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ABSTRACT 

Our main aim is to prove a more general version of the quantum Zeno effect. Then we discuss some examples of the 
quantum Zeno effect. Furthermore, we discuss a possibility that based on the quantum Zeno effect and certain experi- 
ments one could check whether, from the statistical point of view, a concrete system behaves like a quantum system. 
The more general version of quantum Zeno effect can be helpful to prove that the brain acts like in a quantum system. 
The proof of our main result is based on certain formulas describing probability distributions of time series related to 
quantum measurements. 
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1. Introduction 

Zeno of Elea (ca. 490 BC-ca. 430 BC) was one of the 
oldest Greek philosopher. Aristotle called him the inven- 
tor of the dialectic. He is best known for his paradoxes. 
The most famous are the so called “arguments against 
motion” described by Aristotle in his Physics. Let us 
mention Zeno’s arrow paradox which states that, since an 
arrow in flight is not seen to move during any single in- 
stant, it cannot possibly be moving at all. What does it 
mean? Let  be the position of arrowhead at time 

0 . Then the arrow will move. 
 0X

0t   X t  denotes the 
position of the arrowhead at time t . Now, let 

1 2 n  be a sequence of times. Then the ob- 
served positions of the arrowhead are represented by the 
sequence 

t t  t

 0



 , , nX t X t

 X t 

. If the distance of times 

1  is very small then the distance of the corre- 
sponding positions 1k k  is very small. 
According to Zeno that implies that the arrow cannot 
move under continuous observation. Of course we know 
that this is nonsense because in classical mechanics ob- 
servations are of no effect on the state of the system—not 
so in quantum mechanics where observation, i.e., meas- 
urement, causes a change of the state. That is the basic 
idea of the quantum Zeno effect. 

0k kt t 
X t  0

The quantum Zeno effect is a name coined by George  

Sudarshan and Baidyanath Mirsa of the University of 
Texas in 1977 in their analysis of the situation in which 
an unstable particle, if observed continuously, will never 
decay [1]. One can “freeze” the evolution of the system 
by measuring it frequently enough in its (known) initial 
state. The meaning of the term has since expanded, lead- 
ing to a more technical definition in which the time evo- 
lution can be suppressed not only by measurement [2,3]. 
That does not mean that there exists a complete theory of 
the quantum Zeno effect. Even there is no precise mean- 
ing concerning the notion of “suppression of the time 
evolution”. 

An earlier theoretical exploration of this effect of 
measurement was published in 1974 by Degasperis et al. 
[4] and A. Turing described it in 1954 [5]: It is easy to 
show (but there was no rigorous proof!) using standard 
theory that if a system starts in an eigenstate of some 
observable, and measurements are made of that ob- 
servable  times a second, then even if the state is not 
a stationary one, the probability that system will be in the 
same state after, say, one second, tends to one as  
tends to infinity; that is, that continual observations will 
prevent motion. 

N

N

The idea is contained in the early work by J. von Neu- 
mann, sometimes called the reduction postulate [6]. Ac- 
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cording to the reduction postulate, each measurement 
causes the wave function to “collapse” to a pure eigen- 
state of the measurement basis. 

Usually the model of Turing is far from the reality, 
because in reality the state of the quantum system is usu- 
ally unknown, and it is a mixed state. Furthermore that 
kind of measurements is not realistic, i.e., real measur- 
ing instruments cannot perform such kind of measure- 
ments. Nevertheless a general theory of the quantum Zeno 
effect should contain the Turing model as a special case. 

Following A. Turing the reduction of the states seems 
to be the background of the quantum Zeno effect. Now 
our work on the quantum Zeno effect was motivated by 
the quantum model of certain brain activities developed 
in [7-15]. For that reason let us briefly mention what kind 
of reduction of states were considered in certain quantum 
models of brain activities. 

In Wikipedia, the free encyclopedia on the Zeno effect 
is written the following: 

1.1. Significance to Cognitive Science 

The quantum Zeno effect is becoming a central concept 
in exploration of controversial theories of quantum mind 
consciousness within the discipline of cognitive science. 
In his book Mindful Universe (2007) (see also [16]), 
Henry Stapp claims that the mind holds the brain in a 
superposition of states using the quantum Zeno effect. 

Now, let us consider the process of recognition of sig- 
nals in the brain. Then the basic idea of Stapp may be 
described as follows: If there will be a signal arising 
from the senses, the process of recognition starts. That 
process represents a rapid sequence of “trials” checking 
whether the signal from the senses and the signal created 
by the brain partially coincide. He identifies these trials 
with measurements performed by a mysterious “ob- 
server” in the brain. That does not seem to be realistic. 

Related to the model of recognition discussed in [7-15], 
these trials are not represented by a process of measure- 
ments. Nevertheless the results of the trials are repre- 
sented by projections like in the case of measurements. 

That R. Penrose [17,18] explains as follows: The con- 
ventional quantum theory view is that the quantum state 
reduces by measurement or observation (subjective re- 
duction). Now, a number of physicists have argued in 
support of special models in which the rules of standard 
quantum mechanics are modified by the inclusion of 
some additional procedure according to which the reduc- 
tion of the state becomes an objectively real process (ob- 
jective reduction)—the system abruptly self-collapses. 
Consciousness, it is argued, requires non-computability. 
The only readily available apparent source of non-com- 
putability is self-collapse. The self-collapse, irreversible 
in time, creates an instantaneous “now” event. Sequences 

of such events create a flow of time, and consciousness. 
That means recognition of signals is a process of 

self-collapses. That coincides with the basic idea of the 
quantum model of recognition of signals in the brain in 
[7-15]. Furthermore, like sequences of measurements 
that process suppresses a certain unitary time evolution 
in the brain. A lot of experiments show that there is a 
suppression of a certain process in the brain caused by 
the recognition of signals or some other kind of activities 
of the brain (cf. [19]). 

Using series of measurements at different times one 
tries to get information on the statistical behaviour of 
certain random processes. That series of measurements 
give a so called time series. 

1.2. Time Series—Classical Probability Theory 

In classical stochastics one identifies the time evolution 
of a random system with a stochastic process   0t t

 
taking on values in a certain space . The random 
variable t


G

  represents the system at time . A meas- 
urement at a certain time  one identifies with a 
certain (measurable) real function  on , and the 
random number 

t

G
0t 

f
 tf   represents the output of the 

measurement. 
Now, let us consider a sequence of time  

0 1 20 nt t t t     . At time  one performs a 
measurement related to a function k

kt
f  on G . Then the 

sequence  t ,:
kk k 1,f k   n   represents a so 

called time series. 
If we would know the distribution of the underlying 

stochastic process, then we can calculate the distribution 
of the time series. 

Sometimes specialists use the notion “time series” 
only in the special case: 

 1; 1,k k kt t f f k n     , . 

That means one performs always the same measure- 
ments at equidistant times. 

In order to obtain information concerning the state of 
the brain and its time evolution one has to perform sev- 
eral EEG measurements at different times. That gives a 
time series. In practice specialists use certain statistical 
methods evaluating that time series, i.e., they analyze the 
outcomes of the sequence of measurements. To make 
these statistical investigations effective, and precise from 
mathematical point of view one should know the type of 
the distribution of the stochastic process on the space of 
point configurations representing the time evolution of 
the configuration of excited neurons in the brain. Up to 
now that information is lacking (cf. [20]). 

1.3. The Quantum Case of Time Series 

Let   0t t
V


 be a semigroup of unitary operators on a 
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separable Hilbert space H  representing the time evolu- 
tion of a quantum system.   denotes the state of the 
quantum system at time 0t 0 . We consider again a 
sequence of time  and perform meas- 
urements at time k  related to selfadjoint 
operators  given by their unique representation 

,,1 k jHj
, i.e., 

1

0 1t t 
 = 1,

nt
t k

km


n

k j


,

 ,


kB
Prkm

k k jB z  
j

H


 represents an or- 
thogonal decomposition of H  and , ,k j k s  if z z j s . 
Because each realistic measuring instrument has a finite 
scale we consider only selfadjoint operators being of this 
type. 

Formally we can identify the random outputs of these 
measurements with random numbers 1 n, , 

 .tn

 repre- 
senting the time series in the considered quantum case. 

Unfortunately, in the quantum case there does not exist 
a stochastic process   0t t

 such that we can always 
represent the distribution of the time series as follows: 



P P  1 1
f f 1 , , n t n

  , ,
 

For that reason one has to develop a useful concept in 
order to describe the distribution of such time series re- 
lated to quantum measurements. That will be done in 
Section 2 of this paper. 

1.4. On the Quantum Zeno Effect 

Starting with the notations used above we will specialize 

 , .n
1

m

k jB B



0,
0t t 

1
: P

j



r ;H :k n


1,

j

 
k

t z

T

T k 

B

 

That means we consider repeated measurements in the 
time interval   according to  starting at time 

1 0  with equidistant times. Again   denotes 
the state of the quantum system at time , and the ran- 
dom numbers 

0

1, , n 

1P k 

; 1,

j H

k

P z 

 represent the outputs of the 
measurements. 

In Section 3 of this paper we will prove the following 
theorem. 

Theorem It holds 

 ,

Pr

; 2 

 
 

2, ,

,


n

tr 

1.
n

n 

 , 1,
j

j 

k

n





 



 

Immediately from the theorem we obtain the following 
corollary. 

Corollary It holds 

1 , .m

k jP z


 

That does not mean that the state will not be changed 
in time. This is related to the fact that using only one 
kind of measurement one cannot determine the state. One 
can consider a simple example illustrating that. Never- 
theless in some special cases one has a total suppression 
of the time evolution in this sense that the state is not 

changing. 

1.5. Example—A. Turing 

Remember the statement of A. Turing: If a system starts 
in an eigenstate of some observable, and measurements 
are made of that observable  times a second, then the 
probability that the system will be in the same state after, 
say, one second, tends to one as  tends to infinity. 

N

N
That we obtain specializing as follows: Let Pr   

be a state related to a normalized H , and let the 
measurements be related to the selfadjoint operator 

ˆPrB b B 
B̂

, where  is a selfadjoint operator such 
that  and Pr

B̂

  are orthogonal, and the eigenvalues of 
 are different from b . Then B̂ Pr   represents an 

eigenstate of the operator B related to the eigenvalue . b
Now, one has to perform measurements according to 
 at the times B

 1
1, , 1 .k

k
t T k N

N


    

Then we have 1 0t  , 1N . Again kt   T   denotes 
the random output of the measurement at time 
 1, , 1kt k N  . 
Then using the corollary mentioned above we obtain 

   1; 1, , 1k n
P b k N P b      .  

Because   is an eigenstate of  related to the ei- 
genvalue  we have 

B
b

 1 1.P b    

Thus we can conclude 

 ; 1, , 1 1k n
P b k N  .     

That implies 

 1 1.N n
P b     

Because of 1Nt  T  the random value 1N   would 
represent the output of a measurement at time  and 
the event “ 1N

T
b   ” means that at time  the system 

would be in the initial state . Thus we can conclude 
that the probability that at time  the system will be in 
the same state as at the beginning tends to one as  
tends to infinity. 

T
Pr

T
N

1.6. Example—Arrow Paradox 

In quantum mechanics one uses the Hilbert space 
 2 3H L R  in order to describe a quantum particle 

located in the space . Now, again let 3R Pr   be a 
pure state related to a normalized wave function H . 
We interpret   as the state of the arrowhead at time 

0 0t  , and we assume that the wave function   is 
concentrated on a “very small region” , thus the posi- 
tion of the arrowhead at time 0 is “almost fixed”. 

D
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Now, let DH  be the space of the wave functions 
concentrated on . We specialize D : Pr

DHB 

D

. Then the 
corresponding measurement means: “checking whether 
the arrowhead will be inside of the region  or not”. 
Consequently the event “ 1k  ” means that “at time  
the arrowhead is located inside of the region ”. 

kt
D

Because of  the corollary mentioned 
above may be rewritten as follows 

 1 1 1P   


  

at time the arrowhead

is located in 1, , 1

k

n

P t

D k n   

“
” 

 

i.e., the arrow will not move under “continual observa- 
tion”. 

1.7. Can We Use the Quantum Zeno Effect in 
Order to “Prove” That the Brain Acts Like a 
Quantum System? 

More and more specialists in life science are convinced 
that one should use quantum models in order to describe 
some special bio-systems, others are against quantum 
models. Now we want to propose a certain experiment 
that may be helpful to decide whether a concrete system 
behaves like a quantum system or not. 

The basic idea is as follows: First perform a sequence 
of measurements with very high frequency, i.e., the 
length  of the time series 1n , , n   obtained within, 
say, one second is very large. Then produce a time series 

1̂, , ˆm   where m  is very small (e.g. ). Now, 
compare the correlations 

2m 
 1, ncor    and  1̂ ˆ, mcor   . 

In the idealistic quantum case it would be 

n  because of the quantum Zeno effect. But 
that is not realistic because of certain classical noise 
caused by the measuring procedure. Nevertheless, in the 
quantum case 

  , 1cor 1

 1̂ ˆ, mcor    should be significant lower 

than  1, ncor   —which would contradict to the  

classical case. 
Finally let us mention that some parts of this paper are 

based on [21]. 

2. Distribution of a Time Series Related to 
Quantum Measurements 

Let  be a semigroup of unitary operators on a 
separable Hilbert space 

  0t t
V


H  representing the time evolu- 

tion of a quantum system.   denotes the state of the 
quantum system at time . 0

We consider a sequence of times  and 
perform measurements at time k  related to 
selfadjoint operators  given by their unique repre- 
sentation 

0t 
0 1 nt t t  

 1, , n t k

kB

,,
2

: Pr , 1,
k

k j

m

k k j H
j

B z k


  

i.e.,  , 1

km

k j j
H


 represents an orthogonal decomposition 

of H  and , ,k j k sz z  if  . Formally 
the random outputs of these measurements we identify 
with random numbers 

j s

, , n

 1, ,k   n

1  . 
Theorem 1 Let   be a pure state related to x H , 

1x  . Further we put . Then 
we get the probabilities 

 1, , n1:k k kt t k    

 
   

1

, 1, 11

1 1, ,

2

1 1

, ,

Pr Pr ,

1, , , , 1, , .

n

n j n jn

j n n j

H H

n n

P z z

V V

j m j m

 

  



 





  

x  

Proof 1 We put 

 
   

1

, 1, 11

1, ,

2

1 1

, ,

: Pr Pr ,

1, , , , 1, , ; 1, , .

k

k j k jk

k j k j

H H

k k

p z z

V V x

j m j m k

 





  



    n

     (2.1) 

Then we get 

   1 11 1, 1 1, 1 1, 1, ,j jP z p z j m     .       (2.2) 

Now let us assume that for some  it holds k

 


1

1

1 1, ,

1, ,

1 1

, ,

, , ,

1, , , , 1, , .

k

k

j k k j

k j k k j

k k

P z z

p z z

j m j

 



 

 

 





  


m

        (2.3) 

Using J. von Neumann’s rule we can conclude that 
under condition “

k11 1, ,, ,j k k jz  
k

z ” (i.e., knowing 
the exact results of the  measurements) immediately 
after the -th measurements the quantum system is in 
the pure state 

k

   
   

1, 11

, 1, 1

,Pr Pr
.

Pr Pr

k k k j

k j k jk

H j H

H H

V V

V V

 

 




1

x

x
 

Then at time  the system is in the state 1kt

   
   

1 , 1, 11

, 1, 11

Pr Pr
.

Pr Pr

k k j k jk

k j k jk

H H

H H

V V V

V V

  

 






x

x
 

Now performing the measurement according to 1kB   
we get the value 

11, kk jz
  with (conditional) probability 

 
   
   

1 1

1, 1 1, 11 1

, 1, 11

1 1, 1 1, ,

2

2

, ,

Pr Pr
.

Pr Pr

k k

k j k jk

k j k jk

k k j j k k j

H H

H H

P z z z

V V x

V V x

 

 

  


 

   








     (2.4) 

, .n  Using (2.1), (2.3) and (2.4) we obtain 
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  1 1 11 1, 1, 1 1, 1,

1 1 1 1

, , , , ,

1, , , , 1, , .
k kj k j k j k j

k k

P z p z z

j m j m

 
   

 

 

 

 

  
1  

That proves Theorem 1. 
Now let 1, , nf f  be measurable functions. We will 

consider the expectation 

     1
1

1, , ,
, ,1

, , .
n r

n

n

r r n j n j r r j
j jr

E f p z z f z


 



1

n

r




 (2.5) 

Example 1 Let 1  be measurable subsets of R. 
We consider the indicator functions 

, , nD D
 1, ,

kk Df k n   . 
Then we have 

   1 1
1

, , .
n

r r n n
r

E f P D D  


     

Example 2 We consider the case   s
kf y y , 1rf   

. Then we have r k 

 
1

.
n

s
r r k

r

E f E 


  

Example 3 We consider the case     ,k jf y f y y   
1r f j r k   . Then we have 

 
1

.
n

r r k j
r

E f E  


  

Using Example 2 and Example 3 we can calculate 
correlations. 

Example 4 We consider the case  

   e 1, ,ris y
rf y r n   . 

Then 

   1 1
, ,

n

n rr
s s E f r 


   

represents the characteristic function of the vector 
 1, , n  . Observe that these characteristic functions 
represent the complete information concerning the distri- 
bution of time series. 

Now in quantum mechanics expectations are of the 
type tr A  where   represents the state of the sys- 
tem and A  is a certain (selfadjoint) operator. For that 
reason we will construct an operator A  related to 

 such that we obtain 1 1 , ,n n nB t t f1, , , ,f B

   
1

.
n

r r
r

tr A E f 


             (2.6) 

For that purpose we define the following linear map- 
pings from the set  of bounded operators on  B̂ H H  
into this set putting 

   * ˆ: , ,t t tK B V BV B B H t  0,

,

       (2.7) 

   

 

, ,, ,
1

: Pr Pr

ˆ ; 1, , .

k

k k k j k j

m

B f k k j H H
j

W B f z B

B B H k n





 




    (2.8) 

Then we put 

   
1 1 1

1 1 1 1 1, 1

, , , , , ,

,

:

: .

n n n

n n f nn

B t f B t f

B f B n n

A A

K W K W K f B    







  
 (2.9) 

If the operator  is selfadjoint then B  tK B  is sel- 
fadjoint. Further one easily checks that  B,k kB fW  is 
selfadjoint if  is selfadjoint and kB f  is a real function. 
For that reason we can conclude that the operator A  is 
selfadjoint if  1, ,kf k  n  are real functions. 

Immediately from the definition of 
1 1 1, , , , , ,n n nB t f B t fA  

we get 

 1 1 1 1 1 1 2 2 1 2 1, , , , , , ,0, , , , , , , , .
n n n n n nB t f B t f t B f B t t f B t t fA K A     (2.10) 

Finally we obtain the following theorem. 
Theorem 2 Let the operator A  be given by (2.9). 

Then (2.6) holds. 
Proof 2 We can restrict ourselves to the case of a pure 

state related to x H , 1x  . Then we have to prove 
that it holds 

 
1

.
n

r r
r

x Ax E f 


            (2.11) 

Using Theorem 1 and (2.5) we get 

   

   
1

, 1, 11

,
, ,1 1

2

Pr Pr .

r
n

n j n jn

n n

r r r r j
j jr r

H H

E f f z

V V 


 

   
 



 


 x

   (2.12) 

Further we have 

   
   
   

, 1, 11

1, 1 ,1

, 1, 11

1 1, 1 1, ,1 1

1, 1 1, 11 1

2

**

* * *

Pr Pr

Pr Pr

Pr Pr

Pr Pr Pr

Pr Pr .

n j n jn

j n j nn

n j n jn

j n n j n n jn n

n n j n jn

H H

H H

H H

H H

H H

V V x

x V V

V V x

x V V V

V V V x

 

 

 

  

  

  

 















H

   (2.13) 

Finally using (2.13), (2.12), (2.9), (2.8) and (2.7) we 
obtain (2.11). That proves theorem 2. 

Remark 1 The time evolution of a quantum mecha- 
nical system usually is characterized by a semigroup 
  0t t

 of unitary operators. Then the state V
 t  of the 

system at time  is characterized by t

      ˆ, ,t ttr B tr K B B B H t  0.     (2.14) 

If in addition to that time evolution there are meas- 
urements like in the case we have considered this “per- 
turbed” evolution in general no longer may be described 
by a semigroup of unitary operators. Though the ansatz 
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(2.14) still makes sense. One has to replace the 
semigroup  by a family of completely positive 

linear maps 
  0t t
K



ˆ
tK  on  B̂ H . In the case considered 

above these maps are defined as follows: 
 

 
 

 
  

 
1 1

1 1

1

,1 ,1 1

,1 ,1

, 0 ,

ˆ ˆ: ( ) ,

, ,

m m m

n n n

t

t B B t m m

B B t n

K B t t

, .K B K W K W K B t t t B B H

K W K W K B t t

  

  

 



  
 




  

  

                 (2.15) 

 
evolution Further let us mention that one can generalize our con- 

siderations replacing from the beginning the semigroup 

0t t
 by an arbitrary semigroup of identity preserving 

completely positive linear maps on . 
 K

 B̂ H

  ˆ,t  .K B B B B H            (2.16) 

Further we consider the case of only two measure- 
ments, i.e., 2n  . Then we obtain the probabilities Remark 2 Let us consider the trivial case of a time  

 

 1 2 1 2 2, 1,2 1

2

, 1, 2, 1 1 2 2, Pr Pr , 1, , ; 1, ,
j jB B j j H HP z z x j m j m    .                     (2.17) 

 
Now we change that order, i.e., first perform a meas- 

urement according to 2  and then perform a measure- 
ment according to . Then we obtain the probabilities 

B

1B

The procedure may be interpreted as follows: first 
perform a measurement according to  and then per- 
form a measurement according to . 

1B

2B
 

 2 1 2 1 1, 2,1 2

2

, 2, 1, 1 1 2 2, Pr Pr , 1, , ; 1, , .
j jB B j j H HP z z x j m j m                        (2.18) 

 
If  and  commute then we get like in the classical case 1B 2B

 

   1 2 1 2 2 1 2 1, 1, 2, , 2, 1, 1 1 2 2, , , 1, , ;B B j j B B j jP z z P z z j m j m   1, , .                       (2.19) 

 
In that case specialists say (cf. [22,23]) that “there ex- 

ist joint probabilities”. If 1  and 2  do not commute 
one cannot expect that (2.19) holds in general, i.e., for all 
states. That situation is related to what specialists call 
“breaking the classical probability law”. 

B B

In the following some comments: From (2.17) and 
(2.18) we obtain two probability measures 

1 2,B B  and 

2 1,

P

B B  on  related to two random vectors each of 
them consisting of two components. In both cases we can 
define the following (classical) conditional probabilities 

P 2R

(a) “distribution of second component under condition 
we know the first component” 

(b) “distribution of first component under condition we 
know the second component” 

The conditional distributions (a) makes sense from the 
practical point of view. It represents the behaviour of the 
output of the second measurement under condition that 
we know the output of the first measurement. The condi- 
tional distribution of the first measurement under condi- 
tion that we know the output of the second measurement 
(case (b)) may be senseless because the first measure- 
ment has already been done. 

Furthermore, one has to take into account that 
1 2,B B  

and 
2 1,

P

B B  describe two different procedures. For that 
reason it seems to be obvious that using conditional 

probabilities calculated according to 
1 2,

P

B B  for calcula- 
tions based on 

2 1,

P

B B  will cause some trouble, i.e., basic 
formulas from classical probability will be violated if 

P

1 2 2 1, ,B B BP P B . 
Nevertheless, from the mathematical point of view it is 

interesting to check whether one has joint probabilities 
because in that case one can apply formulas from classi- 
cal probability like Bayes formula. 

3. On the Quantum Zeno Effect 

Starting with the notations used in the previous section 
we will specialize 

1

: Pr ,
jk j Hz k 1, , n .

m

j

B B


          (3.1) 

1
: , 1,

k
t T k

n
, .nk


                (3.2) 

That means we consider repeated measurements in the 
time interval  0,T  according to  starting at time B

1 0 0t t   with distance of time 

1
: , 2,k T k

n
    , .n           (3.3) 

Further we consider the following semigroup of uni- 
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tary operators on H  

: e , 0ith
tV t               (3.4) 

where the selfadjoint operator  is given by its unique 
representation 

h

1

: Pr
j

r

j D
j

h c


                 (3.5) 

i.e.,  
1

r

j j
D


 represents an orthogonal decomposition of  

H  and j sc c  if . j s
Again   denotes the state of the quantum system at 

time 0, and the random numbers 1, , n   represent the 
outputs of measurements. 

Then we obtain the following theorem. 
Theorem 3 It holds 

 1; 2, , 1k n
P k n   .          (3.6) 

Immediately from theorem 3 we get the following cor- 
ollary. 

Corollary 1 

  
 

1; 1,2, ,

Pr , 1, , .
j

k j jn

H

P z k n P z

tr j m

 



   

 







1j jz

0,

m

1,

  (3.7) 

Proof of Theorem 3: 
We have 

 

     1 1 1 1 2 1 1
2 2 1

; 2, , 1 , , , 1 , , , .
n n m

k k k k j k
k k j

P k n P P z z           
  

                     (3.8) 

 
For that reason (3.6) is equivalent to 

 
2

, ; 1, , 1

1, , .

n

k j s j n
k

P z z s k

j m

  


    



 


  (3.9) 

Now we fix , , and define 
indicator functions putting 

 2, ,k n   1, ,j  

 

 :

, 1, ,

: , ,

1, 1, , .

j

j

z

s y R y z

s k

f s k

s k n




 

 
 


 





       (3.10) 

Then we get (cf. (2.9)) 

    
1 1, , , , , ,

*1 1
* Pr Pr Pr .

n n

j j j

B t f B t f

k k

H H H H

A

V V I V V  

 



     
  



 (3.11) 

Further because of Theorem 2 we have 

 
   1 1

1 1

, , , , , ,

, , ,

0, .
n n

k j k j j

B t f B t f

P z z z

T tr A

  



  

 


      (3.12) 

Proving Theorem 3, we can restrict ourselves to the 
case of a pure state   related to x H , 1x  . 

Then using (3.11) and (3.12) we obtain 
 

      

     

1 1

1 1

2 2
*

, , , Pr Pr Pr

Pr Pr Pr Pr Pr .

j j j

j j j j j

k k

k j k j j H H H H

k k

H H H H H H

P z z z V V x I V V x

V V x V I V V V x

  

     

  
 



 

    

 

 

           (3.13) 

 
Using (3.4) and (3.5) we get 

 

   1 2

1 2
1 2

* *

,

Pr Pr 1 e Pr Pr Pr Pr .s s

j j s j s

r
i c c

H H H H D H D H H
s s

V I V I V V I


   
        

  j
 

 
That implies 

 

   

 

 

1 2

1 2
1 2

1 2

1 2
1 2

1 2
1 2

*

,

, 2

1 2
,

Pr Pr Pr Pr 1 e Pr Pr Pr Pr

Pr Pr Pr Pr Pr
!

Pr Pr Pr Pr Pr .

s s

j j j j s j s j

j s j s

j s j s j

r
i c c

H H H H H D H D H
s s

l
r s s

jH D H D H
s s l

r

H s s D H D H
s s

V I V

i c c

l

i c c












        
          

    
 

  
 



 



             (3.14) 
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Easy calculations show 
 

   1 2 1 2
1 2,

Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr 0.
j s j s j j j j j j j

r

H s s D H D H H H H H H H H H
s s

i c c i h I I h 
 

   
 
        (3.15) 

 
Because of 1x   we obtain using the Schwartz inequality 

 

   
1 2

2 2

Pr Pr Pr Pr Pr Pr Pr 1.
j j s j s j j

k k

H H D H D H HV V x V V x   

 
                            (3.16) 

 
Now using (3.3), (3.13), (3.14), (3.15) and (3.16) we can estimate 

 

    1 2

1 2
1 2

2 2

2 ,

, ; 1, , 1 e , 1, , .
s s

Tn r c c
n

k j s j s s
k s s

T
P z z s k c c j

n
 





         m                   (3.17) 

 
That implies (3.9) what proves Theorem 3.  
Remark 3 Using (3.8) and (3.17) we obtain 

 

  1 2

1 2
1 2

1

2 2

,

1 ; 2, ,

e .
s s

k

Tr c c
n

s s
s s

P k n

T m
c c

n

 



  

 


 

Thus for given 0   we can calculate n  such that 
always holds 

  1; 2, , 1kP k n n        .n  
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