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ABSTRACT 

The stability of a kind of cooperative models incorporating harvesting is considered in this paper. By analyzing the 
characteristic roots of the models and constructing suitable Lyapunov functions, we prove that nonnegative equilibrium 
points of the models are globally asymptotically stable. Further, the corresponding nonautonomous cooperative models 
have a unique asymptotically periodic solution, which is uniformly asymptotically stable. An example is given to illus-
trate the effectiveness of our results. 
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1. Introduction 

Permanence, stability and periodic solution for Lotka- 
Volterra models had been extensively investigated by 
many authors (see [1-8] and the references therein). Jorge 
Rebaza [1] had discussed the dynamic behaviors of 
predator-prey model with harvesting and refuge 
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he obtained that harvesting and refuge affected the stabil-
ity of some coexistence equilibrium and periodic solu-
tions of model (1), where  H x  was a continuous thre-
shold policy harvesting function. Motivated by Jorge’s 
work, we consider the following cooperative system in-
corporating harvesting 
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where x  and  denote the densities of two popula-
tions at time . The parameters  

 are all positive constants. 
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We will discuss our problems in the region  

  ,R x y2
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where  0,R   . 

2. Permanence of System 

Definition 2 [2] If there are positive constants  
such that each positive solution 
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Then system (2) is persistent. If the system is not per-
sistent, then system (2) is called non-persistent. 

Lemma 1 If , then system 
(2) is persistent. 

1 1 1 2 2r Eq k k b a 2

Proof. By the first equation of (2) and the comparison 
theorem, we get    1 1 ,x t x x Eqr b   it implies that 
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For any 0,   there exists a , as , it 
then follows 

1 0T  1t T

  .x t A    

Similarly, we have   2

2

limsup :
t

r
y t B

b
  . By the  

discussion above, for any 0, 
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there exists a , 
as , it yields that 
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On the other hand, we have 
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By the comparison theorem, and letting 0  , one 
gets that 
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By Definition 2, system (2) is persistent. □ 

3. Equilibrium Points and Stability 

If , then the equilibrium points of (2) are 1r Eq
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The general Jacobian matrix of (2) is given by 
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The characteristic equation of system (2) at 0H  is  

  1 2 0r Eq r     , this immediately indicates that  

0H  is always unstable. 
The characteristic equation of system (2) at 1H  is 

   0r Eq r 1 2    , by the condition , one 
then gets that 

1r  Eq

1H  is a saddle point. 
The characteristic equation of system (2) at 2H  is 

   0r Eq r 1 2    , we derive that 2H  is a saddle 
point. 

The characteristic equation of system (2) at 3H  takes 
the form 
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it is easy to check that 1 2 0,    1 2 0   , then 

1 0,   2 0  , thus 3H  is locally asymptotically sta-
ble.  

Theorem 1 If   1 1 1,k b a 2 2 2 ,k b a
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then the positive equilibrium point 3H  of system (2) is 
globally asymptotically stable, where , , ,A B C D  can be 
found in Lemma 1. 

Proof. Define a Lyapunov function  
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it then yields that 
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by the conditions of theorem 1, thus,  ,V x y 0 . The 
positive equilibrium point 3H  of system (2) is globally 
asymptotically stable. □ 

4. Existence and Uniqueness of Solutions 

Next, we will discuss a nonautonomous system  
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where          , , , 1, 2r t a t b t k t i  ,  i i i i   ,E t q t  are 
positive continuous bounded asymptotically periodic 
functions with period . The initial data of (4) is given 
by  

T
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In order to discuss the existence and uniqueness of 
asymptotically periodic solution of system (6), we can 
consider the adjoint system 
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By the Definition 3, the solution of system (4) is ulti-
mately bounded. □ 

Lemma 3 [2] If  sat-
isfies the following conditions:  
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hold, the conditions of Lemma 2 are satisfied, then sys-
tem (4) has a unique asymptotically periodic solution, 
which is uniformly asymptotically stable. 

Proof. By Lemma 2, the solutions of system (4) is ul-
timately bounded. We consider the adjoint system  
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taking  1 2min , 0Q Q   , it yields    W t W t  , 
then, system (4) has a unique positive asymptotically 
periodic solution, which is uniformly asymptotically sta-
ble. □ 
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5. Examples and Numerical Simulations 

Now, let us consider a autonomous cooperative system 
incorporating harvesting  
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the conditions of Theorem 1 are valid, then the positive 
equilibrium point  of system (2) 
is globally asymptotically stable in Figures 1 and 2. 

3 1.8622,1.7026H  

6. Conclusions 

By analyzing the characteristic roots of a kind of coop-
erative models (2) incorporating harvesting, the stability 
of positive equilibrium point 3H  to model (2) is ob-
tained by constructing a suitable Lyapunov function. Our 
results have shown that the harvesting coefficient  
affects the stability and the existence of equilibrium point 
to model (2). 

Eq

The related non-autonomous asymptotically periodic 
cooperative model (4) has been discussed later. Under 
some conditions, which also depend on model parame-
ters (see Theorem 2), model (4) has a unique asymptoti-
cally periodic solution    ,x t y t , which is uniformly  
 

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

x

y

x
y

 

Figure 1. Positive equilibrium point  of (2) is globally 

asymptotically stable. 
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Figure 2. Solution of (2) is uniformly asymptotically stable. 
 
asymptotically stable. Example model (10) shows the 
effectiveness of our results. 
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