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ABSTRACT 

We investigated the vertical variability of toxic potential (i.e. proportions of cells containing microcystin genes) and 
genotypic structure within different populations of Microcystis aeruginosa that developed in deep artificial reservoirs 
on the Loire River (France). We demonstrated that a great qualitative vertical heterogeneity could exist within a single 
bloom of this cyanobacterium in deep lakes. Indeed, we observed important vertical shifts of both toxic potential and 
genotypic structure, whatever the bloom magnitude. These variations occurred mainly within the euphotic zone and 
proved to occur independently from abundance vertical shifts. One of the most striking results of this study is that the 
genotypic structure of a population of M. aeruginosa was more variable between different depths sampled at a single 
site than between different sites of the same reservoir sampled on top of the water column. In the same way the propor- 
tion of potentially toxic cells was sometimes more variable vertically than horizontally. The occurrence of such vertical 
heterogeneity in three different blooms suggests that this could be a frequent pattern within populations of M. aerugi- 
nosa. 
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1. Introduction 

Microcystis aeruginosa is a widespread cyanobacterium 
that can proliferate in freshwater ecosystems to form 
dense blooms in surface waters. These blooms can cause 
many ecological, socio-economical and health hazards, 
especially when M. aeruginosa cells produce the micro- 
cystin, a potent hepatotoxin [1-3]. Many comprehensive 
studies have therefore been realized in order to explain 
the ecological success of this cyanobacterium and to un- 
ravel the complex set of factors driving both its dynamics 
and its toxicity. Such previous studies mainly dealt with 
the genetic diversity of M. aeruginosa’s populations 
[4-7], the toxic potential of M. aeruginosa [8-12], and the 
determinism of the different steps of M. aeruginosa’s life 
cycle [13-16]. 

From these numerous investigations, it was demon- 
strated that the toxic potential in M. aeruginosa’s blooms 

resulted from the abundance of cells carrying microcystin 
genes, the expression of these genes, the various produc- 
tion rates of microcystin by the various toxic strains pre- 
sent in the bloom, the fate of the microcystins produced 
and the microcystin variants that were produced [10, 
17-21]. All these toxic-potential-related parameters could 
be regulated by different intracellular or environmental 
factors (both biotic and abiotic), resulting in a high tem- 
poral variability [8,22,23] and the impossibility to predict 
the toxicity of a bloom. 

Concerning the dynamics of M. aeruginosa’s popula- 
tions, although the growth control by resources availabil- 
ity and climate is quite well known [24], the drivers of 
the temporal succession of different genotypes leading to 
bloom development and decay [23,25,26] still remain to 
be elucidated. Moreover, temporal shifts of the genotypic 
structure at a given sampling point can be accompanied 
by significant variations of the toxic potential of a bloom *Corresponding author. 
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and can occur within two weeks [8,27]. Understanding 
the regulation of this temporal genotypic succession is 
thereafter of major importance. Several putative driving 
forces have already been proposed: fitness-related selec- 
tion during the growth period [23,25], contribution from 
other sites within the ecosystem, through horizontal 
transport [25,28] or selective interactions with the ben- 
thic compartment [14,15,29]. However, such contribution 
relies on a heterogeneous spatial distribution that is yet to 
be further characterized within natural populations of M. 
aeruginosa. 

To date, the spatial heterogeneity within a single 
population of M. aeruginosa has only been demonstrated 
in the horizontal dimension, on top of the water column 
[25,28]. However, because of water column mixing 
events, of the continuous sedimentation of some colonies 
of M. aeruginosa throughout the bloom period [29], and 
of the ability of the colonies to migrate in the water col- 
umn [30], the colonies of M. aeruginosa are observed 
throughout the water column. Then the question arises 
whether this vertical distribution could result in a vertical 
structuration of natural populations of M. aeruginosa, 
regarding their genetic structure and toxic potential. 
Through water column mixing, one can expect a homo- 
geneous vertical distribution of the main genotypes con- 
stituting a population. On the contrary, considering that 
colonies can migrate more or less deep and more or less 
fast depending on their size [30], and considering that 
different genotypes may present various tolerances to 
deep environments conditions, one could predict a verti- 
cal heterogeneity within a population. Considering these  

hypotheses, such a vertical heterogeneity could represent 
another source of genotypic succession observed on top 
of the water column. 

In order to provide a first qualitative assessment of the 
vertical structure within natural populations of M. aeru- 
ginosa, we investigated three different blooms, differing 
in their magnitude and sampled in two different freshwa-
ter reservoirs. In relation to physicochemical assessment 
allowing characterizing the stability of the water column, 
we studied the vertical variations of abundance, toxic 
potential and genetic structure of M. aeruginosa’s popu- 
lations. 

2. Material and Methods 

2.1. Site Description, In-Situ Measurements and 
Sampling 

Sampling was carried out in lakes Grangent and Villerest, 
two artificial dam reservoirs established on the Loire 
River, in France (Figure 1). On September 7th 2009, 
three sites of the Grangent reservoir and one site of the 
Villerest reservoir were investigated (for more informa- 
tion on the sampling stations, see Table 1). At each sam- 
pling station, water was sampled at −0.5 m, −2.5 m, −5 m, 
−7.5 m, −10 m, −15 m, −20 m, −25 m and −30 m de- 
pending on the maximal depth of the sampling sites.  

In 2010, sampling was completed by investigating Vil- 
lerest reservoir on September 6th and 22nd. For this sec- 
ond year, and according to the results obtained for the 
year 2009, sampling depths were modified as follows: 
surface scum, −0.5 m, −1.5 m, −2.5 m, −5 m, −7.5 m,  

 

“Pre” 

“Liz” 

“Cam” 

“Gra” 

 

Figure 1. Geographical location of the two French reservoirs studied and sampling locations in each reservoir. 
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Table 1. Main characteristics of the study sites at each sampling date. Zeu: lower limit of the euphotic zone, calculated from 
Secchi disk measurements. 

 Grangent reservoir Villerest reservoir 

Sampling station Gra Cam Liz Pre 

GPS coordinates 
45˚27'57"N, 
4˚15'25"E 

45˚27'45"N,  
4˚15'28"E 

45˚26'57"N,  
04˚15'40"E 

45˚55'59"N,  
4˚1'34"E 

Sampling date 9/9/7 9/9/7 9/9/7 9/9/7 10/9/6 10/9/22 

Maximal depth (m) 12 40 20 11 23 15 

Zeu (m) 6.1 6.8 5.7 5.4 1.4 1.8 

 
−10 m, and −12.5 or −15 m depending on the maximal 
depth at the sampling site. 

According to the cyanobacterial biomass, between 2 
and 150 L of water were sampled using either a Van 
Doorn bottle or a filtrating pump as described in [31], 
and then concentrated on a 25 µm mesh to a final volume 
of 1 L. Surface scum samples did not need to be concen- 
trated on 25 µm because of their high cyanobacterial 
biomass. 

In parallel, vertical profiles of temperature and oxygen 
concentration were performed with a multiparameter 
probe ProOdOTM (Ysi, Germany). Water transparency 
was measured with Secchi disk, and the depth of the eu- 
photic zone (Zeu) estimated as described by [32]:  

eu sZ 2.7 Z   

where Zs is the depth at which the Secchi disc disappears. 
Back to the lab, each concentrated water sample was 

used as follows: 3 mL were stored at −20˚C in methanol 
(75% final concentration) prior to microcystin extraction, 
960 µL were fixed with glutaraldehyde (1% final con- 
centration) for future cell enumerations, and 50 to 150 
mL were filtrated on 1.2 µm polycarbonate filters (Mil- 
lipore, Billerica, MA, USA) prior to DNA extraction. 

2.2. Cell Enumerations 

Rapid disruption (<1 min) of the colonial structure was 
produced by low-power ultrasonic vibration (20 kHz) 
[33,34]. Isolated cells of M. aeruginosa were then coun- 
ted under a microscope (Carl Zeiss, Oberkochen, Ger- 
many) at ×400 magnification with a Thoma counting 
chamber. 

2.3. DNA Extraction and Molecular Analyses 

DNA extraction was performed as previously described 
[35]. Briefly, cyanobacteria collected on filters were 
subjected to a chemical lysis by the use of lysosyme (2.5 
mg) and SDS (1% final), prior to a phenol-chloroform 
purification and ethanol precipitation of DNA. The ex- 
tracted DNA was stored in water at −20˚C until used. 

The toxic potential of the studied blooms of M. 

aeruginosa was assessed at every sampled depth by 
quantitative PCR (qPCR) assays using the ΔCt method 
adapted for Microcystis [25], as described previously 
[15]. This method allowed us to estimate the proportion 
of potentially toxic cells of M. aeruginosa, i.e. cells car- 
rying the mcyB gene, one of the 10 genes of the mcy 
cluster responsible for the synthesis of the microcystin. 
Such cells are further referred to as mcyB+ cells in the 
manuscript. 

The genotypic structure within the M. aeruginosa’s 
populations studied was measured at every sampled 
depth by PCR and capillary electrophoresis single-strand 
conformation polymorphism (CE-SSCP). The 16S-23S 
ITS region was amplified by PCR as described previ- 
ously [7,11]. The size of the PCR products (around 250 
bp) was checked on 1% ethidium bromide stained aga- 
rose gel, with Hyperladder I. PCR products were then 
diluted between 20 and 100 fold, depending on the band 
intensity on the gel, and CE-SSCP was performed as 
described in [36]. DNA extracted from water sampled at 
−10 m at “Pre” station in 2009 could not be amplified 
through PCR and could not consequently be analyzed 
through CE-SSCP. 

2.4. Data Analysis 

Raw SSCP data were analyzed with the R package (ver- 
sion 2.10.1). Statfingerprints (version 2.0) was used to 
align CE-SSCP profiles with the internal standard (Gene- 
Scan ROX) and to normalize the entire area of CE-SSCP 
patterns prior to calculate Simpson’s diversity index 
(−log(D)) for each sample [37]. Normalized data were 
used to calculate Euclidian distances between the differ-
ent samples using XLStat (version 2010.3.03, Addinsoft, 
Paris, France). 

XLStat was also used for every other statistical analy- 
sis, with a level of significance set at 5%. Correlation 
between variables consisted of Spearman’s correlation 
test when n < 30 and Pearson’s correlation test when n > 
30. The proportion of mcyB+ cells was compared be- 
tween the different depths of each vertical profile 
through Kruskal-Wallis’ test or analysis of variance 
(ANOVA), depending on the result of previous homo- 
scedasticity analyzes by Bartlett’s test. 
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3. Results 

3.1. Physical Conditions within the Water  
Column 

The water temperature on top of the water column was 
very similar at every sampling site and date, ranging be- 
tween 21.0˚C and 23.3˚C. Among the different sampling 
sites we prospected, the “Cam” station of the Grangent 
reservoir was the only one where a thermal stratification 
of the water column could be observed, with a thermo- 
cline located between 23 and 26 m depth (Figure 2). In 
the epilimnion at this sampling site, and all along the 
water column of every other sampling site, the water  
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Figure 2. Lower limit of the euphotic zone (Zeu), tempera- 
ture and oxygen vertical profiles at the different sampling 
sites and dates. Upper graphs correspond to Grangent res- 
ervoir, lower graphs correspond to Villerest reservoir. (a): 
“Cam” station. (b): “Liz” station. (c): “Gra” station. (d): 
“Pre” station on September 7th 2009. (e): “Pre” station on 
September 6th 2010. (f): “Pre” station on September 22nd 
2010. 

temperature appeared to be quite homogeneous. This 
homogeneity was confirmed by vertical profiles of dis- 
solved oxygen concentrations (Figure 2).Concerning 
light penetration within the water column, the euphotic 
layer appeared to be quite thick at the sampling stations 
prospected in 2009 (Zeu ranging from 5.4 to 6.8 m depth), 
whereas it was more restricted in 2010 (Zeu < 1.8 m; Ta- 
ble 1). 

3.2. Vertical Variations of M. aeruginosa’s Cells 
Concentration 

Whatever the sampling site or date, the maximal cell 
concentration was always recorded on top of the water 
column (Figure 3). Then, the magnitudes of the different  
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Figure 3. Vertical variations in Microcystis cells concentra- 
tions and proportions of potentially toxic cells (mcyB+ cells) 
at the different sampling sites and dates. Mean values (± SD) 
of measurement replicates. Upper graphs correspond to 
Grangent reservoir, lower graphs correspond to Villerest 
reservoir. (a): “Cam” station. (b): “Liz” station. (c): “Gra” 
station. (d): “Pre” station on September 7th 2009. (e): “Pre” 
station on September 6th 2010. (f): “Pre” station on Sep- 
tember 22nd 2010. 
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blooms appeared to be very different: quite low cell con- 
centrations were observed in both reservoirs in 2009 
(from 5.6 to 16.9 × 106 cells·L−1 at 0.5 m depth), whereas 
the bloom of 2010 in Villerest reservoir produced a thick 
scum containing 69.4 × 109 cells·L−1 (Figure 3). 

dominants peaks on CE-SSCP spectra (Figure 4), which 
can be interpreted as changes in the number or the iden- 
tity of dominants genotypes. These changes generally led 
to increased Euclidian distances between different depths 
(Table 2) and/or were sometimes accompanied by 
im-portant variations of Simpson’s diversity index (Fig- 
ure 5). For example, in Villerest reservoir on September 
6th 2010, quite similar and rich CE-SSCP spectra were 
obtained from samples originating from scum and −0.5 m, 
with Simpson’s diversity indexes that reached 4.6 and 
3.4, respectively. A small Euclidian distance of 3.4% was 
calculated between those two samples. On the other hand, 
the sample originating from −1.5 m presented a very dif- 
ferent and simplified CE-SSCP spectrum when compared 
to scum and −0.5 m samples. As a consequence, Simp- 
son’s diversity index dropped to 0.9, and the Euclidian 
distance between −1.5 and −0.5 m rose to 12.7%. 

Along with the various magnitudes of the different 
blooms studied, the accumulation of M. aeruginosa’s 
cells on top of the water column varied between sam- 
pling sites and dates: there was 385 times more cells in 
the scum than at −1.5 m depth in September 6th 2010 in 
Villerest reservoir, whereas no scum was observed in 
2009 in Grangent reservoir where there was only 1 to 6 
times more cells at −0.5 m depth than at −2.5 m depth 
(Figure 3). 

3.3. Vertical Heterogeneity of Genotypic  
Structure and Genetic Diversity within a 
Population of M. aeruginosa The sampling campaign of 2009 revealed that those 

vertical variations appeared to be mainly restricted to the 
surface layers of the water column, i.e. to the first five 
meters. This observation was confirmed in 2010, with ma- 
jor changes occurring between 0.5 and 1.5 m (Figure 4). 

At each sampling site and each sampling date, we ob- 
served vertical variations within the genotypic structure 
of M. aeruginosa’s populations. Such vertical variations 
consisted in changes in the number or the identity of  
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Figure 4. CE-SSCP profiles of Microcystis blooms sampled at different depths. All profiles were aligned using the same in- 
ternal standards. (a): “Cam” station. (b): “Liz” station. (c): “Gra” station. (d): “Pre” station on September 7th 2009. (e): 
“Pre” station on September 6th 2010. (f): “Pre” station on September 22nd 2010. 
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Table 2. Euclidian distances between the CE-SSCP spectra. (a): between different depths within each station. (b): between 
the three stations of Grangent reservoir at −0.5 m. 

(a) 

Site and date 
Sampling 

depth 
Scum −0.5 m −2.5 m −5 m −7.5 m −10 m −15 m −20 m −25 m −30 m 

−0.5 m - 0 - - - - - - - - 

−2.5 m - 0.043 0 - - - - - - - 

−5 m - 0.047 0.040 0 - - - - - - 

−7.5 m - 0.100 0.092 0.068 0 - - - - - 

−10 m - 0.128 0.119 0.097 0.035 0 - - - - 

−15 m - 0.118 0.110 0.086 0.027 0.036 0 - - - 

−20 m - 0.127 0.118 0.094 0.033 0.035 0.013 0 - - 

−25 m - 0.134 0.124 0.101 0.041 0.044 0.024 0.017 0 - 

Cam 9/9/7 

−30 m - 0.098 0.089 0.067 0.039 0.044 0.058 0.063 0.072 0 

−0.5 m - 0 - - - - -    

−2.5 m - 0.064 0 - - - -    

−5 m - 0.091 0.038 0 - - -    

−7.5 m - 0.064 0.026 0.041 0 - -    

−10 m - 0.109 0.055 0.033 0.059 0 -    

Liz 9/9/7 

−15 m - 0.091 0.068 0.068 0.075 0.093 0    

−0.5 m - 0 - - - -     

−2.5 m - 0.069 0 - - -     

−5 m - 0.071 0.043 0 - -     

−7.5 m - 0.039 0.066 0.049 0 -     

Gra 9/9/7 

−10 m - 0.100 0.099 0.062 0.070 0     

−0.5 m - 0 - - -      

−2.5 m - 0.050 0 - -      

−5 m - 0.114 0.096 0 -      
Pre 9/9/7 

−7.5 m - 0.073 0.055 0.057 0      

Scum 0 - - - - - - - -  

−0.5 m 0.034 0 - - - - - - -  

−1.5 m 0.118 0.127 0 - - - - - -  

−2.5 m 0.105 0.115 0.029 0 - - - - -  

−5 m 0.103 0.112 0.025 0.037 0 - - - -  

−7.5 m 0.108 0.117 0.056 0.068 0.035 0 - - -  

−10 m 0.114 0.124 0.028 0.048 0.015 0.031 0 - -  

−15 m 0.128 0.137 0.043 0.066 0.035 0.030 0.022 0 -  

Pre 10/9/6 

−20 m 0.044 0.060 0.089 0.079 0.072 0.079 0.083 0.098 0  

Scum 0 - - - - - - -   

−0.5 m 0.029 0 - - - - - -   

−1.5 m 0.021 0.040 0 - - - - -   

−2.5 m 0.035 0.021 0.038 0 - - - -   

−5 m 0.027 0.031 0.023 0.030 0 - - -   

−7.5 m 0.037 0.039 0.031 0.035 0.015 0 - -   

−10 m 0.034 0.033 0.030 0.030 0.015 0.008 0 -   

Pre 10/9/22 

−12.5 m 0.025 0.023 0.027 0.029 0.014 0.020 0.016 0   

(b) 

 Cam Gra Liz 

Cam 0 - - 

Gra 0.075 0 - 

Liz 0.067 0.071 0 

 
Hence, in both years, most part of the vertical variations 
occurred within or at the bottom of the euphotic zone. 

On the other hand, a great homogeneity of genotypic 

structure was observed between deep samples of a same 
sampling station, with a only few number of genotypes 
that were highly dominant from 1.5 - 5 m depth to the 
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Figure 5. Vertical variations of Simpson’s diversity index. 
(a): “Cam” station. (b): “Liz” station. (c): “Gra” station. (d): 
“Pre” station on September 7th 2009. (e): “Pre” station on 
September 6th 2010. (f): “Pre” station on September 22nd 
2010. 
 
bottom of the water column (Figure 4). This homogene- 
ity in deep water layers resulted in smaller values of 
Simpson’s diversity index and in little Euclidian dis- 
tances between the deep samples (Table 2 and Figure 5).  
One vertical profile, harvested from Villerest reservoir 
on September 22nd 2010, appeared to contradict this trend. 
Indeed, in this vertical profile, the most different CE- 
SSCP spectra differed only from 4%, and no major shift 
of diversity was observed. 

Although major shifts of genotypic structure appeared 
to occur mainly in the euphotic zone, no obvious link 
between depth and the diversity (estimated by Simpson’s 
diversity index) could be observed, neither when consid- 
ering all the vertical samples together (Pearson’s correla- 
tion test, n = 41, p > 0.05), nor when considering each 
vertical profile separately (Spearman’s correlation tests, 
n ≤ 9, p > 0.05). 

3.4. Vertical Fluctuations of M. aeruginosa’s 
Toxic Potential 

The proportions of mcyB+ cells in Grangent reservoir in 
2009 were quite low, ranging from 4% to 28%. This 
range was higher in Villerest reservoir, with extreme 
values of about 10% and 55% for both 2009 and 2010 
(Figure 3). 

Whatever the sampling site or date, the degree of 
thermal homogeneity of the water column, or the abun- 
dance of M. aeruginosa, we observed significant changes 
of the proportions of mcyB+ cells along the water column 
in each vertical profile we established (Kruskal-Wallis’ 
tests with Dunn’s pairwise comparisons or ANOVA with 
Tukey’s pairwise comparisons, p < 0.05). Proportions of 
mcyB+ cells could either increase in deep water layers as 
in “Pre” station in 2010, or on the contrary decrease in 
deep water layers as in “Cam” and “Pre” stations in 2009, 
or even vary in a more chaotic way without any particu- 
lar trend as in “Gra” and “Liz” stations in 2009 (Figure 
3). 

These results thereby confirmed the vertical heteroge- 
neity of the studied blooms of M. aeruginosa, as demon- 
strated with genotypic structure analyses. Moreover, the 
main changes of toxic potential were observed at similar 
depths (in the euphotic zone) that the major shifts in 
genotypic structure. Some rare exceptions were observed 
in the deepest water layers where significant changes of 
toxic potential occurred independently from any major 
shift in genotypic structure (Figures 3 and 4). 

3.5. Comparison of Vertical and Horizontal  
Heterogeneity 

Sampling the same day at three stations of the Grangent 
reservoir in 2009 allowed us to compare horizontal het- 
erogeneity on top of the water column to vertical hetero- 
geneity. The genetic diversity appeared to vary in a 
higher range on the vertical dimension at each sampling 
station (maximal differences of Simpson’s diversity in- 
dex ranging from 1.2 to 2.8) than between the three sites 
when compared at −0.5 m (maximal difference of 0.6, 
Figure 6(a)). In the same way, higher divergences of 
genotypic structure were observed vertically with maxi- 
mal Euclidian distances exceeding 10%, whereas the 
maximal Euclidian distance between the three sites at 
−0.5 m was 7.5% (Figure 6(b)). 

A similar pattern was observed for the toxic potential 
of this population of Grangent reservoir in 2009, al- 
though less obvious. Indeed, the range between the 
maximal and the minimal proportion of mcyB+ cells be- 
tween different depths at the “Cam” station reached 
23.7%, whereas it was not higher than 15.6% at −0.5 m 
between the three stations of the reservoir. However, the 
vertical range of proportions of mcyB+ cells at “Gra” and  
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Figure 6. Comparison of vertical vs. horizontal heterogene- 
ity in Grangent reservoir in 2009. Maximal differences 
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were calculated from vertical profiles of “Cam” station 
(black bars), “Gra” station (grey bars), “Liz” station (white 
bars) and from measurements in samples originating from 
−0.5 m at the three stations (hatched bars). 
 
“Liz” stations did not exceed 12.4% (Figure 6(c)). 

4. Discussion 

By studying the genotypic structure and the toxic poten- 
tial of natural populations of M. aeruginosa at different 
depths, we demonstrated that a great qualitative vertical 
heterogeneity could exist within a single bloom of this 
cyanobacterium in deep lakes. To the best of our knowl- 
edge, this is the first time that such a vertical characteri- 
zation is performed within natural blooms of M. aerugi- 
nosa. However, since a vertical heterogeneity was ob- 
served in three different blooms, this could be a frequent 

pattern within populations of this cyanobacterium. 
Moreover, both small and dense blooms presented het- 
erogeneous genotypic structures and heterogeneous dis- 
tributions of potentially toxic cells on the vertical dimen- 
sion, in spite of unstratified water columns. Vertical 
qualitative shifts were recorded whereas no or little 
abundance variations could be observed. On the other 
hand, the most important vertical abundance shifts did 
not result in any significant variation of toxic potential or 
of genotypic structure. So, both the toxic potential and 
the genotypic structure of M. aeruginosa’s bloom can 
vary on the vertical dimension independently from abun- 
dance variations. 

Until now, the heterogeneity in M. aeruginosa’s 
blooms had been demonstrated on a horizontal dimension 
on top of the water column. Indeed, at the same time, 
important differences of biomass can be observed at dif- 
ferent sites of a same lake as the result of either different 
growth rates (because of local variations of resources 
availability), or current-induced local accumulations [7, 
25,28]. Such horizontal heterogeneity had already been 
proven to sometimes result in spatial variations of geno- 
typic structure and toxic potential [25,28]. Our study 
corroborates this result since both these parameters dif- 
fered between the different sampling sites we prospected 
in Grangent reservoir in 2009. Associated to the dynam- 
ics resulting from growth and decay, horizontal hetero- 
geneity was hence supposed to be one of the main drivers 
of the high temporal variability of toxic potential and 
genotypic structure that were frequently reported in 
blooms of M. aeruginosa [4,8,22,23,25,26,38,39]. Now, 
the vertical heterogeneity we observed through this study 
represents a third part to consider in order to fully under- 
standing the temporal dynamics of genetic diversity and 
toxin production in M. aeruginosa’s blooms. Indeed, one 
of the most striking results of this study is that both the 
genotypic structure and the toxic potential of a popula- 
tion of M. aeruginosa could be more variable between 
different depths sampled at a single site than between 
different sites of the same reservoir sampled at the same 
depth, on top of the water column. Thereafter, this sur- 
prising observation sheds the light on the potential influ- 
ence of this vertical heterogeneity on the temporal dy- 
namics observed on top of the water column. Hence, 
through water column mixing, deep genotypes could 
replace surface dominant genotypes, thereafter inducing 
a potential shift in the toxic potential observed at the wa- 
ter surface. Therefore, future investigations are now 
needed to decipher the relative influences of horizontal 
and vertical heterogeneities onto the temporal qualitative 
and quantitative dynamics of M. aeruginosa’s blooms 
that can be observed on top of the water column. 

According to the literature, several factors could po- 
tentially drive such a vertical heterogeneity by influenc- 
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ing the distribution of the colonies of M. aeruginosa into 
the water column: 1) interactions with the benthic com- 
partment, by recruiting benthic colonies or by the con- 
tinuous sedimentation of planktonic ones [29,40]; 2) ver- 
tical migration of the colonies, which can regulate their 
position in the water column by balancing their internal 
stock of gas vacuoles and carbon reserves [13,30,41,42]; 
and 3) fitness-related natural selection, which could al- 
low some particular genotypes or phenotypes to better 
survive or develop at a specific depth because of particu- 
lar conditions such as light intensity, nutrients availabil- 
ity or benefits of microcystin production [10,23,43-45]. 
Since the qualitative shifts we observed were mainly 
restricted to the surface water layers of the deep reser- 
voirs we studied, the influence of the interactions with 
the benthic compartment through recruitment or sedi- 
mentation can be minimized. Moreover, more work is 
needed to determine to what extent recruitment and 
sedimentation processes could lead to qualitative shifts in 
the planktonic compartment. Then, both vertical migra- 
tion and fitness-related vertical differentiation could be 
two major causes of vertical heterogeneity in response to 
vertical stratification of physico-chemical parameters, 
classically occurring during summer in deep lakes. Since 
in our case study, no thermal stratification was observed, 
a physical stratification of the water column cannot ex- 
plain the vertical heterogeneity that we observed in M. 
aeruginosa’s populations. Moreover, nitrogen and phos- 
phorus are not limiting resources in surface water layers 
of Grangent and Villerest reservoir (D. Latour, personal 
communication). Thereafter, we suppose that light at- 
tenuation in the water column may be the main driving 
factor. Indeed, light is a key control factor of the buoy- 
ancy of M. aeruginosa [41], thus regulating the vertical 
migration of the colonies in natural ecosystems [46]. 
Moreover, different strains of M. aeruginosa can present 
different critical light intensities [47], and recent findings 
demonstrated the link between light intensity and micro- 
cystin production by toxic strains [10,45]. Finally, the 
major part of the qualitative vertical variations we ob- 
served through this study was localized into the surface 
water layers, within or at the lower limit of the euphotic 
zone. Therefore, we hypothesize that light penetration 
could be a critical factor determining the vertical hetero- 
geneity within blooms of M. aeruginosa. 

5. Conclusion 

Through this study, we demonstrated that blooms of M. 
aeruginosa could be heterogeneous in the vertical di- 
mension: both the toxic potential and the genotypic 
structure of the three blooms we investigated were con- 
cerned. From an ecological point of view, the vertical 
heterogeneity in these cyanobacterial populations may be 

involved in bloom development and sustainability, as 
well as in genetic diversity and toxic potential modula- 
tion. Deciphering the precise causes and consequences of 
such vertical heterogeneity will provide interesting fea- 
tures of the ecology of this harmful cyanobacterium with 
regard to its increasing capacity to form dense and toxic 
blooms worldwide. This vertical heterogeneity is also of 
prime importance for the sanitary monitoring of water 
pieces with drinking and/or recreational uses. Indeed, in 
order to deliver the most adapted recommendations for 
users, such vertical heterogeneity should be taken into 
considerations as often as possible by sampling the entire 
water layer into which the cyanobacteria are distributed 
or, at least, the entire euphotic zone, where most of the 
heterogeneity seems to be located. 
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