrices (130) and (133) satisfy for all 

3.N 

.t

   the well-known Zakharov-Shabat type compati-
bility condition 

         ,t xD l q l D q u l ,x            (136) 

which follows from the Lax type relationships (129) and 
(131) 

   ,t xD f q f D f l f  

u

       (137) 

and the commutator condition (127). Moreover, taking 
into account that the dynamical system (97) has a com- 
patible Poissonian pair (108) and (118) depending only 
on the variables  and not depending on 
the temporal variable  one can certainly assume 
that it also possesses a standard autonomous Lax repre- 
sentation, which can possibly be found by means of a 
suitable gauge transformation of (137). We plan to pur- 
sue this line of analysis in a forthcoming paper. 

  3, ,u v z M

,t

6.4. Integrability of Ostrovsky-Vakhnenko 
Equation 

6.4.1. An Introduction and Problem Description 
In 1998 V. O. Vakhnenko investigated high-frequency 
perturbations in a relaxing barotropic medium. He dis- 
covered that this phenomenon is described by a new 
non-linear evolution equation. Later it was proved that 
this equation is equivalent to the reduced Ostrovsky 
equation [44], which describes long internal waves in a 
rotating ocean. The nonlinear integro-differential Ostrov- 
sky-Vakhnenko equation 

1
t x xu uu D                (138) 

on the real axis  for a smooth function   2 ;u C   , 

where 1
xD  is the inverse-differential operator to 

: ,D xx     can be derived [45] as a special case of the 
Whitham type equation 

 , dt x yu uu K x y u    .y           (139) 

Here the generalized kernel  

  1
, : , ,

2
K x y x y x y    

and t  is an evolution parameter. Various analytical 
properties of (138) and related Equations were analyzed 
in articles [44-46,49], the corresponding Lax integrability 
was proved in [43]. 

Recently, J. C. Brunelli and S. Sakovich [42] demon- 
strated that the Ostrovsky-Vakhnenko Equation is a re- 
duction of the well known Camassa-Holm Equation mak- 
ing it possible to construct the corresponding compatible 
Poisson structures for (138), but in a complicated non- 
polynomial form. 

In the present work we will reanalyze the integrability 
of Equation (138) from the gradient-holonomic [10,12,48], 
symplectic and formal differential-algebraic points of 
view. As a result, we will re-derive the Lax representa- 
tion for the Ostrovsky-Vakhnenko Equation (138) and 
construct the related simple compatible polynomial Pois- 
son structures and an infinite hierarchy of conservation 
laws. 

6.4.2. Gradient-Holonomic Integrability Analysis 
Consider the nonlinear Ostrovsky-Vakhnenko Equation 
(138) as a a nonlinear dynamical system 

  1d d : x xu t K u uu D u             (140) 

on the smooth -periodic functional manifold 2π

  2

0
: 2 ; : dM u C u x

      0 ,    (141) 

where  :K M T M  is the corresponding well-de- 
fined smooth vector field on .M  

We shall first show that the dynamical system (140) on 
manifold M  possesses an infinite hierarchy of conser-
vation laws as a necessary condition for its integrability. 
For this we need to construct a solution to the Lax gradi- 
ent equation 

, 0,t K                   (142) 

in the special asymptotic form 

 1exp ; ,xt D x             (143) 

where, by definition, a linear operator  

  , : K T M T M     

is adjoint with respect to the standard convolution  ,   
on    ;T MT M   the Fréchet-derivative of a nonlin- 
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ear mapping  : :K M T M
,

 
1

x xK uD D  

 

               (144) 

and, respectively, 

 ; j
j

j

x ,u  





            (145) 

as    with some local functionals  

 : 2 ;   j M C   

on M  for all  .j 

  ,0 0

By substituting (143) into (142), one easily obtains the 
following recurrent sequence of functional relationships 

 1
, , 1j t j k k

k j

j jx

u D

u

x k t j  

 


 

  





 
 

     (146) 

for all  modulo the Equation (140). By means 
of standard calculations one finds that this recurrent se- 
quence is solvable and 

1j  

     
 
 

 
 

0 1 2

3 4

2 3
5

0, 1, ,

0, 2 ,

3 2 2 3( )

x

t x

tt xx x xxt

u u u u

u u u uu

u u u u u D

  

 

 

  

  

    1u

 (147) 

and so on. It is easy check that all of functionals 

 2

0
:j j u dx


                (148) 

are conservation laws on the manifold M , that is 
d dj t 0   for  with respect to the dynamical 
system (140). For instance, if  one obtains: 

j 
5j 

 

   

2

5 50

2 2 3

0

2
2 2 1

2 0 0

2
22 2 21 2 2

2 0 0 00

: d

3 2 2 3 d

d
d d

d

d
d d

d

tt x xxt xx

tt x x

x

u x

u u u u D u

u x u D u x
t

u x uD u u x u x
t

 


 

  

 



     

 

   





 

  

1

d ,

x



 (149) 

and 

 
 

 

2 2 1
5 0 0

22 21 1

0 0

221

0

d d 2 d 2 d

2 d

0,

t x

x x
x

x

t uu x u uu D u

uD u x D u x

D u


  

  




   

      

 

 

  d

x x

   (150) 

since, owing to the constraint (141), the integrals  

  2
1

0
0.xD u


   

The result above suggests that the dynamical system 
(140) on the functional manifold M  is an integrable 

Hamiltonian system. 
First, we will show that this dynamical system is a 

Hamiltonian flow 

 d d gradu t H u             (151) 

with respect to some Poisson structure  

  :T M T M     

and a Hamiltonian function  .H M  Using on the 
standard symplectic techniques [1,3,10,12], consider the 
conservation law (149) and present it in the scalar “mo- 
mentum” form 

   

2 1
5 0

1

1
1 2 d

2

1 2 , : ,

x x

x x x

u D u x

D u u u





 



 

 


     (152) 

with the co-vector  1: 1 2 xD u T M     and calculate  

the corresponding co-Poissonian structure 
1 ,: xD   1,                  (153) 

or the Poissonian structure 

.xD                 (154) 

This operator  is really 
Poissonian for (140) since the following determining 
symplectic condition 

   :xD T M T M  

, gradt K                 (155) 

holds for the Lagrangian function 

2 3

0

1
d .

12
u x


                    (156) 

As a result of (155), one readily infers that 

 d d grad ,u t H u              (157) 

where the Hamiltonian function 

 

 22 3 1

0

,

1
3 2

2 x

H K

u D u


 

 

dx    


     (158) 

is an additional conservation law of the dynamical sys- 
tem (140). Thus, one can formulate the following propo- 
sition. 

Proposition 7 The Ostrovsky-Vakhnenko dynamical 
system (140) possesses an infinite hierarchy of nonlocal, 
in general, conservation laws (148) and is a Hamiltonian 
flow (157) on the manifold M  with respect to the Pois- 
sonian structure (154). 

Remark 2 It is useful to remark here that the existence 
of an infinite ordered (by  -powers) hierarchy of con- 
servations laws (148) is a typical property [1,3,10,12] of 
Lax integrable Hamiltonian systems that are simulta- 
neously bi-Hamiltonian flows with respect to a corre- 
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sponding pair of compatible Poissonian structures (cf. 
[50]). 

As is well known [1,3,10,12], the second Poissonian 
structure  on the manifold    :T M T M   M  for 
(140), if it exists, can be calculated as 

1 :       , ,               (159) 

where a covector  is a second solution to 
the determining Equation (155): 

 T M 

, gradt K                  (160) 

for some Lagrangian functional  .M   It can be 
easily shown by means of simple but cumbersome ana- 
lytical calculations based, for example, on the asymptotic 
small parameter method [10,12,48] and on which we will 
not dwell upon here. 

Instead of this, we shall apply the direct differen- 
tial-algebraic approach to dynamical system (140) and 
reveal its Lax representation both in the differential sca- 
lar and canonical matrix Zakharov-Shabat forms. More- 
over, we will construct the naturally related compatible 
polynomial Poissonian structures for the Ostrovsky- 
Vakhnenko dynamical system (140) and generate an in- 
finite hierarchy of mutually commuting nonlocal conser- 
vation laws. 

6.5. Lax Representation and Poisson Structures: 
A D-A Approach 

We will start by constructing of the polynomial differen- 
tial ring  generated by a fixed 
functional variable  and invariant with re- 
spect to two differentiations  

   : ,u    
  ,u x

x t
t

:xD x    and : ,tD t u x       

satisfying the Lie-algebraic commutator relationship (77). 
Since the Lax representation for the dynamical system 
(140) can be interpreted [8,10] as the existence of a finite- 
dimensional invariant differential ideal     ,N u u   
realizing the corresponding finite-dimensional represen- 
tation of the Lie-algebraic commutator relationship (77), 
this ideal can be presented as 

 

   
0,

:

: , 0,

N

j
j x j

j N

u

,g D f u u g j N




     
  




 
   (161) 

where an element    f u  u  and  are fixed. 
The 

N 
xD -invariance of ideal (161) will be a priori evi- 

dent, if the function    f u  u  satisfies the linear 
differential relationship 

 1

0

N
N j
x j

k

D f a u D f



  x            (162) 

for some coefficients     ,ja u u  0, ,j N  but its 

-invariance strongly depends on the element tD
   ,f u u

 ; : 

 which can be found from the functional 
relationship (142) on the element  

       2

0
grad , : ; d ,u u     


    x x  

rewritten in the following form: 

.x tD D                  (163) 

From the right-hand side it follows that there exists an 
element      : ,tu D u u      such that 

.xD                    (164) 

Upon substituting (164) into the left hand side of (163) 
one finds that 

 
  

grad

, ,

x x x t x

x t x

x t

u D D u

D D u

D D u

x tD D   
  

   

  

 

   

dx

   (165) 

where  for a suitably chosen den-       2

0
: ;u 




sity element    ;u   .u  As an evident result of 
(165) one concludes that there exists an element 

   : ,uu    such that 

.xD                    (166) 

Turning back to the relationships (164) and (166), one 
concludes that the differential representation 

2
xD                    (167) 

holds. 
As a further step, we can try to realize the differential 

ideal (161) by means of the generating element 
      ,f u u  u  defined by the relationship (167). 

But, as it is easy to check, this differential ideal is not 
finite-dimensional. So, for future calculating convenience, 
we will represent the element    u  u  in the fol- 
lowing natural factorized form: 

: ,ff                    (168) 

where elements  ,f f u  satisfy the adjoint pairs of 
the following differential relationships: 

 

      

1

0

1 1

0

,

1 ,

N
N j
x j x

k

N
jN N

x x j
k

D f a u D f

D f D a u f





 





  




  (169) 

and 

 

    
0

0

,

,

N
j

t j x
j

N
j

t x x j
j

b u D f

u f D b u f







   





D f

D f

   (170) 

for some elements    , 0,jb u u j N  ,  and check 
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the finite-dimensional xD - and t -invariance of the 
corresponding ideal (161) generated by the element 

D

 .f u

x t

x t

 
Now it is easy to check by means of straightforward 

calculations, based on the relationship (163) and (167), 
that the following differential equalities 

   
 
    

3 2

4 1 2

2 3

, ,

4 3

2 ,

t

t


2 ,

x

t

2
x t

x

x t x x x

t

D

u D

uu u u u D

D

    

  

t

x t

D D

u D

D

u D

D D

D D

D D

u



 

 



    

  

   





 


xx

x x

D

u D 

 

, , ,x x



 xu

 x

 (171) 

and their consequences 

 
 2 2

,

,

, ,

x

x x x

x x x

u

D D

 

  

 

   

2
t x

x t

x t

D D

D D

D D

    (172) 

hold. Taking into account the independence of the sets of 
functional elements  

 , Nf D f D uD f  f   

and  

 x  , , , , ,N
x xf D f D f D u f   

the relationships (172) together with (168), (169) and 
(170) make it possible to state the following lemma. 

Lemma 2 The set (161) represents a xD - and -in- 
variant differential ideal in the ring  for all  

tD
2. N

Proof 1 This result easily follows from the fact that for 
 all of the relationships (172) are compatible 

upon taking into account the differential expressions (168) 
and (170). However, for  they are not compatible. 

2N 

2,N 

1N 
As a corollary of Lemma 2, in light of (161) and (170), 

for  one readily finds by means of elementary 
calculations that the related differential ideal  2 u  is 
to be invariant if the following differential Lax relation- 
ships hold: 

3 3,x xD f uf D f uf   ,        (173) 

and 
1 2

1 2

,

2 ,

t x x

t x

D f D f u f

D f D f u f









 

   x

        (174) 

where  : 1 3,xxu u     0  is an arbitrary complex 
parameter. Moreover, they exactly coincide with those 
found before in [43]. The above differential relationships 
(173) and (174) can be equivalently rewritten in the fol- 
lowing matrix Zakharov-Shabat type form: 

   ˆˆ ; , ;t xD h q u h D h l u h  ,       (175) 

where the matrices 

 

 

0 1

ˆ ; : 1 3 0 0

0 1 3

0 1 0
ˆ ; : 0 0 1

0 0

x

x

u

q u

u

l u

u

,







 
   
   
 
   
  

       (176) 

and     32: , ,x xh f D f D f u 

 .

,

Furthermore, it follows from the differential relation- 
ships (173) and (174) that the compatibility condition 
(163) gives rise to the following important relationship 

2 23x tD D                 (177) 

where the polynomial integro-differential operator 

 
1 3 1 2 1 2

2 2 1 1 2 2

: 4

2

u u u u

u u u u

      

     

       

       
     (178) 

is skew-symmetric on the functional manifold M  and 
comprises the second compatible Poisson structure for 
the Ostrovsky-Vakhnenko dynamical system (140). 

Now by virtue of the recurrent relationships following 
from substitution of the asymptotic expansion 

 2, : 1 3 ,j
j

j

    






 


        (179) 

into (177), one can determine a new infinite hierarchy of 
conservations laws for dynamical system (140): 

  1

0
: d ,j j ,s us u                (180) 

for ,j   where 

0 0,j
j   0,                 (181) 

and the recursion operator    1: :T M T M       
satisfies the standard Lax representation: 

,t K  .                       (182) 

The above results can be formulated as follows. 
Proposition 8 The Ostrovsky-Vakhnenko dynamical 

system (140) allows the standard differential Lax repre- 
sentation (173), (174) and defines on the functional 
manifold M  an integrable bi-Hamiltonian flow with 
compatible Poisson structures (154) and (178). In par- 
ticular, this dynamical system possesses an infinite 
hierarchy of nonlocal conservation laws (180) defined by 
the gradient elements (181). 

Remark 3 It should be noted that the existence of an 
infinite  -powers ordered hierarchy of conservations 
laws (148) is a typical property [1,3,10,12] of the Lax in- 
tegrable Hamiltonian systems, which are simultaneously 
bi-Hamiltonian flows with respect to corresponding com- 
patible Poissonian structures. 

Remark 4 It is interesting to observe that our second 
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polynomial Poisson structure (178) differs from that ob- 
tained recently in [42], which contains rational power 
factors. 

Making use of the differential Expressions (173) and 
(174), it is easy to construct a slightly different from (175) 
matrix Lax representation of the Zakharov-Shabat form 
for the dynamical system (138). 

In fact, if one defines the “spectral” parameter 
   : 1 9 0     and new basis elements of the 

invariant differential ideal (161): 
2

1 2 3: 3 , : , : 9x x ,xg D f g f g D f u f       (183) 

then relationships (173) and (174) can be rewritten as 
follows: 

   ; , ;t xD g q u g D g l u g  ,        (184) 

where the matrices 

 

 
   

0 1 0

; : 0 0 1 ,

0

0 3 1 3

; : 1 3 0 0

3 1 3 0

x

x

q u

u

u

l u

u




 


 
   
  


 
 







     (185) 

coincide with those of [42,43] and satisfy the Zak- 
harov-Shabat type compatibility condition: 

 ,t xD l q l D q lD u   .x

0

,x

          (186) 

Remark 5 As already mentioned above, the Lax re- 
presentation (185) of the Ostrovsky-Vakhnenko dyna- 
mical system (138) was obtained in [43] by means of a 
suitable limiting reduction of the Degasperis-Processi 
equation 

4 3t xxt x x xx xxxu u uu u u uu     .      (187) 

For convenience, let us rewrite this in the following 
form: 

23 ,t xD z zD u z u D u              (188) 

where differentiations  

:tD t u     x  and :xD x    

satisfy the Lie-algebraic relationship (77). It is impres- 
sive that Equation (187) is itself a special reduction of a 
new Lax integrable Riemann type hydrodynamic system, 
proposed and studied (for ) recently in [51]: 2s 

1 ,N s
t x tD u z D z  0,           (189) 

where ,s   are arbitrary natural numbers. Actu- 
ally, defining 

N 
: s

xz  z  and 3,s   from (189) one easily 
obtains the following dynamical system: 

1 , 3N
t tD u z D z zD u    ,x



2
x

        (190) 

coinciding with the Degasperis-Processi Equation (188) 
if one makes the identification  As a result,  2 .xz u D u 

u Cwe have proved that a function  that   2 ; 
satisfies, for an arbitrary , the generalized Rie- 
mann type hydrodynamical equation 

N 

1 ,N
tD u u D u                (191) 

simultaneously solves the Degasperis-Processi equation 
(187). In particular, for 2,N   we find that solutions to 
the Burgers type equation 

2
tD u u D u  x                (192) 

are also solutions to the Degasperis-Processi Equation 
(187). This means, in particular, that the reduction pro- 
cedure in [43] can also be applied to the Lax integrable 
Riemann type hydrodynamic system (189), giving rise to 
a related Lax representation for the Ostrovsky-Vakh- 
nenko dynamical system (138). 

7. Conclusions 

We have considered the standard canonically symplectic 
phase space  :M T  

1.


, generated by the centrally 
extended basis manifold to be an affine loop Lie algebra 

 on the circle  Subject to the standard Hamilto- 
nian Lie algebra -action on 


,M  with respect which 

the symplectic structure on M  is invariant, we have 
constructed the corresponding momentum mapping and 
carried out the standard Marsden-Weinstein reduction of 
the manifold M  upon the reduced phase space M  
endowed with the reduced Poisson bracket  ,


  . This 

allows to construct on the phase space M  mutually 
commuting vector fields which are equivalent to nonlin- 
ear dynamical systems possessing an infinite hierarchy of 
commuting conservation laws. Moreover, these com- 
muting vector fields on M  realize exactly their corre- 
sponding Lax representations. 

In addition, we have detailed analysis of commutation 
properties for the related flows on the basis manifold 
making it possible to define a suitable -structure on 
the Lie algebra  intimately related to the corre- 
sponding classical -structure on , generated by the 
reduced Poisson bracket on the phase space 

D
,
R 

M . As a 
by-product of our analysis we proved that these - and 

-structures are completely equivalent to a suitably 
generalized classical Lie-Poisson-Adler-Kostant-Symes- 
Kirillov-Berezin structure on the adjoint space 

R

ˆ

D


D

. We 
also derived the determining Equation for the -struc- 
ture, classifying the generalized Lax integrable nonlinear 
dynamical systems on the reduced phase space M , 
whose respectively defined R-structures are not neces- 
sary both antisymmetric and local, as shown in [22,24] 
by means of another approach. It is also worth mention- 
ing that the reduction scheme devised in this work can be 
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applied to the centrally extended algebra of pseudo-dif- 
ferential operators and affine loop algebras on the circle 

 .1

N 

A new differential-algebraic approach, elaborated in [9] 
for revisiting the integrability analysis of generalized 
Riemann type hydrodynamical Equation (73), made it 
possible to prove the Lax integrability of new nonlinear 
Hamiltonian dynamical systems representing Riemann 
type hydrodynamic Equations (80), (87) and (91). In par- 
ticular, the integrability prerequisites of these dynamical 
system, such as compatible Poissonian structures, an in- 
finite hierarchy of conservation laws and related Lax re- 
presentation have been constructed by means of both the 
symplectic gradient-holonomic approach [10,12,48] and 
innovative differential-algebraic tools devised recently 
[8,9,35] for analyzing the integrability of a special infi- 
nite hierarchy of Riemann type hydrodynamic systems. It 
is also quite clear from recent research in this area and 
our work in this paper that the dynamical system (80) is a 
Lax integrable bi-Hamiltonian flow for arbitrary integers 

. This is perhaps most readily verified by means 
of the differential-algebraic approach, which was devised 
and successfully applied here for the cases 



2N   and 
3. 

Making use of the differential-algebraic approach, we 
have also re-derived the Lax representation for the Os- 
trovsky-Vakhnenko Equation (138) and constructed the 
related simple compatible polynomial Poisson structures. 

As we have seen in the course of this investigation, 
perhaps the most important lesson that one can derive 
from this approach is the following: If an investigation of 
a given nonlinear Hamiltonian dynamical system via the 
gradient-holonomic method indicates (but does not nec- 
essarily prove) that the system is Lax integrable, then its 
Lax representation can often be shown to exist and then 
successfully derived by means of a suitably constructed 
invariant differential ideal  u  of the ring  u  in 
accordance with the differential-algebraic approach de- 
veloped here for the integrability analysis of the Riemann 
hydrodynamical system. Consequently, when it comes 
applying this lesson to the investigation of other nonlin- 
ear dynamical systems, it is natural to start with systems 
that are known to be Lax integrable and to try to identify 
and characterize those algebraic structures responsible 
for the existence of a related finite-dimensional matrix 
representation for the basic xD - and -differentiations 
in a vector space 

tD
p  for some finite  .p 

It seems plausible that if one could do this for several 
classes of Lax integrable dynamical systems, certain pat- 
terns in the algebraic structures may be detected that can 
be used to assemble a more extensive array of symplectic 
and differential-algebraic tools capable of resolving the 
question of complete integrability for many other types 
of nonlinear Hamiltonian dynamical systems. Moreover, 

if the integrability is established in this manner, the ap- 
proach should also serve as a means of constructing as- 
sociated artifacts of the integrability such as Lax repre- 
sentations and hierarchies of mutually commuting in- 
variants. As a particular differential-algebraic problem of 
interest concerning these matrix representations, one can 
seek to develop a scheme for the effective construction of 
functional generators of the corresponding invariant fi- 
nite-dimensional ideals   u   u  under given dif- 
ferential-algebraic constraints imposed on the xD - and 

-differentiations. tD
We have also demonstrated here that an approach 

combining the gradient-holonomic method with some 
recently devised differential-algebraic techniques can be 
a very effective and efficient way of investigating inte- 
grability for a particular class of infinite-dimensional Ha- 
miltonian dynamical systems (generalized Riemann hy- 
drodynamical systems). But a closer look at the specific 
details of the approach employed here reveals, we be- 
lieve, that this combination of methods can be adapted to 
perform effective integrability analysis of a much wider 
range of dynamical systems. 
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