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ABSTRACT 

In eliminating the fair sampling assumption, the Greenberger, Horne, Zeilinger (GHZ) theorem is believed to confirm 
Bell’s historic conclusion that local hidden variables are inconsistent with the results of quantum mechanics. The GHZ 
theorem depends on predicting the results of sets of measurements of which only one may be performed. In the present 
paper, the noncommutative aspects of these unperformed measurements are critically examined. Classical examples and 
the logic of the GHZ construction are analyzed to demonstrate that combined counterfactual results of noncommuting 
operations are in general logically inconsistent with performed measurement sequences whose results depend on non- 
commutation. The Bell theorem is also revisited in the light of this result. It is concluded that negative conclusions re- 
garding local hidden variables do not follow from the GHZ and Bell theorems as historically reasoned. 
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1. Introduction 

The Greenberger, Horn, Zeilinger (GHZ) theorem [1] has 
achieved a status similar to that of Bell’s theorem in its 
acceptance as a proof that local hidden variables are im- 
possible in quantum mechanics. It has a similarity to 
Bell’s theorem in that it considers a mathematical rela- 
tion among predicted results of alternative measurements 
that are not all performed. The alternatives consist of 
procedures that if performed together are noncommuting, 
and whose results then depend on their order of execu- 
tion. Thus, if all the measurements were actually per- 
formed, their explicit noncommutation would have to be 
taken into account in predicting measurement outcomes. 

The use of counterfactuals in no local hidden variables 
theorems relies on the assumption that counterfactual 
reasoning is intrinsically sound classically, but not quan- 
tum mechanically. However, examples given in Section 
2.2 reveal that counterfactual reasoning commonly fails 
in the classical domain if it neglects the noncommutation 
of component procedures. It is then shown that parallel 
reasoning leads to the paradoxical results of the GHZ and 
Bell theorems in its neglect of noncommutation. The 
conclusion is that the discrepancy between quantum me- 
chanical eigenvalues and calculations using counterfac- 
tuals of noncommuting procedures can no longer be 

taken as proof that local hidden variables are inconsistent 
with quantum mechanical observations. 

A definition of counterfactuals and examples showing 
inconsistencies in their classical use are given in Sections 
2.1 and 2.2. In Section 3, the accepted interpretation of 
the GHZ theorem is described following the treatment by 
Mermin [2], Home [3], Afriat and Selleri [4], and Green- 
berger [5], but in a manner showing the roll of counter- 
factual reasoning. In Section 4, a similar inconsistency 
due to use of counterfactuals in the Bell theorem is out- 
lined. In this case, the logical inconsistency is manifested 
by violation of the Bell inequality, an algebraic expres- 
sion that must be universally satisfied by cross-correla- 
tions of any data sets whatsoever. 

2. Counterfactual Reasoning 

2.1. Definition 

In general, the term counterfactual refers to the predicted 
result of an unperformed act or consequence of a condi- 
tion that is not true. In the present paper, the definition is 
further narrowed to distinguish it from various alterna- 
tives [6]. If one considers two procedures A and B that 
do not commute, the result of carrying out a sequence of 
the two depends on whether A or B is performed first. 
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However, one may consider each procedure in isolation 
from the other in an exclusive-OR sense. The predicted 
measurement results of such procedures, that if per- 
formed together require noncommutation to be taken into 
account, are herein termed counterfactuals. (Since meas- 
urement outcomes for commuting procedures have si- 
multaneous existence in quantum mechanics, they are of 
little concern here.) 

2.2. Flaws in Classical Counterfactual Reasoning 

It has been stated in the context of “no-go” theorems for 
hidden variables that counterfactual reasoning is used 
frequently in the classical world without any problem: it 
is logically trustworthy. The author proposes that this 
belief is in error as will now be shown by classical coun- 
ter-examples. 

We first take note of characteristics of classical non- 
commuting operations using a semi-facetious example 
given several years ago by Leon Cohen in a lecture at the 
Naval Research Laboratory: putting on shoes and socks. 
Consider this example from the point of view of coun- 
terfactuals. One may put on shoes alone, or socks alone 
in an exclusive-OR sense, and these acts have perfectly 
well defined meanings. However, one cannot consider 
these acts in a logical-AND sense unless noncommuta- 
tion is taken into account. In that case, putting on socks 
and then shoes gives a different result from putting on 
shoes and then socks. Thus, converting the logical-OR 
case to an AND case in the sense of simultaneous exis- 
tence, or conversion to commutation without condition- 
ality, makes no physical or logical sense. 

Classical operations are commonly noncommutative. 
Consider [7] the rotation of rigid bodies in three dimen- 
sional space. A rotation of +90˚ about the x-axis fol- 
lowed by +90˚ about the y-axis produces a different final 
orientation than if these rotations are carried out in re- 
verse order. 

Navigation on the surface of the earth is noncommuta- 
tive: traveling 100 miles north followed by 100 miles 
west produces a different final position than the same 
actions carried out in reverse order due to the definitions 
of north and west on the spherical surface of the earth. 
However, in the special case where one begins from a 
position 50 miles south of the equator, the results are the 
same—but then the operations commute. 

Consider a beam of polarized light into which are in- 
serted polarizer filters, one at 45˚, one at 90˚ to the initial 
beam polarization direction. If both polarizers are simul- 
taneously inserted into the beam, the overall transmitted 
energy depends on their order of placement. If any mean- 
ing can be attached to a combination of the two individ- 
ual states separately, it must be different from that which 
follows from their actual joint noncommutative place- 

ment in the beam. (The measurement is noncommutative 
because the projection of a vector along a pass axis is 
transmitted while the perpendicular component is ab- 
sorbed/discarded.) 

Examination of these examples shows that in the clas- 
sical world, one cannot combine counterfactuals of sepa- 
rate noncommuting operations and expect the result to 
equal the outcome of the operations performed together. 
The situation in quantum mechanics is the same on the 
basis of analysis to be given in Sections 3 and 4. Inter- 
estingly, Griffiths has reached a similar conclusion [8] 
stating that (counterfactual) results of noncommutative 
operations “cannot be combined to form a meaningful 
quantum description” in the consistent histories interpre- 
tation of quantum mechanics, and that their joint use is 
meaningless. 

3. The GHZ Theorem 

The Pauli spin operators x , y , and z  are used to 
define three-particle operators 1A , 2A , 3A : 

1 2 3
1 x y yA    , 1 2 3

2 y x yA    , 1 2 3
3 y y xA    ,    (1) 

where the superscripts indicate the particle to which the 
operator is applied. In the theorem, 1A , 2A , and 3A  
are ultimately applied to an entangled state of three spin 
1 2  particles and each corresponds to a measurement of 
the product of their spins. Using the anti-commutation 
properties of the spin operators, 

2

,  

,   , , , ,   and 1,

i j j i

ii j i j x y z

   



 

  
         (2) 

and the fact that operators on different particles com- 
mute, it is found that 1A , 2A , and 3A  commute. For 
example, to show that 1A  and 2A  commute, multiply 

  1 2 3 1 2 3
1 2

1 1 2 2 3 3

x y y y x y

x y y x y y

A A      

     




.            (3) 

Using the anti-commutation property of Equation (2), 

 
  

1 1 2 2 3 3
1 2

1 2 3 1 2 3
2 1.

y x x y y y

y x y x y y

A A

A A

     

     

  

 
        (4) 

The other commutations may be demonstrated simi- 
larly. 

One may now consider the product operator 1 2 3A A A : 

   1 2 3 1 2 3 1 2 3
1 2 3 x y y y x y y y xA A A          .     (5) 

Since operations on different particles commute, this 
may be written 

   1 1 1 2 2 2 3 3 3
1 2 3 x y y y x y y y xA A A          ,     (6) 

as long as the right to left sequence of operators on each 
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particle is unchanged from Equation (5). Relation (6) 
may be simplified by using Equation

 
(2), particularly the 

anti-commutation relation, to obtain 

 


1 2 2 2 3
1 2 3

1 2 2 2 3

1 2 3.


x y x y x

x y y x x

x x x

A A A     

    

  



 

 

           (7a) 

If one defines 1 2 3
4 ,x x xA     then 4 1 2 ,3A A A A   and 

1 2 3 1 2 3
1 2 3 4 1x x x x x xA A A A          .        (7b) 

It is emphasized that the minus sign in Equation (7a) that 
results from multiplying 1 2 3A A A  is due to the non- 
commutation of operations on particle 2. Finally from 
Equation (2) it follows similarly to the examples just 
given, that 1A , 2A , 3A , and 4A  commute for any  . 

The GHZ theorem depends on the above state-inde- 
pendent properties of the iA  and further consequences 
that follow from the fact that they have a common entan- 
gled eigenstate 

 1 2 3 1 2 3

1

2
        .    (8) 

In Equation (8), i  and i  for particles 1,2,3i   
designate the eigenkets of z  with eigenvalues +1 and 

, respectively. From the well known relations [9]: 1

,  ,

,  ,

x x

y yi i

     

     

 

  
        (9) 

and the definitions of 1A , 2A , and 3A , one obtains 

1 , 1, 2,iA i    3 .            (10) 

Then from Equation (7), which follows from the spin 
anti-commutation relations, action of 4A  on   
yields 

4 1 2 3 1A A A A      .        (11) 

Since the ’s commute and have a common eigenstate Ai

 , they are simultaneously measurable on three parti- 
cles in state  . Thus, for example, the same value of 

1A  occurs at each of its occurrences in the sequence 

1 2 1A A A . However, a measurement of iA  must be made 
in such a way that only the product of the spin values and 
not their individual values are revealed [5]. Otherwise, a 
state produced by measuring an individual iA  would 
collapse   to one yielding a specific spin eigenvalue 
for each particle, and this state would not be an eigen- 
state of any other iA . Thus, Equations (10) and (11) 
would no longer hold. 

To see this in the case of 1A , expand   in terms of 
x and y spin basis states using: 

 
 

 
 

ˆ ˆ1 2 , 1 , 1 ,

ˆ ˆ2 , 1 , 1

ˆ ˆ1 2 , 1 , 1 ,

ˆ ˆ1 2 , 1 , 1 .

j yj yj

j yj yj

j xj xj

j xj xj

n n

i n n

n n

n n









   

   

   

   


      (12) 

This produces a sum of terms, each with spin-product 
equal to 1: 





1 2 3

1 2 3

1 2 3

1 2 3

ˆ ˆ ˆ1 2 , 1 , 1 , 1

ˆ ˆ ˆ, 1 , 1 , 1

ˆ ˆ ˆ, 1 , 1 , 1

ˆ ˆ ˆ, 1 , 1 , 1 .

x y y

x y y

x y y

x y y

n n n

n n n

n n n

n n n

    

   

   

   

     (13) 

A measurement of 1A  that reveals individual spins 
would collapse Equation (13) to one of these terms. 
Suppose it is the first for which all spins are positive. 
Now consider measurement of 1 2 3

2 y x yA    : the re- 
sulting measured spin product is no longer necessarily +1. 
On the other hand, if 2A  is measured first, its spin 
product will be the predicted +1, but a following meas- 
urement of 1A  may now produce a spin product other 
than +1. The situation is the same for any pair of iA ’s if 
actual spins are revealed. The spin products correspond- 
ing to measurement of any one iA  satisfy Equation (10) 
or (11), but measurement of a second jA , j i , no 
longer necessarily satisfies these relations. Thus, spin- 
revealing measurements of different iA  do not com- 
mute. 

The usual argument of the GHZ theorem that states 
that Equations (10) and (11) are inconsistent with local 
realism, i.e., the existence of hidden variables or pre- 
existing values for measurement outcomes, is as follows: 
if local hidden variables supplementing the information 
in   are assumed to exist, their values would deter- 
mine the components of spin found in individual iA  
measurements performed on the three particles. If the 
particles were separated after the formation of   un- 
der the assumption of locality, the measured value ob- 
tained for any selected particle spin component would be 
independent of the choice of component measured on 
any other distant particle. Thus, the value of y  ob- 
tained for particle 3 would be independent of whether 
one chose to measure y  or x  on particle 2. In view 
of the analysis above, one could measure one of 1A , 2A , 
or 3A  to obtain 

1 2 3 1,x y ym m m                  (14a) 

1 2 3 1,y x ym m m               (14b) 

1 2 3 1,y y xm m m               (14c) 
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respectively, where the m’s, each equal to 1, denote 
numerical values of the measurements. But values of the 
same symbol occurring in different relations (14a-c) must 
be the same based on the condition that the particles do 
not interact after separation, and on the assumption that 
the values result from initial conditions determining the 
measurements of 1



A , 2A  and 3A , even though only 
one of the iA ’s can be measured. On the assumption that 
noncommuting counterfactuals may be combined, the 
product of (14a-c) is 

  
 

1 2 3 1 2 3 1 2 3

1 1 1 2 2 2 3 3 3

1 2 3 1

x y y y x y y y x

x y y y x y y y x

x x x

m m m m m m m m m

m m m m m m m m m

m m m



 

       (15) 

where values for each of the two occurrences of i
ym , 

 are equal as deduced above. 1, 2,3i 
However, quantum mechanics gives a different result 

for the combined operation of 1A , 2A  and 3A  on 
  due to noncommutation of operations on particle 2: 

 
1 2 3 4

1 2 2 2 3

1 2 3

1 2 3 1

x y x y x

x x x

x x x

A A A A

m m m

 

     

   

 

 



 

  

     (16a) 

so that 
1 2 3 1x x xm m m   .               (16b) 

On the assumption that the use of combined counter- 
factuals in the proof of “no-go” theorems leads to an un- 
avoidable result of classical reasoning, the confirmed 
measurements of quantum mechanics are concluded to be 
inconsistent with preexisting or predetermined values for 
local variables. However, as seen from examples, com- 
bined counterfactuals of noncommuting operations do 
not yield results consistent with those obtained by taking 
noncommutation into account in the classical realm. 
Thus, such reasoning does not distinguish between quan- 
tum and classical logic. Finally, even if cases exist where 
a counterfactual construction makes logical sense in and 
of itself, a different numerical value will be produced 
than when real experimental operations are performed 
that are noncommutative. 

4. Bell’s Theorem 

The present analysis would not be complete without a 
review of Bell’s theorem, and the contribution of the use 
of counterfactuals of noncommuting operations to its 
flaws. Previously identified logical problems in the theo- 
rem will only be outlined here since their analysis has 
been given in [10-14]. 

It is easy to show that the inequality that Bell derived 
is universally satisfied by cross-correlations of any three 

or four (as appropriate) data sets consisting of 1' s  
[10,11]. This fact depends only on the assumed existence 
of the data sets, and is independent of any other property 
such as their origin in random, deterministic, local, or 
nonlocal processes. Bell did not realize that his inequality 
resulted from the use of cross-correlation alone in its de- 
velopment. He attributed the result to consciously chosen 
assumptions: all measurements are represented by a func- 
tion of random variables (counterfactually) defined at all 
instrument settings, and locality. He then assumed that 
the random function he postulated resulted in a second 
order stationary process [15] in that all correlations could 
be represented by the same co-sinusoidal function of co- 
ordinate differences. Spin measurement operations on a 
given particle at different instrument settings were ma- 
thematically treated as commutative [14]. 

However, for more than two measurements on a side 
in Bell experiments, actual performable measurements 
are noncommutative according to quantum mechanics. 
Bell mistakenly indicated in his book that this considera- 
tion could be ignored by using noncommuting counter- 
factuals interchangeably with measurements [16] to pro- 
duce counterfactual experimental data. Of course, since 
the Bell inequality results from the mere fact of cross- 
correlation, it is satisfied by the cross-correlations of data 
sets of commutative second order stationary processes as 
assumed by Bell, and it is thus derivable upon the as- 
sumption of such processes, even though it holds gener- 
ally. 

In the quantum mechanical two particle experiments to 
which this inequality has been applied, consideration of 
more than one measurement per particle implies that 
noncommutation must be taken into account. The author 
has previously identified two experiments yielding more 
than one measurement per side that could produce data 
for cross-correlation under this condition. One would use 
an additional apparatus in tandem on either side of the 
usual Bell experiment operating in a retrodictive mode 
[10]. The second would use separate experiments from 
which correlations conditional on the usual outcomes 
could be computed [12,13]. Either of these would yield a 
third correlation that is functionally different from those 
obtained in standard Bell experiments such that the three 
would satisfy the Bell inequality as required by basic 
mathematics. 

In practice, the data from Bell experiments have not 
been cross-correlated, and each pair of correlations is 
derived from an independent experimental run. If the 
underlying process were second-order stationary as as- 
sumed by Bell, there would only be one correlation func- 
tional form to determine, and ensemble averaged cross- 
correlations would yield the same function as that meas- 
ured in independent runs. The Bell inequality would be 
satisfied by this correlation function as measured in in- 
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dependent runs up to small statistical fluctuations. The 
violation of the Bell inequality by experimentally con- 
firmed cosine correlation functions proves that the un- 
derlying process is not statistically stationary, contrary 
to what is widely assumed. This is consistent with the 
noncommutative process described by quantum mechan- 
ics that predicts different correlation functional forms 
between some variables. The logical inconsistencies in 
the usual interpretation of the Bell theorem begin with 
combining counterfactuals of noncommutative processes 
with real data, and are manifested in the violation of the 
Bell inequality, an inequality that must be universally 
satisfied by the cross-correlations of any data sets what- 
soever consisting of 1's . 

5. Conclusions 

If a theory calculates results of actually performable ex- 
periments, the results must logically depend on taking 
noncommuting operations properly into account. The no- 
hidden-variables theorems historically contrast quantum 
results based on noncommutation with classical results 
based on its neglect. The narrative accompanying these 
theorems is that neglect of noncommutation of counter- 
factuals is logically sound in the classical domain, so it is 
appropriate to attribute the peculiarly inconsistent results 
that follow to nonlocality, or the nonexistence of hidden 
variables or pre-existing values for measurements. But if, 
as has been shown, the use of counterfactual reasoning in 
no-hidden-variables theorems is flawed both quantum 
mechanically and classically, the usual paradoxical choi- 
ces emerging from these theorems no longer have logical 
motivation. That said, lack of validity of no-hidden-va- 
riables theorems does not, in and of itself, imply that 
local hidden variables exist. 

The content of this paper was presented in [17]. The 
present paper discusses the central idea in greater detail 
than does the longer [18], while the latter includes addi- 
tional variations not dealt with here. 
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