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Abstract

Let P(z) be a polynomial of degree n having all its zeros in |z|£ K <1, then for each r>0, p>1,

q>1 with 1+l =1, Aziz and Ahemad (1996) proved that
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In this paper, we extend the above inequality to the class of polynomials P(z):=a,z" +Z?:mansz”‘j, 1<m<n,

having all its zeros in |z| <K <1, and obtain a generalization as well as refinement of the above result.
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1. Introduction and Statement of Results

Let P(z) be a polynomial of degree n and P’(z) be
its derivative. If P(z) has all its zeros in |z|<1, then
it was shown by Turan [1] that
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Inequality (1) is best possible with equality for
P(z)=az"+ B, where |a|=|p|. Asan extension of (1)
Malik [2] proved that if P(z) hasallits zerosin |z|< K,
where K <1, then

|P’(z)|2
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Malik [3] obtained a generalization of (1) in the sense
that the right-hand side of (1) is replaced by a factor
involving the integral mean of |P(z) on [z=1. In
fact he proved the following theorem.

Theorem A. If P(z) has all its zeros in |z|<1, then
foreach r>0

n{jj” P(eie)‘r d¢9}i < {f;”
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The result is sharp and equality in (3) holds for
P(z)=(z+1)"

Ifwelet r— o in(3), we get(1).

As a generalization of Theorem A, Aziz and Shah [4]
proved the following:

TheoremB. If P(z):=a,z +Z, 2", 1<m<n

is a polynomial of degree n having all its zeros in the
disk |z <K, K<1,thenforeach r>0,
1

n{.[;” P(e‘g)‘r de}?

{ e Kme| de} Max,_, [P'(z)|-

Aziz and Ahemad [5] generalized (3) in the sense that
Max‘z‘=l|P'(z)| on |z|=1 on the right-hand side of (3)
is replaced by a factor involving the integral mean of
[P"(2)] on |z|=1 and proved the following:

(4)

Theorem C. If P(z) is a polynomial of degree n
having all its zeros in |z|<K <1, then for r>0,

p>1, g>1 with i+£:1,
P q

AM



142 Y. PAUL

1

n{j;” P(e“g)‘r d¢9}F

1
< {j02”|1+ |<e‘9|qr de}‘” {j;” P'(e”)

Ifwelet r>o and p—>o (sothat g—1)in(5),
we get (2).
In this paper, we extend Theorem B to the class of
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polynomials P (z):= a,z +zj=man7jz , 1l<m<n,

having all the zeros in |z|< K <1, and thereby obtain a
more general result by proving the following.

Theorem L If P(z):=a,2"+) " a, 2"}, 1<m<n

is a polynomial of degree n having all its zeros in the
disk [z <K, K<1,thenforeach r>0, s>1, t>1

with 1+1:1,
s t

1
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If we take m = 1 in Theorem 1, we get the fol-
lowing: .
Corollary 1. If P(z):= Z?:OajzJ is a polynomial of

n{ [

p(e”) da}i < { [

The next result immediately follows from Theorem 1,
ifwelet t >0 sothat s—1 _
Corollary 2. If P(z):=a,z" +22:man7jz”", 1<m<n
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degree n having all its zeros in the disk |z| <K, K <1,

thenforeach r>0, s>1, t>1 with lJr%:l,

S
1
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is a polynomial of degree n having all its zeros in the
disk |z <K, K<1,thenforeach r>0,

sr 1
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Also if we let r — oo in the Theorem 1 and note that

1 T i
ime {5 [P ()

We get the following: '
Corollary 3.1f P(z):= a,z" +Z?=man7jz"“ , 1<m<n
is a polynomial of degree n having all its zeros in the

disk |z]<K, K<1,then

Max,,[P'(2)]
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a n|an|(K2m+Km‘1)+m|an7m|(1+ Km‘l)

1
r de}r = Max,,, [P(z)].

Max,,, [P(2).
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For K = 1, Corollary 3 reduces to Inequality (1) (the
result of Turan[1]).

2. Lemmas

For the proof of this theorem, we need the following
lemmas.

Copyright © 2011 SciRes.

nla,|K*" +mla,_,[K™* '
l n n-m ei@
nla,|K"*+mla,_,|

de} Maﬁz‘=1|P’(z)|. (8)

The first lemma is due to Qazi [6].

Lemmal. If P(z):=a, +Z?:maj 2’ is a polynomial
of degree n having no zeros in the disk |z| <K, K=>1.
Then

n|a|Km*1+m|am|K2m , ,
R O R
m
for |7/=1, 1<m<n,
where

am

Q(2)= z”P(éjand Mo gm <1,
z n|a,

Lemma2. If P(z):=a,2"+)_a, ;2" isapoly-
nomial of degree n having all its zeros in the disk
|7 < K <1sthen

SOf

for |z| =1, 1<m<n.
Proof of Lemma 2

nla,|K*" +mla,  |K"™*
nja,|[K™*+mla,_,|

e
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Since all the zeros of P(z) liein |z]<K <1, there-
fore all the zeros of Q(z)=2" P(%) lie in |z 2%21.
Z
Hence applying lemma 1 to the polynomial
Qz)=a,+> &, ;2" weget

|4j£,
n-m K 2m

X @ (2) <[P (2)).

n—m| Km+1

1
n|an|W+m|a

n|a,|+ml|a

Or, equivalently

o8

This proves lemma 2.

Remark 1: Lemma 3 of Govil and Mc Tume [7] is a
special case of this lemma when m = 1.

Proof of Theorem 1

n|an|K2"‘+m|an_m|Km’l
n|an|K’“‘1+m|an7m|

[IKE!

Since Q(z)=1z" P(éj , therefore, we have
z

P(z)= z”Q(éj . This gives

P'(z)= nz”‘lQ(%)—z”‘zQ’[%} (10)
Z Z
Equivalently
P'(z) = nz”Q(éj—z“Q'(%} (11)
Z Z
this implies
P'(2)|=|nQ(2)-2Q'(z)| for |7|=1. (12

Now by hypothesis, P(z) hasall its zeros in
|z| < K <1, therefore, by Lemma 2, we have for |z| =1

, nla,|K*" +mla,_, |K™
e,

|P’(z)|, 1<m<n.

(13)
Using (12) in (13), we get
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for |z|:1, l<m<n.

n|an|Km‘1+m|an7m|

(14)

Since P(z) has all its zeros in [z]<K <1, by
Gauss-Lucas theorem all the zeros of P’(z) also lie in
|z] <1, therefore, it follows that the polynomial

2ov (L]0 ()

z

(15)

. . 1
has all its zeros in |z|2E21 and hence, we conclude
that the function

W(z):{ nla,|K™*+mla,_,| }

n|an|K2’"+m|an_m|Km’l

2Q'(2)
(Q(2)-2Q'(2))
(16)
is analytic for |z] <1, W(0) = 0 and by (14) W (z) <1
for |z| =1. Thus the function
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is subordinate to the function
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for |z|<1. Hence by a well known property of subor-
dination [8], we have foreach r>0 and 0<60<2r,
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Also from (16), we have

ne(z)=
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Using (12) and the fact that |Q(z)|=|P(z)| for |z|=1, we get from (18)

n|P(z) =L+
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J{ nla,|K™*+mla,_,| }W(Z)_nQ(z)—zQ’(z)'
Therefore,
}W(z)|nQ(z)—zQ’(z)|. (18)
| }W(z)|P’(z)| for |z =1. (19)
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Combining (17) and (19), we get
n’jj”‘P(e‘@)‘r do< j:”

. ) . . 11
Now applying Holder’s inequality for s >1, t >1, with —+¥ =1 to (20), we get
S
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This is equivalent to
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