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ABSTRACT 

When the observed price process is the true underlying price process plus microstructure noise, it is known that realized 
volatility (RV) estimates will be overwhelmed by the noise when the sampling frequency approaches infinity. Therefore, 
it may be optimal to sample less frequently, and averaging the less frequently sampled subsamples can improve estima- 
tion for quadratic variation. In this paper, we extend this idea to forecasting daily realized volatility. While subsample 
averaging has been proposed and used in estimating RV, this paper is the first that uses subsample averaging for fore- 
casting RV. The subsample averaging method we examine incorporates the high frequency data in different levels of 
systematic sampling. It first pools the high frequency data into several subsamples, then generates forecasts from each 
subsample, and then combines these forecasts. We find that in daily S&P 500 return realized volatility forecasts, sub- 
sample averaging generates better forecasts than those using only one subsample. 
 
Keywords: Subsample Averaging; Forecast Combination; High-Frequency Data; Realized Volatility; ARFIMA Model; 

HAR Model 

1. Introduction 

The rich dynamics in ultra-high-frequency financial data 
may be captured to improve estimation of quadratic va- 
riation (integrated variance) or forecasting volatility. There 
is a considerable amount of literature addressing the es- 
timation issue, whereas little work has been done on 
forecasting. This paper contributes to the forecasting is- 
sue in the high-frequency data literature by examining whe- 
ther it pays to incorporate the intraday data and, more 
importantly, how to incorporate the high-frequency infor- 
mation to achieve better performance for forecasting dai- 
ly return volatility. Further, we seek to link the estima- 
tion and forecasting aspects by adopting and tailoring me- 
thods proposed for estimation of quadratic variation to 
forecasting. 

The existing literature on high-frequency data, espe- 
cially that devoted to the realized volatility issue, can be 
grouped roughly into two areas: estimating quadratic va- 
riation using realized volatility (RV) and forecasting 
volatility using RV. References [1,2] establish that RV, 

defined as the sum of squared intraday returns of small 
intervals, is an asymptotically unbiased estimator of the 
unobserved quadratic variation as the interval length ap- 
proaches zero. 

However, in the presence of market microstructure  
noise, this helpful property of RV is contaminated. More 
recent works investigating this issue include [3-8]. When 
the observed price process is the true underlying price 
process plus microstructure noise, it is shown that RV 
will be overwhelmed by the noise and explodes when the 
sampling frequency approaches infinity. Therefore, it may 
be optimal to sample less frequently than is the case in 
the absence of noise. References [6,8] establish through a 
subsampling scheme improved estimators for quadratic 
variation. The original subsampling idea can be traced 
back to [9], where for the first time an unbiased data- 
driven estimator of volatility and a subsample averaging 
volatility estimator are proposed. The bias-adjusted esti- 
mator of [6] based on the subsample averaging method is 
able to eventually push the estimation bias to zero. Refe- 
rence [8] shows that subsampling is highly advantageous 
for RV estimators based on discontinuous kernels. 

*The opinions expressed in this paper are those of the authors and do 
not necessarily reflect those of Grantham,Mayo, Van Otterloo and 
Company LLC.. Besides the use of high-frequency information in vola- 
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tility estimation, volatility forecasting using high-frequen- 
cy information has been addressed as well. Reference [10] 
represents an approach to forecasting volatility using RV. 
The model they propose is a fractional integrated AR 
model, ARFI(p,d), for logarithmic RV obtained from fo- 
reign exchange rates data of 30-minute frequency, and 
demonstrates the superior predictive power of their mo- 
del. Noticeably, the sampling frequency used in [1] is, 
however, 5 minutes when they analyze the distributional 
properties of RV. 

Under the presence of microstructure noise, it may be 
optimal to sample less frequently than is the case in the 
absence of noise. As shown by [6,8,9], subsampling 
schemes improve estimators for quadratic variation. When 
it comes to forecasting RV, if the highest frequency re- 
turns are not necessarily the optimal frequency, the sub- 
sampling of the available highest frequency data will lead 
to several systematically sampled subsamples. In this pa-
per we attempt to answer two questions: (1) can we use 
these subsamples to improve the out-of-sample forecast- 
ing? and (2) how do we incorporate the subsample in- 
formation when producing forecasts of daily realized vo- 
latility? We find that as long as the available highest- 
frequency data are not at the optimal frequency, we can 
improve prediction of RV out-of-sample through simple 
averaging of forecasts produced from subsamples. 

The paper is organized as follows: Section 2 describes 
the data and subsamples. Section 3 discusses two models 
for forecasting daily realized volatility by subsample ave- 
raging. Section 4 presents their out-of-sample relative per- 
formances. Section 5 concludes. 

2. Data and Subsampling 

The data we use consists of S&P 500 index values at 
5-minute intervals recorded between 9:30 a.m. and 4:00 
p.m. (total 390 minutes a day) from June 9, 1997 to May 
30, 2003, a total of 1501 days and 117,078 observations1. 
In cleaning the data, those periods of market closings are 
treated as no variation in index values, thus there exist 78 
ticks each trading day. We can construct data-driven vo- 
latility, for instance, realized volatility, from this 5-mi- 
nute high-frequency data. 

Let  be the interval in minutes over which the re- 
turns are computed. The -minute return is the log-dif- 
ference of two consecutive index values over 




 -mi- 
nutes, multiplied by 100 

   11 , 1 1 1 1 ,t it i t i t ir p p                    (1) 

where t  denotes the logarithm of the S&P 500 index 
value. Even if the interval  can be as small as 5 min- 

utes given the data available to us, we choose larger in- 
tervals such as , in order to con- 
struct subsamples. When 

p


15,30,60 minutes 
15


   we can construct three 

sets (subsamples) of  -minute return series. When 
30   we can construct six sets (subsamples) of  - 

minute return series. When  we can construct 12 
sets (subsamples) of 60-minute return series by sampling 
every 12th observation of 5-minute returns. 

60 

The RV is calculated by the sum of squared  -min- 
ute returns within a day. Define realized volatility of day 

 as t

 
 

2
1 , 1

1

m

t t i t i
i

RV r
     



  1 ,          (2) 

where 
390m                       (3) 

is the number of  -minute returns per day. 
To construct a subsample, we consider an interval 

5.   The subsampled return data has the longer time 
interval   than 5 minutes, within which 

5K                        (4) 

number of subsamples of the -minute returns are ob- 
served. We consider 


15,30,60, 

,12
 each producing a 

different number 3,6K   of subsamples. 
For example, the intraday returns for  produce 

daily realized volatility  computed from (2) us- 
ing 

15 
 15 ,tRV

 26m  15-minute returns. As there are three 5- 
minute intervals within 15 minutes, we have K = 15/5 = 3 
subsamples, producing three subsample RV forecasts for 
a day. 

3. Volatility Forecast Models 

Based on the subsample averaging methodology in [6] 
and [9], we demonstrate the benefit of subsample aver- 
aging in out-of-sample forecasting of daily volatility. We 
aim to check if the predictive ability of an RV forecast- 
ing model can be improved by averaging forecasts gen- 
erated using the same model but from different subsam- 
ples. 

In comparing the predictive ability of the subsample 
averages with the benchmark forecast without subsample 
averaging, the key issues are: (1) the volatility proxy to 
compare forecasts with; (2) the loss function for forecast 
evaluation; and (3) the forecasting model. For the daily 
volatility proxy we use the daily RV computed from 5- 
minute returns. For the loss function for forecast evalua- 
tion we use the mean squared forecast errors (MSFE). 
Regarding the forecasting model, we consider two mod- 
els, ARFI model of [10] and HAR model of [11]. 

1We are grateful to George Jiang who generously shared this high-fre-
quency intraday data with us. The data are extracted from the contem-
poraneous index levels recorded with the quotes of SPX options from 
the CBOE. 

3.1. ARFI Model 

To generate a forecast for tomorrow’s (one day ahead) 
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conditional realized volatility, we estimate the fractional- 
ly integrated autoregressive model, ARFI(p,d) for 

 lnt tX RV                  (5) 

for each of  Specifically, the model can 
be written as follows: 

15,30,60. 

    1
d

p tL L X   t 

.L

         (6) 

where  is the pth order AR lag polynomial. We 
fix  and 

 p L
1p   1p L    For each  we esti- 

mate 
,

, ,   and  the long-memory parameter by us- 
ing the method of [10,12]. 

,d

The presence of microstructure noise prevents us from 
sampling too frequently (with  too small) when cal- 
culating RV. See [3]. If t  (with ) series 
are less noisy and more accurately estimated than 

 where  are indices of subsamples, 


 k RV

K

5 

 5 ,tRV 1, ,k  

then using these likely leads to a better forecast 
  

1

k

TRV


  

than . However, abandoning the finer information   5

1TRV 

seems not very sensible. Thus, a possible way to balance 
this is the subsample averaging approach, which uses all 

 subsamples, meaning no intra-day information is 
tossed out, and then taking the average over 
K

1, ,k K   
to produce a final forecast. At the same time, the conta- 
minating effect of microstructure noise in the stage of 
computing RV is moderated through this subsampling 
procedure (using  instead of ), and hence it 
is possible to achieve better performance in forecasting 
RV. 

5  5 

The subsample averaging method is as follows. First, 
for a given  we estimate the ARFI(p,d) model for 
each of  subsamples generated by systematically sam- 
pling the original 5-minute index data every  steps: 

,
K

K
             1

1, ,

d kk k k
p tL L X

k K

   

 



 k

,k
t      (7) 

where tX  denotes kth daily logarithm of RV in day 
 computed using the kth subsample. Following [10] we 

use ARFI(p,d) model on the natural logarithm transfor-  
t

mation of RV,  and then exponent-      ln ,k k
t tX RV  

k
ttiated back to RV, . Running the      expk

tRV X 

model on each subsample we obtain K  number of RV  

forecasts ,  Next, we compute their     
1

k

TRV


 1, , .k   K
simple average 

     
1

1

1 K k

T

k

RV RV
K






  1T              (8) 

to obtain the combined forecast (denoted Subsam- 
ple-Mean in Table 1). Similarly, “Subsample-Median” is  

to take the median of ,     
1

k

TRV


 1, , .k K 

We compare Subsample-Mean forecast 
 

1TRV

  and  

Subsample-Median forecast with the benchmark forecast 
(denoted Benchmark in Table 1). The benchmark is  

computed using only one subsample 
  

1

k

TRV


  with  
k K  the last subsample and abandoning the other 

1K   subsample information. 

3.2. HAR Model 

The heterogeneous autoregressive (HAR) model of the 
realized volatility in [11] is inspired by the heterogene- 
ous market hypothesis and is able to reproduce memory 
persistence (although not formally a long memory model) 
as well as many other major features of financial data. 
The square-root of daily RV 

  ,t tY RV                       (9) 

is assumed to have an AR-type process on past RVs over 
different intervals of aggregation (daily, weekly, and 
monthly): 

1 1,D W W M M
t t t tY c Y Y Y e   t          (10) 

where 

 1 2 5

1

5
W

t t t tY Y Y Y              (11) 

is the weekly aggregated RV, and 

 1 2 20

1

20
M

t t t tY Y Y Y            (12) 

is the monthly aggregation. 
As illustrated in Section 3.1 above, we consider 

15,30,60.   The subsample averaging method for the 
HAR model works in exactly the same way as the ARFI 
model. First, we estimate the HAR model for each of  
subsamples generated by systematically sampling the ori- 
ginal 5-minute index data every  steps. We take  
subsamples of the 

K

KK
 -minute returns data when comput- 

ing  
1
k

tY    1, ,k K,  apply the HAR model to each 
subsample to generate the subsample forecast 1

k
TY 
  at 

day  for the next day , and then use the simple 
average or median to obtain the subsample averaging 
forecasts. The only difference here as compared to the 
ARFI case is the model used to produce forecasts. Note 
that here we use the square root of RV, as in [11], thus 
MSFE values of  will appear in different scale than 
those of ARFI(p,d), when we show out-of-sample results 
in the next section. 

T 1T 

Y

4. Results 

Evaluating the volatility forecast involves the selection of 
a volatility proxy given that the true underlying volatility 
is latent and subject to a researcher’s own definition. 
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Recent papers addressing this include [13,14]. Generally, 
the suggested volatility proxy is the realized volatility in 
some particular form, coupled with an MSFE evaluation 
criterion. 

Our empirical work involves the comparison of fore- 
casting performances of subsample averaging (mean and 
median) of the forecasts using all  -minute return 
subsamples with the benchmark model using only one 

-minute return subsample. We consider three cases (A, 
B, and C) of subsampling for 

K

15,3



0,60


   in Tables 1 
and 2. 

In Table 1 where the ARFI(p,d) model is used to fore- 
cast RV, we find that subsample averaging (mean and 
median) improves upon the benchmark in all three cases 
for Subsample-Mean and in two cases for Subsample- 
Median, quite substantially for Case A. In Table 2 where 
the HAR model is used, Subsample-Mean and Subsam- 
ple-Median are substantially better than the benchmark 
for all three subsampling cases. 

5. Conclusion 

We propose a forecasting methodology that uses sub- 
sample averaging to forecast daily realized volatility.  
 

Table 1. Using ARFI model for RV. 

Case Δ m K Benchmark Subsample-Mean Subsample-Median

A 15 26 3 1.3119 1.0581 1.0561 

B 30 13 6 1.1854 1.1610 1.1774 

C 60 6.5 12 1.2828 1.2392 1.2859 

Notes: This table compares the performance of the ARFI model for the daily 
realized volatility (RV) forecast without and with subsampling average. We 
use the ARFI(p,d) model proposed by [10] where p = 1 and d is estimated by 
[12] method dynamically for each case. The out-of-sample size is P = 500 
Days, and the in-sample size is R = 1000 Days. We report the out-of-sample 
MSFE with three different subsampling cases. ∆-minute returns have m ob- 
servations per day. Subsample-Mean or Subsample-Median is taken over the 
K subsample forecasts. The benchmark uses only the last subsample forecast. 
Bolded term indicates the better-than-benchmark case. 

 
Table 2. Using HAR model for Sqrt(RV). 

Case Δ m K Benchmark Subsample-Mean Subsample-Median

A 15 26 3 0.1512 0.1043 0.0971 

B 30 13 6 0.1370 0.0752 0.0738 

C 60 6.5 12 0.1151 0.0670 0.0659 

Notes: This table compares the performance of the HAR model for the 
square root of the daily realized volatility (RV) forecast without and with 
subsampling average. We use the HAR model proposed by [11], which is 
applied to the square root of RV and estimated dynamically for each case. 
The out-of-sample size is P = 500 Days, and the in-sample size is R = 1000 
Days. We report the out-of-sample MSFE with three different subsampling 
cases. ∆-minute returns have m observations per day. Subsample-Mean or 
Subsample-Median is taken over the K subsample forecasts. The benchmark 
uses only the last subsample forecast. Bolded term indicates the better-than- 
benchmark case. 

While subsample averaging has been proposed and used 
in estimating RV, this paper is the first to use subsam- 
ple averaging for forecasting RV. In this paper, we show 
that subsample averaging, which was originally suggest- 
ed to overcome the bias in estimating quadratic variation 
under the presence of market microstructure noise, can 
also help forecast RV out-of-sample. In an application of 
S&P 500 index daily volatility forecasting, using two clas- 
sical forecasting models for RV, we find that the subsam- 
ple averaging forecast generally and substantially im- 
proves upon forecasts using only one subsample without 
averaging over all subsamples. We expect that subsample 
averaging method can enhance even more the forecast 
ability of RV when much higher-frequency data (15-se- 
conds, for instance) are available. 
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