Applied Mathematics, 2013, 4, 1450-1454

http://dx.doi.org/10.4236/am.2013.410195 Published Online October 2013 (http://www.scirp.org/journal/am)

o2% Scientific
#3% Research

Existence of Positive Solutions for Boundary Value
Problem of Nonlinear Fractional g-Difference Equation”

Liu Yang
Department of Mathematics and Computing Sciences, Hengyang Normal University, Hengyang, China
Email: yangliu19731974@yahoo.com.cn

Received April 14, 2013; revised May 14, 2013; accetped May 21, 2013

Copyright © 2013 Liu Yang. This is an open access article distributed under the Creative Commons Attribution License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

In this paper, we investigate the existence of positive solutions for a class of nonlinear g-fractional boundary value
problem. By using some fixed point theorems on cone, some existence results of positive solutions are obtained.
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1. Introduction

Considering the following boundary value problem of
nonlinear fractional g-difference equation:

(Dgy)(x)==f(xy(x)), 0<x<l3<a<4,
y(0)=(D,y)(0)=(DZy)(0)=0,(D3y)(1) =0,

where f is a nonnegative continuous function and D
is the fractional g-derivative of the Riemann-Liouville
type.

Fractional differential calculus is a discipline to which
many researchers are dedicating their time, perhaps be-
cause of its demonstrated applications in various fields of
science and engineering [1]. Recently, there are many
papers dealing with the boundary value problem of frac-
tional differential equations, see [2-5] and references
therein.

The g-difference calculus or quantum calculus is an
old subject that was initially developed by Jackson [6,7],
and basic definitions and properties of g-difference cal-
culus can be found in [8]. The fractional g-difference
calculus had its origin in the works by Al-Salam [9] and
Agarwal [10]. More recently, maybe due to the explosion
in research within the fractional differential calculus set-
ting, new developments in this theory of fractional g-
difference calculus were made, see [11,12].

The question of the existence of positive solutions for
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fractional g-difference boundary value problems is in its
infancy, see [13-16]. No contributions exist, as far as we
know, concerning the existence of positive solutions for
problem (P).

This paper is organized as follows. In Section 2, some
preliminaries are presented. In Section 3, we discuss the
existence of positive solutions for problem (P).

2. Preliminaries

Let gqe(0,1) and define

_1-q
[a]q - 1_q ’

aelR (2.1)

The g-analogue of the power function (a—b)" with
neN, is

AN

(a-b)’ =1, (a—b)":ni (a-bg“), neN,abeR.

0

=
Il

(2.2)
More generally, if ae R, then
(a—b) —aT]-2229_ 23)
20 a_bqa+n

Note that, if b=0 then a” =a“. The g-gamma
function is defined by

(x-1)
1-—
r)=Y  er\jo1-2-) @4)
(1-a)
and satisfies I', (x+1)= [x]q [, (x). The g-derivative of
afunction f is here defined by
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S (0,1)(0)-tm(0,1)(0)
(2.5)

and g-derivative of higher order by
(Dgf)(x)zf(x), (D:f)(x)zDq<Dg’lf)(x),neN.
(2.6)

The g-integral of a function f defined in the interval
[0,b] is given by

(1) (%)= [ ()dt =x(1-0) . (xa")a", x [0,b].

- 2.7)

If ac[0,b] and f defined in the interval [0,b],
its integral from a to b is defined by

j f(t)d t_j f(t
Remark 2.1. (see [17]) If a=bg",neN and
f(t)>g(t) on [a,b], then
[Cf(t)dgt=>["g(t)d,t

Similarly as done for derivatives, an operator 17 can
be defined, namely,

(1 1)) =1 (x). (15F)(x)=

)dt— j f(t (2.8)

(157 F)(x).neN.

(2.9)
The fundamental theorem of calculus applies to these
operators I, and D, i.e
(D1, F)(%)=f(x) (2.10)
and if f iscontinuousat x=0, then
(1,0, F)(x)= f(x)- f(0). (2.11)

Basic properties of the two operators can be found in
[14]. We now point out three formulas that will be used
later (; D, denotes the derivative with respect to variable

i)
[a(t-s)]" =a“(t- s)“,

Dy (t=5) =[a], (t=5)",

(_ xD, joxf (x,t)dqt)(x) = .fox_xDG| f(x,t)dgt+ f(gx,x).

Remark 2.2. (see [14]) We note that if « >0 and
a<b<t,then

(t-a)“ > (t-b) (2.12)

Definition 2.3. (see [10]) Let «>0 and f be a
function defined on [0,1]. The fractional g-integral of
the Riemann-Liouville type is (19f)(x)= f(x) and
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£ (x) e gt) e
(0= bt

a>0Xxe [0,1].

Definition 2.4. (see [14-16]) The fractional g-deriva-
tive of the Riemann-Liouville type of order a >0 is
defined by (D¢ f)(x)=f(x) and

(D¢ f)(x)=(DF1yf)(x), a>0,

where m is the smallest integer greater than or equal to
o .

Next, we list some properties that are already known
in the literature.

Lemma 2.5. (see [14-16]) Let «, >0 and f bea
function defined on [0,1], Then, the next formulas hold:

D (1715 1)()=(1571)(x),
2) (D1 f)(x)=f(x).

Lemma 2.6. (see [14-16]) Let >0 and p be a
positive integer. Then, the following equality holds:

(1707 F)(x)
p-1 X%~ p+k

:(qulgf)() kz o )(Dgf)(o).

a+k-p+1

(2.14)

(2.15)

Let p=4,inview of Lemma 2.5 and Lemma 2.6, we
see that

(Dgy)(x)==f (x.y(x))
= (I;D:I:’“y)(x):—lgf (% y(x))

S y(X)=cx“ T +e,x" T +ox
a-4 1 x (a-1)
-—— -qt f(t,y(t))d,t
+C4X Fq(a)'[o(x q) ( y( )) q

for some constants c,,c,,c,,c, € R. Using the boundary
condition y(0)=0 we have c,=0. Differentiating
both side of the above equality, one gets

Doy =[a-1], ex** +[a ~2] c,x* 7 +[a~3] cx*™
[Xle=1], (x=at)“™ £ (t, y(t))d,t.

(2.16)

Using the boundary condition (D,y)(0)=0, we have
c; =0. similarly, we have c, =0. From

(B3)y=[a-1],[a-2] [a-3] ex*

1 x
) [[[a-1,[a-2],[a-3], @17)

(x=at) 1 (Ly(1)dgt

(@)
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and boundary value problem (D})y(1)=0, one can
obtain

¢ =c ta)f;(l—qt)(“) f(ty(t)dt. (2.18)

Putting all things together we finally have

yx= (ﬁﬂ (1-at) " £ (t, y(t))dthX“

L o
e

[a-a e o y(0)d

(2.19)
If we define a function G by
(1_,[)(05*4) xe _(X_t)(afl) ’
1 0<t<x<l,
G(xt)= (2.20)

I, (05) (1_t)(a-4) xet,

0<x<t<l.

Hence, in order to solve the problem (P), it is suffi-
cient to find positive solutions of the following integral
equation

1
y(t)=joG(x,qt) f(ty(t))d,t. (2.21)

Some properties of the function G needed in the
sequel are now stated and proved.

Lemma 2.7. Function G defined above satisfies the
following conditions:

G(x,qt)=0, G(xqt)<G(1qt),
()20, G(xa)sela).
forall 0<x,t<1],

G(x,qt)=x*'G(Lqt),forall 0<x,t<1. (2.23)

Proof. Let
g, (xt) = (1) xe - (x—t)“ 0 <t <x<1(2.24)
and
g, (xt)=(1-1)“Vxto<x<t<l.  (2.25)
Itis clear that g,(x,qt)>0.Now, g,(0,qt)=0. For
x =0, in view of (2.3) and Remark 2.2, we have
(e-1)
g, (x.qt)=(1- qt)(H) x“t—xet [x _q_tj
X (2.26)

> x| (1-q0) " - (1-qt)” |20
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Therefore, G(x,t)>0.Moreover,
X Dq gl (Xl qt)

(a-2)
=(1- qt)(H) [« —1]q X —[a —1]q x“? (x —%tj

> [ -1 x| (1-qt) " ~(1-qt) 7 |20,
(2.27)

i.e., g,(xqt) isan increasing function of x. Obviously,
g, (x,qt) is increasing in x, therefore, G(x,qt) is an
increasing function of x for fixed te[0,1]. This con-
cludes the proof of (2.22).

Suppose now that x> qt, then

G(xqt) (1-gt)" x“* —(x—qt)“”
(1_ qt)(a—4) _ (1_ qt)(a—l)

(1)
Xt (1—qt)(“'4)—(1—qtj }

X
(1_ qt)(a—4) _ (1_ qt)(a—l)

X1 _(1_ qt )(11-4) _(1_ qt)(a—l):l 1
> = =X

(1_ qt)(a—4) _(1_ qt)(a—l)

G(1,qt)

(2.28)
If x<qt,then

G(xat) .
SLa) X (2.29)

and this finishes the proof of (2.23).
Let 3=C[0,1] be the Banach space endowed with
norm uf=sup, o y|u(t)|. Define the cone C by

C ={u eJ:u(x)= x"‘1||u||}.

It follows from the non-negativeness and continuity of
G and f thatthe operator T:C — 3 defined by

(Tu)(x) = fole(x,qt) f(tu(t))d,t

is completely continuous [18]. Moreover, for ueC, in
view of (2.22) and (2.23), we have (Tu)(x)=0 on
[0,1] and

(Tu)(x) = j:G(x,qt) f(tu(t))d,t
>x* 1[G (Lat) f(tu(t))dt (231)

2T,

(2.30)

thatis T(C)cC.

Lemma 2.8. (see [19]) Let E be a Banach space,
PcE acone and Q,,Q, two bounded open balls of
E centered at the origin with Q, — Q,. Suppose that
T:PN(Q,\Q)—>P is a completely continuous op-

AM



L. YANG 1453

erator such that either

1) |Tul < |ul.u e PN, and |[Tul|> uf,u e PNoQ,,
or

2) |Tuf|=|uf. uePNay and [Tu| <], ue PNaow,
holds. Then T has a fixed pointin PN(Q,\ ).

3. Main Results

Let Q ={yeC[01]:|y|<nr}.i=1,23,4, where
r. >0 will be defined later.

Theorem 3.1. Suppose that f (t,u) is a nonnegative
continuous function on [0,1]x[0,). In addition, sup-
pose that one of the following two conditions holds:

f 1
lim, o min, o ¥ =00,
(H1)
lim min M =0;
y—o xe[0,1] y ™
f (X,
lim, o min, o % =0,
(H2)
lim min M =
y—m xe[0,1] -

Then problem (P) has at least one positive solution.
Proof. Note that the operator T(C) < C is completely
continuous. Now, assume that condition (H1) holds. Since

fF(xy)

lim,_,, min, y

0] =00, thereexistsan r, >0 such

that
f(xy)=gy for xe[0,1],0<y<r, (3.1)
where the constant &, >0 such that
Slj:G (Lat)t“ d,t > 1. (3.2)
Thus,
f(xy(x)z &y for yeCNaoy, xe[01].

This, together with the definitions of C and Lemma
2.7, implies that forany y e C(oQ,,

[Ty| = max ;G(x, qt) f (t, y(t))dqt

xe[0,1]
1
=[G @at) f (ty(t)dqt
> & [[G(Lat)y(t)d,t (3.3)
> &[G (Lat)t d t]y]

>y].
Thatis, forany yeCNoQ,, [Ty|=|y]-

f
On the other hand, from lim, maX, oy — = 0,
' y

Copyright © 2013 SciRes.

it follows that there existsa L, >0 such that
f(xy)<ey forxe[01],y>L, (3.4)

where the constant &, >0 satisfies

1 1
& [ G(Lat)dt < > (3.5)
Let L, =max, o001 F (X V). Then we have
f(x,y)<e&y+L,, for xe[0,1],y=0. (3.6)

Let r, =max{2q,2L2f:G(1,qt)dqt} and
y e CNoQ,, then
[Ty|| = max :G(x,qt) f(ty(t))dgt

xe[0,1]
= [G(Lat) f(ty(t)dt<[G(Lat)(e,y+L,)dt (3.7)
<e, j:G (Lat)dgt]y]+ L, j:G (Lat)d.t <[y

Thus, the operator T satisfies condition of Lemma
2.8. Consequently, the operator T has at least one fixed
point yeCN((Q) \Ql), which is one positive solu-
tion of the problem 2(P).

Next, we suppose that condition (H2) holds. The proof
is similar to that of the case in which (H1) holds and will
only be sketched here. Let 7=q" with neN. Select

two positive constants &,,&, with g3j;G(l,qt)dqt<1

and 341“‘1j16 (1,qt)d,t >1, respectively. Then, there
exist two positive constants r, and L, such that
f(x,y)<egy, for xe[0,1],0<y<r, (3.8)

f(x,y)>¢y, for xe[0,1],y=> L, (3.9)
It follows from that for ye CN0Q,,
Iyl
= [o(Lat) f(Ly(1)dt<e[G(Lat) y(t)dgt <]y
(3.10)

In addition, let r, = max {2r,, Lz} . If yeCNoQ,,
then
y(x)= 7", > L, for xe[z,1] (3.11)
and
f(xy(x))2&y. forxe[r,1],yeCNoQ,. (3.12)

In view of Remark 2.1, for y e C18Q,, we have

[Ty]| = max [G (x,qt) (¢, y(t))d,t

xe[O,l] 0
1 1
= joe (Lat) f(ty(t))dt> 54er (Lat)y(t)d,t (3.13)
> £, [G(Lat)t"d |y > 2,2 [G (L at)dyty]
>y[.
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Thus, |Ty|=|y| for yeCNoQ,. Consequently, the
operator T has at least one fixed point
yeCN(Q),\Q, which is one positive solution of the
problem (P).

Example 3.2

(x)), 0<x<1

y
¥(0)=(Posy)(0) =(PEsy)(0)=0.(DZsy) (1) =0,
where f(x,y(x))=y?(x)+log(1+y(x)). Obviously,
lim _,ma M:
v20 Mo = )
lim,_,,, max, f (); ) =0

Thus, by the first part of Theorem 3.1, we can get that
the problem above has at least one positive solution.
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