
Open Journal of Applied Sciences, 2013, 3, 12-17 
doi:10.4236/ojapps.2013.32B003 Published Online June 2013 (http://www.scirp.org/journal/ojapps) 

Copyright © 2013 SciRes.                                                                               OJAppS 

Multi-timescale Collaborative Optimization of Distribution, 
Distributed Generation and Load in Microgrid 

Wen Hu, Yun-lian Sun, Yang Wang, Yang-jun Zhou, Meng-ying Wang 
School of Electrical Engineering, Wuhan University, Wuhan City, Hubei Province, China 

Email: huwen@whu.edu.cn 
 

Received 2013 

ABSTRACT 
The distribution loads, output of distributed generations (DGs) and dynamic power price present obvious time-sequence 
property, the typical property is studied in this paper. The model of microgrid (including adjustable load, DGs, storage 
and dynamic power price) is studied. A multi-timescale collaborative optimization model is built towards microgrid; 
main measures in different timescale optimization are realized. An improved adaptive genetic algorithm is used to solve 
the optimization problem, which improved the efficiency and reliability. The proposed optimization model is simulated 
in IEEE 33 node system; the results show it’s effective. 
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1. Introduction 
The smart grid is not exactly same as a microgrid; they 
could offer two competing visions of bringing techno-
logical innovation to the electricity grids. The goals of 
both are same: to maximize services provided by genera-
tion and storage through embedded intelligence, while 
dramatically boosting efficiencies and minimizing costs 
[1]. 

The microgrid, a typical one as shown in Figure 1, can 
be summed up as follows [2]: an integrated energy sys-
tem network consisting of distributed generations (DGs) 
and electrical loads and/or meters operating as a 
autonomous grid either in parallel to or islanded from the 
utility grid. DGs include photovoltaic power (PV), wind 
turbine (WT), electrochemical cell, marsh gas generation 
and so forth; are generally tied together on their own 
feeder, which is linked to the utility grid at a point of 
common coupling (PCC). 

A microgrid is a small-scale version of the traditional 
electricity grid. Like traditional power grid, microgrids 
include generation facilities, distribution lines, and volt-
age regulators. They can be networked with others to 
boost capacity, efficiency, and reliability - or can func-
tion as autonomous islands of power during times of 
emergency or to respond to real-time market conditions. 

This paper brought a multi-timescale model of col-
laborative optimization, for the essential factors in mi-
crogrid present obvious time-sequence property. Genetic 
algorithm is improved by adaptive parameters, to solve 

the optimization problem. The simulations reveal that 
both the optimization model and algorithm are efficient. 

2. Collaborative Optimization in Microgrid 
Collaborative optimization of distribution needs the co-
ordination of distributed generation (DG) output, adjust-
able load and distribution operation. The optimization 
leads to the optimal and economical operation of distri-
bution network, including: 

• Improving the efficiency of the distribution net-
work. 

• Improve the power quality. 
• Promoting the admitting ability of DG supply. 
• Improving the utilization results of DG. 

 

 
Figure 1. Microgrid topology. 
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Power system network structure, load characteristic 
and output characteristics of DG are influential to the 
operating state of grid. The uncertainty, randomness and 
volatility of these subject, are time-varying. Hence, the 
model of collaborative optimization is established in dif-
ferent time scale, shows in Figure 2. 

2.1. Long Term Optimization 
The power loss and reliability are two main economic 
and technical targets to evaluate the distribution. Thus, 
the optimization model is built based on both: 
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In formula above: η1 and η2 are the weight of power 
loss and reliability, ωn is the weight of scenario n, NF is 
the number of scenario formed by the time-sequence 
property of DGs output and loads.  

The mathematical model of power loss f1 is: 
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In formula above: Pi and Qi are the active power and 
reactive power which flow through the branch i; Vi is the 
voltage at the end of the branch i; ki is the state variable 
of branch i, 0 means that branch is out of the power sup-
ply, 1 means that branch is at the power supply; Ri is the 
resistance of branch i; Nl is the number of the branches. 

The mathematical model of reliability f2 is: 
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In formula above: λj is the failure rate of load j, γj is the 
average interruption duration index of load j, Pij is the 
size of load j at time i. 

Subject to: 
Subject to 
1) Voltage constraints 

min maxj j jV V V≤ ≤  
 
 

 
Figure 2. Multi-timescale collaborative optimization. 

2) Branch power constraints 

maxj jS S≤  

3) Flow constraints 
AX D=  

4) Power supply constraints: Network can’t have is-
land nodes and loops 

In formula above: Vjmin and Vjmax are the minimum and 
maximum of the voltage of the node j; Sjmax is the maxi-
mum transmission power value of the branch j; A is net-
work associated matrix; X is the branch flow vector of 
the branch; D is load vector. 

2.2. Medium Term Optimization 
Optimization reconfiguration is the main method of me-
dium term optimization, its main target is divided into: 

• Reduce the risk of load shedding 
• Minimize fault recovery time and outage range 
• Even distributed loads, to avoid overload 
• Minimize the power loss 
• Minimize the ullage of energy in given time 
The mathematical model of recovery reconfiguration 

in this paper is: 

2 1min F f=                   (4) 

Subject to the same condition as above. 

2.3. Short Term Optimization 
The short term optimization is based on the DR-VPP 
parameter, which serves the grid in a dynamic, real-time 
manner. Battery and adjustable load are considered as 
DR-VPP parameter. Its pros include: 

• DR-VPPs represent a new wave business model, for 
they are highly dependent on utility investments in smart 
meters and advanced metering infrastructure (AMI) in-
frastructure.  

• VPPs represent an open and highly scalable pro-
gram, are designed to accommodate the unique charac-
teristics of an end user’s environment.  

• DR is a core of the smart grid movement, will turn a 
wide range of formerly passive energy consumers into 
active energy market participants. 

• Since the DR is based on software and IT innova-
tions, it can be used widely and deployed across broad 
sectors and geographic locations, incorporating a variety 
of DGs and energy storage. 

VPPs are really an alternative approach to the aggre-
gation of DG, thus, may be considered an alternative or 
complement to the microgrid. VPPs are envisioned to tap 
supply, demand, and energy storage devices. With its 
emphasis on smart meters, dynamic pricing, and DR, the 
smart grid is actually a prerequisite for VPPs. Electric 
power demand side response influences the demand time 
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and level based on the system reliability programs or 
market prices. Load reductions aggregated from grid-tied 
microgrids can be sold into power markets as three dis-
tinct products [3]: 

• Peak capacity products to help maintain a utility’s 
15% supply reserve margin  

• Economic energy, which can be sold on an 
hour-by-hour basis  

• Grid regulation services, which can last for a matter 
of minutes 

Federal Energy Regulatory Commission (FERC) esti-
mates that DR can achieve a reduction of peak demand 
of 4% to 9%, depending on the penetration of DR tech-
nology, the number of participants, and the dynamic 
pricing structures chosen. 

3. Time-sequence Property 
With the time-sequence property of load and DG output 
considered, the full process simulation makes the opti-
mization results approximate to the actual, and main 
economic and technical targets of distribution are faith-
fully represented. Besides, electrovalence has time-se- 
quence property after realizing demand side response and 
electricity market reformation. The basic characteristics 
are as follows: 

• All objects (except of TOU power price) are time- 
varying, but the time-sequence property follows the 
regular pattern that applies to the weather, season, and 
time of day. 

• The maximal load and DG output always happens at 
different time, thus, the dynamic power price is uncer-
tain. 

• The WT and PV have a time-sequence property of 
complementary. 

• Sequential process simulation of all objects is 
needed to represent the technical index of the microgrid 
and distribution. 

3.1. Time-sequence Property of Load 
Electrical load is divided into four typical types: industry, 
agriculture, commerce, and municipal life， which in-
dustrial features varies. Figure 3 shows the time-se- 
quence property of four types of load, light industry is 
studied [4]. 

Short-term load forecasting usually use a normal dis-
tribution to represent the non-determinacy of load. The 
active load and reactive load of node i at time t is: 

PL,i,t~N(μPL,i,t,σ2
PL,i,t), and QL,i,t~N(μQL,i,t,σ2

QL,i,t).μPL,i,t, 
μQL,i,t, σ2

PL,i,t, and σ2
QL,i,t are the mean value and mean 

square error of PL,i,t and QL,i,t. 

3.2. Time-sequence Property of DG Output 
Output of DG is mainly determined by geographical lo-

cation and climatic environment, the typical time-se-
quence property of which is shown in Figure 4. 

The property of WT has direct relation with wind re-
sources. The daily variation of wind speed, divide into 
nautical and terrestrial type, varies a lot in different sea-
son. The property of PV has direct relation with illumi-
nation intensity, which is direct influenced by weather 
and season. The illumination intensity curves can be di-
vided into 3 types in the same season: sunshine, rainy 
day and overcast day. 

The short-time forecasting of wind speed uses Weibull 
distribution, shown in formula (5). The output of PV is 
determined by illumination intensity, temperature and 
humidity. Illumination intensity is considered only for 
simplify, the short-time forecasting of it uses Beta dis-
tribution, shown in formula (6)[5]. 

( )
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c c c
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        (5) 

In formula above: v is wind speed, k and c are the 
shape parameter and scale parameter of Weibull distribu-
tion, k=(σ/μ)-1.086, c=μ/Γ(1+1/k), μ is average wind veloc-
ity, σ is standard deviation, Γ is Gamma function. 
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In formula above: r and rmax are the actual light and 
maximum illumination intensity in the period, α and β 
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Figure 3. Time-sequence property curves of four types of 
load. 
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Figure 4. Time-sequence property curves of daily power 
output of DG. 
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are the shape parameter of Beta distribution which can 
get by the average value μ and variance σ of illumination 
intensity. 
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3.3. Time-sequence Property of Electrovalence 
Time-of-use (TOU) power price [6] and dynamic power 
price are important measures in demand side response. 
TOU power price can efficiently reflect electricity pric-
ing mechanism of power supply cost in different time- 
interval. Dynamic power price can accurately reflect the 
fluctuation of electricity pricing mechanism in every 
time-interval and realize the optimal allocation of power 
resources, by linking t market clearing price and sale 
price of retail side. A typical time-sequence property of 
both is shown in Figure 5. 

4. Improved Adaptive Genetic Algorithm 
Genetic algorithm (GA) is a kind of optimization algo-
rithms, simulates Darwin's genetic choice and natural 
elimination biology evolution process. GA searches mul-
tiple point parameters of the code based on random 
transformation rules, existing the early convergence and 
slow convergence. To solve the problem, an improved 
adaptive genetic algorithm (IAGA) is used. 
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Figure 5. Time-sequence property curves of electrovalence. 
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Figure 6. Chromosome structure. 

The GA process includes: chromosome encode, the 
form of the initial population, fitness value evaluation, 
and genetic operation. 

4.1. Chromosome Encode 
Binary chromosome encoding is used, but varies in the 3 
optimization. 

1) Long term optimization 
To locate and size the DGs, the segmented binary 

chromosome encoding is used: segments represent the 
number of DG types, each section of the code represent a 
location and size of a DG. 

Chromosome, shown in Figure 6, has m segment 
(means the number of DG types is m); section i means 
the location and size of DG No.i; Tij means the installa-
tion conditions of DG No.i at node j; the capacity of DG 
is expressed with a 4 bits, which represents heterogene-
ous of capacity. 

2) Medium term optimization 
Binary coding based on the loop is used, to shorten the 

length of chromosome and avoid a large number of in-
feasible solutions: 

• Coding of “0” indicates that the switch is open, 
Coding of “1” indicates that the switch is closed. 

• The switch, connects with power source directly, 
should be closed. 

3) Short term optimization 
Similar with Figure 6, the chromosome has m segment 

(m means the number of node with battery or adjustable 
load), Tij means the conditions of No.i at node j (“1” 
represents forward currents, “0” represents negative or 
no currents). 

The form of the initial population in medium term op-
timization is based on loop. 

4.2. Genetic Operation 
The age and lifetime of individual [7] are used to avoid 
population size increasing too fast. The age increases 
with every genetic algebra. When age reaches the life-
time, the individual dies. Lifetime is calculated every 
generation: 
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θ

θ
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 −


 

(9) 
In formula above: θ  = LT(t,x)-age(x); LT(t,x) and 

Fit(t,x) are the age and lifetime of individual x at genera-
tion t; FitB, FitA and FitW are the best, average, worst fit-
ness of the individuals of present population; age(x) is 
the age of individual x.  

To macro-control the generation in case it being too 
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huge to calculate [8], the mathematical model is:   ( + 1)
= ⎩⎪⎨

⎪⎧   ( ) +   ( ) −   ( )，  ( ) ≤    1   ( ) +   ( ) −   ( )， <   ( ) ≤ 0.5   2   ( ) +   ( ) −   ( )，0.5 <   ( ) ≤   −   ( )，  ( ) >  
  
 (10) 

In formula above: Ps(t) is the population size; NP(t) is 
the new population formed by crossover and mutation 
operation; DP(t) is the number of individuals weeded out 
at generation t; Φ and φ are the maximal population size 
settled and initial size; Pn1 and Pn2 are reproduction 
ratio, Pn1 > Pn2. 

The crossover and mutation operation operates based 
on the optimization characteristic. In order to speed up 
the convergence, the crossover and mutation rates are 
adjusted adaptively according to the evolution situation. 
The mathematical model is: 
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where, Pc and Pm are crossover and mutation rate; fA is 
the average fitness of the children population. k1, k2, k3 
and k4 is constant, ranging in [0, 1], k3 ＞ k1, k4 ＞ k2. 

4.3. The Terminal Criterion of the Algorithm 
The convergence degree of population and maximum 
evolution algebra are using as the terminal criterion of 
the algorithm. 

5. The Simulation Results and Analysis 
The example uses IEEE33 nodes distribution network 
system, which has 33 nodes and 37 branches. The system 
has 5 loops. The rated voltage and power are 12.66kV 
and 10MVA. Network parameters and nodes of load are 
in reference [9]. The initial population size is set as 60. 
The initial crossover rate and mutation rate are 0.6 and 
0.01, k1, k2, k3, k4 are 0.5, 0.05, 0.6, 0.1. Pn is 0.6. When t 
is 0, LT(t, x) is 50. The maximum number of iterations is 
100. The compared result of GA, improved GA [10] 
(IGA) and algorithm in this paper (IAGA) is shown in 
Table 1. 

As shown in Table 1: using IGA and IAGA get better 
convergence results than GA, while IAGA play a better 
role than IGA in reconfiguration computing. The rational 
utilization of DG can reduce the loss obviously. 

Table 1. Results of optimization. 

Loss (kW) 
 

Initial DG 
accessed 

Reconfiguration 
without DG 

Reconfiguration 
with DG 

GA 202.7 102.2 163.9 102.2 

IGA 202.7 82.4 142.6 82.4 

IAGA 202.7 82.4 136.1 78.5 
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Figure 7. Load curves before and after the optimization. 

 
Figure 7 shows the load curves before and the short- 

term optimization. It is obvious that the valley-to-peak 
reduced 24.5% after the optimization, the profile could 
be better with more battery and adjustable loads. 

6. Conclusions 
This paper brought a multi-timescale model of collabora-
tive optimization, for the time-sequence property factors 
in microgrid. With reasonable location and capacity, the 
long-term optimization can improve the technical effi-
ciency. The medium-term optimization improves techni-
cal efficiency the network loss of microgrid through re-
configuration. The short-term optimization can reduce 
the valley-to-peak and peak load, and guide rational 
power consumption. 
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