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Abstract 
 
Risk early-warning of natural disasters is a very intricate non-deterministic prediction, and it was difficult to 
resolve the conflicts and incompatibility of the risk structure. Risk early-warning factors of natural disasters 
were differentiated into essential attributes and external characters, and its workflow mode was established 
on risk early-warning structure with integrated Entropy and DEA model, whose steps were put forward. On 
the basis of standard risk early-warning DEA model of natural disasters, weight coefficient of risk ear-
ly-warning factors was determined with Information Entropy method, which improved standard risk ear-
ly-warning DEA model with non-Archimedean infinitesimal, and established risk early-warning preference 
DEA model based on integrated entropy weight and DEA Model. Finally, model was applied into landslide 
risk early-warning case in earthquake-damaged emergency process on slope engineering, which exemplified 
the outcome could reflect more risk information than the method of standard DEA model, and reflected the 
rationality, feasibility, and impersonality, revealing its better ability on comprehensive safety and structure 
risk. 
 
Keywords: Entropy, Data Envelopment Analysis, Comprehensive Integration, Essential Attribute,  

Risk Early-Warning, Natural Disaster 

1. Introduction 
 
Timely and exact early-warning of natural disasters, can 
effectively reduce loss of life and property, which is an 
important basis for emergency management and disaster 
relief decision-making [1]. 

Risk early-warning is an extremely intricate and dy-
namic process, its early-warning object is the risk event 
that was not certain and evident [2]. The relation among 
the factors that influenced risk was intricacy and com-
plex [3], which often behaved fuzzy, certain, potential, 
random, conflict, incompatible and other polymorphism 
[4]. 

Data Envelopment Analysis (DEA) was brought for-
ward by A. Charnes, W. Cooper, and other scholars of 
U.S. operations research, which evaluated the relative 
effectiveness or probability of decision-making unit with 
changing weight, as an important method for showing 
relative efficiency evaluation [5]. DEA was strong in its 
objectivity, and its conclusions from subjective human 

personality, which presents a positive role on risk evalu-
ation [6,7], best selection and sort, effectiveness of fore-
casting combination, decision-making unit, and other 
aspects. But, DEA evaluation is entirely dependent on 
objective data, and can not reflect the preference of the 
risk early-warning factors in the special risk environ-
ment. 

Model and method of risk early-warning must adapt to 
the requirement of natural disasters, as the characteristics 
of natural disasters are polymorphism, contradictory and 
incompatible. The comprehensive integration of DEA 
theory and Information Entropy theory [8], was applied 
into relational features, structure, function, organization 
and regulatory mechanisms of complex early-warning 
issues. It is useful for eliminating the subjective weight 
when determining the indicator weight, and solving the 
pivotal contradiction and incompatibility among indica-
tors. 

This method of integrated DEA and Entropy was dif-
ferent from other comprehensive evaluation methods for 
its unified mathematical model. It extracted information 
entropy from risk early-earning samples, determined the *This work is supported by the Chinese NSF grants 70971137. 
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entropy weight preference of risk early-warning factors, 
further carried on the evaluation about the relative risk 
degree of risk early-warning sample, and finally realized 
the impersonal, reasonable, accurate, scientific early- 
warning decision about the risk natural disaster condi-
tions. 
 
2. Risk Early-Warning Workflow Mode 

about Natural Disasters 
 
2.1. Early-Warning Characters of Risk Events 
 
Set   as the abstract sign of earthquake, floods and 
other natural disasters, and   denoted the potential 
risk. And, iC denoted the general risk factor of potential 
risk  , whose factor set was denoted as C   
 | 1, 2, ,iC i m  . 

The movement and evolution of risk   is consistent 
with the general laws of material movement and social 
development, which is determined by internal factors, 
objectively existed in the essential attributes of risk 
events, such as rock integrity coefficient in the landslide 
risk of rock slope engineering. 

Risk   is random, disordered, which happened as 
the essential attributes normally activated by a lot of un-
expected external factors, such as daily maximum rain-
fall in the landslide risk of rock slope engineering. 

Therefore, the early-warning factors of risk   could 
be differentiated into essential attributes and external 
characters. Set iX  as the signal risk early-warning ex-
ternal character, 1,2, ,i r  , and iY  as its signal es-
sential attributes, 1, , .i r m    Then, the early-war- 
ning factors of risk  , formalized as: 
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where early-warning characteristic system was formally 
denoted for risk  . Here, X denoted the set about ex-
ternal characters, and Y denoted the set about essential 
attributes. 
 
2.2. Basic Mathematical Expression about Risk 

Early-Warning Events 
 
In accordance with the X and Y level classification of risk 
early-warning factors, based on the low risk expectations 
of psychological characteristics, the measuring require-
ment was designed, which provided rules for risk early- 
warning samples. 

Essential attribute measuring requirement: As ijy  
denoting the value of risk early-warning sample jE  on 

the essential attribute iC  of Y , ijy  satisfied the max 
type, namely the greater measurement and the lower risk. 

External character measuring requirement: As ijx  
denoting the value of risk early-warning sample jE  on 
the external character iC  of X, ijx  satisfied the min 
type, namely the lower measurement and the lower risk. 

Based on measuring requirement for risk ear-
ly-warning sample, risk early-warning was essentially to 
distill risk sample, determine the risk early-warning im-
personal data, and further determine the measuring value 
or the relative risk degree of risk early-warning sample, 
and finally confirm the important risk early-warning po-
sitions.  

Accordingly, risk early-warning was denoted formally: 

:: , ,opt C E F                (2) 

Here, E denoted risk early-warning sample set, in-
cluding 1E , 2E , ···, jE , ···, nE . And, F formally de-
noted the risk early-warning mathematical methods, in-
cluding parametric, non-parametric methods, and intelli-
gent reasoning method. 

In view of the min & max changing characteristics and 
measuring requirements in risk early-warning factors, 
risk early-warning function was designed formally, as 
the following expression in (3). 
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


      (3) 

where the inherent and external mechanism was indi-
cated through the formal mathematical logic, revealing 
inherent stability of the risk early-warning sample. Here, 

jF  denoted the risk parameter of the risk early-warning 
sample, ijx （ 1 i r  ）denoted the measurement of 
sample jE  on the external character iX , and ijy  
（ 1r i m   ）denoted the risk estimation of sample 

jE  on the essential attribute iY . 
 
2.3. Risk Early-Warning Workflow Model 
 
According to the risk management requirements of natu-
ral disaster  , with the extraction the restraint require-
ment of risk early-warning, and the identification of po-
tential risk event and its related factors, the essential 
attribute set Y and external character set X was estab-
lished for the risk early-warning of natural disasters. 

Design risk early-warning workflow mode for natural 
disasters on the integrated basis of Entropy and DEA 
model, as shown in Figure 1. 

Integration of Entropy and DEA model was carried 
into the natural risk early-warning operations, which 
mainly contained four stages. 

1) Erect the risk early-warning indicator set C of natu-
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ral disaster  , and differentiate essential attributes and 
external characters. 

2) Extract the risk early-warning samples for natural 
disasters, and determine the information entropy prefe-
rence of essential attribute Y and external character X for 
risk early-warning. 

3) Establish the relative risk early-warning value pre-
ference DEA model of natural disaster  , and calculate 
the relative safe degree of the risk early-warning sample. 

4) In accordance with Relative Risk Sentencing 
Guideline, sentence the relative risk degree of risk early- 

warning samples, and submit the analysis for the risk 
natural events. 
 
3. Risk Early-Warning DEA Model for  

Natural Disasters 
 
3.1. Risk Early-Warning Data Structure 
 
According to the fundamental principle of DEA [9], the 
relative risk decision-making data structure was erected 
for risk early-warning samples, as shown in Figure 2. 

 

 

Figure 1. Risk early-warning workflow mode of entropy-based DEA model. 

 

  1E  2E  … jE  … nE    

1C  → 1,1x  1,2x … 1, jx … 1,nx   

2C  → 2,1x  2,2x … 2, jx … 2,nx   

                  

rC  → ,1rx  ,2rx … ,r jx … ,r nx   

  1,1ry   1,2ry  … 1,r jy  … 1,r ny  → 1rC   

  2,1ry   2,2ry  … 2,r jy  … 2,r ny  → 2rC   

      …   …      

  ,1my  ,2my … ,m jy … ,m ny → mC  

Figure 2. Relative risk decision-making unit structure of risk early-warning samples. 
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In Figure 2, the risk early-warning sample jE  was 

converted into decision-making unit ( jDMU ) in relative 
risk decision-making system, and each jDMU  had the 
measurement about r external characters and m r  
essential attributes. 

With the relative decision-making unit structure of risk 
early-warning sample, suppose that jX denoted the 
measurement of risk early-warning sample jE  on ex-
ternal character, and jY  denoted its measurement on 
essential attributes. Then, decision-making unit was de-
noted formally for the risk early-warning sample as in 
(4). 
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     (4) 

where with decision-making unit model of DEA, deci-
sion-making data structure was established for risk ear-
ly-warning sample of natural disaster. Among them, jX  
signed the characterization about the external risk input 
vector of decision-making unit, and jY  signed the cha-
racterization about the essential safe output vector of 
decision-making unit. 
 
3.2. Basic Risk Early-Warning DEA Model 
 
Formula (3) formally denoted the relative risk analysis 
about risk early-warning samples, which was similar to 
DEA efficiency evaluation expression. 

Set the risk early-warning sample 1E , 2E , ···, jE , ···, 

nE of natural disasters as DEA decision-making unit, 
analyzing the relative risk of decision-making unit kE . 

According to DEA model, basic mathematical DEA 
model was established for natural risk early-warning 
sample, such as the following formula. 
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             (5) 

In Formula (5), v denoted the weight vector of risk 
early-warning external character measurement jX , and 
  denoted the weight vector of risk early-warning es-
sential attribute measurement jY . pV  signed the best 
efficiency evaluation of risk early-warning decision- 
making unit kE  for natural disasters, namely the overall 
safety degree of decision-making unit kE  relative to 
other decision-making units, and there 1pV  . 

3.3. Risk Early-Warning DEA Model with 
Non-Archimedean Infinitesimal 

 
Model (5), was known as standard DEA model, namely 

2C R  model. Other related application showed [10,11], 
there was often multi-effectiveness phenomenon, so it 
was not easy to directly determine the effectiveness of 
DEA. Charnes introduced the concept of non-Archime- 
dean infinitesimal in his study on the degradation phe-
nomenon of linear programming, successfully solved the 
difficulty in the calculation and technology of 2C R  
model. 

Using the dual form of 2C R  model in DEA method, 
non-Archimedean infinitesimal relative safe evaluation 
model was established for risk early-warning samples, 
such as model (6). 
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     (6) 

where pV  denoted the risk measurement of risk sample 

kE , namely risk early-warning decision-making unit 

kDMU , which was consistent with the pV  expression 
in model (5). Here, i

  denoted the slack variable about 
the external character, i

  denoted the slack variable 
about the essential attribute, and   signed the non- Arc-
himedean infinitesimal constant variable, which was less 
than any positive number, but large than 0, usually taken 
on 510  . 
 
3.4. Relative Risk Sentencing Guideline 
 
Suppose that the optimal solution of model (6) was 0θ , 

0 , 0
i
 , 0

i
 , then the relative risk sentencing guide-

line was established for the early-warning sample kE  
according to DEA model [6]. 

Guideline 1: If 0 1θ  , then the risk early-warning 
decision-making unit kDMU  was evaluated as weak 
DEA efficiency, and it sentenced the risk early-warning 
sample kE  about natural disasters as relative weak effi-
ciency, namely the weak efficiency in relative safety. 

Guideline 2: If 0 1θ   and 0 0

1 1

0
r m

i i
i i r

  

  

   , 

then the risk early-warning decision-making unit kDMU  
was evaluated as DEA efficiency, and it sentenced the 
risk early-warning sample kE  as relative efficiency, 
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namely the efficiency in relative safety for natural disas-
ters. 
 
4. Improved DEA Model for Risk      

Early-Warning Sample 
 
Model (6), calculated relative safe degree of the objec-
tive risk early-warning sample data relative safety, which 
played a positive role in the decision of risk warning 
measurement; but it hadn’t made the best of objective 
data, and could not reflect preference information of the 
external character and essential attribute. 
 
4.1. Standardization of Risk Early-Warning 

Characteristics 
 
In accordance with the data expression of decision- 
making unit for risk early-warning sample, as the For-
mula (4), the initial risk early-warning matrix R

~
 was 

established for natural disasters in (7). 
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     (7) 

With terminal minus, the initial risk early-warning 
sample matrix R  of natural disaster was standardized. 
If the early-warning factor iC  showed the external cha-
racter, namely the positive effect in natural disasters, 
then: 

     '

1 1 1
ij ij ij ij ij

j n j n j n
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   (8) 

If the early-warning factor iC  showed the essential 
attribute, namely the negative effect in natural disasters, 
then: 
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Thus, under the natural disasters emergency, the initial 

risk early-warning sample matrix R  turned into the 

standard matrix R : 
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4.2. Preference Information Entropy Calculation 

on Risk Early-Warning Factors 
 
The weight value of early-warning factor was a con-

cernful information in early-warning structure for risk 
natural disasters, which was easily impacted by human 
personality. There was complexity and uncertainty, as 
well as contradiction in the decision-making process, so 
it was difficult to estimate the specific factor weight. 

Entropy was a measure of uncertain due to the un-
known part of a message system [12]. With Entropy 
theory, the weight value could be determined through the 
inner components and relations in the risk early-warning 
system. It was absolutely an impersonal weighting me-
thod. This method used entropy value to reflect the de-
gree of information disorder, which could effectively 
reduce subjective bias on indicator weight. 

According to the standard matrix R  for risk early- 
warning sample, suppose that ijf  showed the propor-
tion of risk early-warning event jE  on the risk early- 
warning factor iC , then: 
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        (11) 

In terms of the information entropy theory [8], the 
natural disaster conditions and the risk entropy principles 
[13], the Shannon entropy value of the early-warning 
factor iC  could be got with the following equation, as 
shown in (12). 
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Here, ie  said the entropy value of the risk early- 
warning samples in natural disaster. As the entropy value 
show greater, it reflected the greater degree of internal 
disorder in the natural risk system. As 0ijf  , ijf   
0.00001 was set. 

Thus, for natural disasters, the weight of risk early- 
warning iC  was calculated, as: 
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where i  said the weight value of risk early-warning 
factor iC  in natural disaster event. 
 
4.3. Risk Early-Warning DEA Model with  

Preference Entropy Weight 
 
Make the risk early-warning sample kE  of natural dis-
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aster as decision-making unit, and improve the non- Arc-
himedean infinitesimal risk early-warning DEA model 
according to the preference weight of risk early-warning 
factor for natural disasters. Then, risk early-warning 
DEA model with preference entropy weight was estab-
lished on the risk early-warning sample kE , such as 
model (14). 
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     (14) 

In model (14), the expression and significance of θ , 
 , i

 , i
  and other variables, were consistent with 

model (6). And, model (14) carried forward entropy 
analysis in disaster information systems [14]. 
 
4.4. Risk Early-Warning DEA Sentencing 

Guideline with Preference Entropy   
Weight 

 
Suppose that the optimal solution of model (14) was 0θ , 

0 , 0
i
 , 0

i
 , whose expression and significance was 

consistent with model (6). Set  p kV E  as the relative 
safe measurement of risk early-warning sample kE , and 
establish risk early-warning entropy DEA sentencing 
guideline. 

Guideline 3: According to the formula (15), determine 
the order of risk early-warning samples. Then, determine 
the lowest value on the relative safe measurement of risk 

early-warning samples, and sentence the corresponding 
sample as the relative most risk sample unit. 

  min p j
j

V E                (15) 

Guideline 4: Set  pV E  as the relative safe grade 
threshold of risk early-warning samples. If the formula 
(16) was true, the risk early-warning sample jE  was 
sentenced as key risk early-warning unit. 

    1, 2, ,p j pV E V E j n          (16) 

 
5. Case study on Risk Early-Warning for 

Slope Landslide 
 
5.1. Initial Data for Risk Early-Warning Event 

of Slope Landslide Case 
 
For instance, in emergency response on earthquake- 
damaged rock slope engineering, potential landslide was 
the risk event. According to the multi-layer indicator 
system for evaluating the overall safety on rock slope 
engineering in reference [15-18], the risk early-warning 
factors were given, as shown in Table 1. 

Here, essential attributes included rock structure, rock 
mass deformation modulus, rock integrity coefficient, 
cohesion and internal friction angle; and external cha-
racters included slope height, slope angle, maximum 
daily rainfall, monthly total rainfall, seismic level acce-
leration, maximum terra stress, surface deformation rate, 
drainage capability, and others. 

In the emergency response process on earthquake- 
damaged rock slope engineering, it supposed that the risk 
early-warning sample included 1E , 2E , 3E , 4E , 5E  
and 6E , which needed more important focus, and its 
relevant factors and value, as shown in Table 1. 

 
Table 1. Value of the early-warning factor for slope landslide risk samples in earthquake-damaged emergency response. 

Sample 

External factors ( min Type） Essential attributes ( max Type) 

Slope 
height 

Slope 
angle 

Daily 
maximum 
rainfall 

Month 
cumulative 

rainfall 

Seismic 
horizontal 

acceleration 

Maximum
terra 
stress 

Surface 
deformation

rate 

Drainage
performance

Rock 
structure

Rock mass 
deformation 

modulus 

Rock 
integrity 

coefficient 
Cohesion

Internal
friction
angle

1E  0.85 26 56 290 0.15 12.8 0.08 0.25 71 2.7 0.43 0.12 24 

2E  1.15 39 28 245 0.09 14.7 0.26 0.49 54 6.9 0.39 0.18 39 

3E  1.06 12 89 212 0.13 4.1 0.17 0.35 29 7.5 0.75 0.26 14 

4E  0.79 21 63 229 0.07 4.3 0.09 0.21 89 20.5 0.64 0.21 27 

5E  0.54 51 47 192 0.31 11.8 0.32 0.83 86 11.4 0.20 0.29 12 

6E  1.21 28 19 264 0.24 5.7 0.13 0.52 32 8.4 0.54 0.15 25 
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5.2. DEA Calculation on Risk Early-Warning 
 
According to model (6), linear programming model was 
established on the relative safe evaluation of risk early- 
warning, such as model (17). 

In model (17), the optimal solution was got, as 
0.9987pV  . 

Related variables: 

 0 0,0,0,0.8889,0,0
T

λ  , 0 1.0θ  , 

 0 0.148,7.333,0,86.444,0.088,8.978,0,0.063
T   , 

 0 8.111,15.522,0.139,0.067,0
T   . 

Similarly, the relative safe degree DEA evaluation and 
its variable values could be obtained for the risk sample 

2E , 3E , 4E , 5E , 6E , as shown in Table 2. 
According to DEA relative risk sentencing guidelines, 

as Guideline 1 and Guideline 2, the relative safe mea-
surement of 1E  was the minimum value, so it was sen-
tenced as the maximum risk sample. And, the relative 
safe evaluation of 2E , 3E , 4E , 5E  and 6E  was all 
the same 1.0，which said the consistent relative safety. So 
it showed the degradation phenomenon of risk early- 
warning samples, and it was difficult to carefully explain 
the inherent risks. 

 
Table 2. DEA evaluation about risk early-warning case. 

Sample pV  0λ  0θ  0   0   

1E  0.9987  0,0,0,0.889,0,0
T

 1.0  0.148,7.333,0,86.444,0.088,8.978,0,0.063
T  8.111,15.522,0.139,0.067,0

T
 

2E  1.0  0,1,0,0,0,0
T

 1.0  0,0,0,0,0,0,0,0
T

  0,0,0,0,0
T

 

3E  1.0  0,0,1,0,0,0
T

 1.0  0,0,0,0,0,0,0,0
T

  0,0,0,0,0
T

 

4E  1.0  0,0,0,1,0,0
T

 1.0  0,0,0,0,0,0,0,0
T

  0,0,0,0,0
T

 

5E  1.0  0,0,0,0,1,0
T

 1.0  0,0,0,0,0,0,0,0
T

  0,0,0,0,0
T

 

6E  1.0  1,0,0,0,0,1
T

 1.0  0,0,0,0,0,0,0,0
T

  0,0,0,0,0
T

 

 

8 5

1 1

1 2 3 4 5 6 1

1 2 3 4 5 6 2

1 2 3 4 5 6 3

1 2 3 4 5 6 4

min

0.85 1.15 1.06 0.79 0.54 1.21 0.85

26 39 12 21 51 28 26

56 28 89 63 47 19 56

290 245 212 229 192 264 290

p j j
j j

V    

       

       

       

      

 

 









 
   

 
      
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      

 

1 2 3 4 5 6 5

1 2 3 4 5 6 6

1 2 3 4 5 6 7

1 2 3 4 5 6 8

0.15 0.09 0.13 0.07 0.31 0.24 0.15

12.8 14.7 4.1 4.3 11.8 5.7 12.8

0.08 0.26 0.17 0.09 0.32 0.13 0.08

0.25 0.49 0.35 0.21 0.83 0.52 0.2



       

       

       

      









      

      

      

      

1 2 3 4 5 6 1

1 2 3 4 5 6 2

1 2 3 4 5 6 3

1 2 3 4 5 6 4

1 2 3

5

71 54 29 89 86 32 71

2.7 6.9 7.5 20.5 11.4 8.4 2.7

0.43 0.39 0.75 0.64 0.20 0.54 0.43

0.12 0.18 0.26 0.21 0.29 0.15 0.12

24 39 14 27



      

      

      

      

  









      

      

      

      

   4 5 6 5
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12 25 24
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                    (17)
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5.3. Risk Early-Warning DEA Model with   

Entropy Weight 
 
Risk early-warning samples were prepared in Table 1. 
Firstly, standardize the initial risk early-warning data 
according to Formulas (7), (8), (9) and (10). Then, cal-
culate the entropy value and weight value of the natural 
risk early-warning indicator according to Formulas (11), 
(12) and (13), Table 3 showed the entropy value and 
weight value. 

In Table 3, the entropy value reflected the amount of 
useful information that the early-warning indicators pro-
vided for landslide early-warning system in the earth-
quake-damaged slope engineering. For example, “slope 
height” showed the maximum entropy value, and its 
weight value was 0.0803, which was the minimum weight 
value in the risk indicators. Information effectiveness of 

the entropy measurement denoted the changing rule, 
which has the greater entropy value and the smaller 
weight value of the risk early-warning factor. 

According to model (14), the relative safe entropy 
DEA evaluation model of risk early-warning sample 1E  
was erected, such as (18). 

In model (18), the optimal solution was got, as 
2.5362pV  . 

Related variables: 

 0 0,0,0,0.186,0.048,0
T

λ  , 0 2.5365θ  , 

 0 2.537,0,0.253,1.487, 20.855,0.026, 4.066,0
T    

 0 0,3.991,0.041,0.029,1.759
T   . 

Similarly, the relative safe degree DEA evaluation and 
its variable values could be obtained for the risk sample 

2E , 3E , 4E , 5E , 6E , as shown in Table 4. 

 
Table 3. Entropy value and weight value of the risk early-warning factor for slope landslide risk case. 

Sample 
Slope 
height 

Slope 
angle 

Daily 
maximum 

rainfall 

Month 
cumulative 

rainfall 

Seismic 
horizontal 

acceleration

Maximum
terra 
stress 

Surface 
deformation

rate 

Drainage
performance

Rock
structure

Rock mass 
deformation 

modulus 

Rock 
integrity 

coefficient 
Cohesion

Internal
friction
angle

Entropy 0.8623 0.8277 0.8131 0.8304 0.7564 0.7129 0.7279 0.7540 0.7603 0.8856 0.8322 0.8320 0.8684

Weight 0.0803 0.1004 0.1090 0.0989 0.1420 0.1674 0.1586 0.1434 0.2918 0.1392 0.2042 0.2045 0.1603

 

8 5

1 1

1 2 3 4 5 6 1

1 2 3 4 5 6 2

1 2 3 4 5 6 3

1 2 3 4

min

0.85 1.15 1.06 0.79 0.54 1.21 0.85 0.0803

26 39 12 21 51 28 26 0.1004

56 28 89 63 47 19 56 0.109

290 245 212 229

p j j
j j

V    

       
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  

 

5 6 4

1 2 3 4 5 6 5

1 2 3 4 5 6 6

1 2 3 4 5 6 7

192 264 290 0.0989

0.15 0.09 0.13 0.07 0.31 0.24 0.15 0.142

12.8 14.7 4.1 4.3 11.8 5.7 12.8 0.1674

0.08 0.26 0.17 0.09 0.32 0.13 0.08 0.1586

0.
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1 2 3 4 5 6 3

25 0.49 0.35 0.21 0.83 0.52 0.25 0.1434

71 54 29 89 86 32 71 0.2918
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Table 4. Entropy DEA assessment for risk early-warning case. 

Sample pV  0  0  0   0   

1E  2.5362  0,0,0,0.186,0.048,0
T

 2.5365  2.537,0,0.253,1.487,20.855,0.026,4.066,0
T  0,3.991,0.041,0.029,1.759

T
 

2E  2.7581  0,0.19,0,0.007,0.057,0
T

 2.7582  0,0.337,0,7.785,0,3.29,0.045,0.052
T

  0,1.136,0.01,0.015,2.028
T

 

3E  2.4959  0,0,0.169,0.041,0.003,0
T

 2.4961  0,0,0,6.507,6.754,0.021,0.816,0.034,0.056
T  0.261,1.083,0,0,1.245

T
 

4E  3.492  0,0,0,0.2529,0.0402,0
T

 3.4922  0,0,6.156,13.448,0.005,0.952,0.014,0.019
T  0,2.79,0.039,0.022,2.984

T
 

5E  3.6336  0,0,0,0,0.292,0
T

 3.6339  0,3.725,4.902,12.977,0.07,3.735,0.091,0.19
T  0,1.74,0.018,0.025,1.58

T
 

6E  2.5951  0,0.007,0,0,0.035,0.186
T

 2.5952  0,0.03,0,10.187,0.032,0.902,0.016,0.064
T  0,0.842,0,0.009,1.335

T
 

 
According to risk early-warning entropy DEA sen-

tencing guideline, namely Guideline 3, the relative safe 
order of the risk early-warning disaster samples could be 
obtained as  3pV E  <  1pV E  <  6pV E  <  2pV E  
<  4pV E  <  5pV E . 

In accordance with Guideline 4, set the relative safe 
threshold of the risk early-warning samples as 

  3.0pV E  , then sentence the risk sample 3E , 1E , 

6E , 2E  as the important risk early-warning units. 
Comparing the calculation outcome of landslide risk 

case of earthquake-damaged emergency response in Ta-
ble 2 and Table 4, entropy DEA model could explore 
more information, whose conclusion was more reliable 
than the standard DEA model, benefiting the sentencing 
about the relative risk measurement of risk early-warning 
samples for natural disasters. 
 
6. Conclusions 
 
1) Differentiate the risk early-warning factors of natural 
disasters into essential attributes and external characters. 
Using the integration of Entropy and DEA model, risk 
early-warning model was erected. It made the best of 
information, and had high reliability. This algorithm was 
easy to realize by computer software, and had good re-
sults. It was a new way for risk early-warning of natural 
disasters. 

2) Determinating the weight value of natural risk early 
warning indicator through entropy value, solved the con-
flicts and incompatibilities among indicators, and elimi-
nated the effect of random personality. 

3) Risk landslide early-warning case in earthquake 
emergency response testified, that entropy DEA model 
explored more implicit preference information of essen-
tial attributes and external characters in early-warning 
samples, whose outcome reflected more additional risk 
information than the standard DEA model, effectively 
improving the sentencing on relative risk degree of early- 

warning samples for natural disasters. 
4) Entropy DEA model integrated the objectivity of 

DEA model and the information entropy of early-war- 
ning samples, whose essence was the preference DEA 
model based on entropy weight. And, its result was more 
realistic and widely useful. But how to assess core fac-
tors in risk early-warning system needed further explora-
tion. 
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