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ABSTRACT 

While an auxiliary information in double sampling increases the precision of an estimate and solves the problem of bias 
caused by non-response in sample survey, the question is that, does the level of correlation between the auxiliary infor- 
mation x and the study variable y ease in the accomplishment of the objectives of using double sampling? In this re- 
search, investigation was conducted through empirical study to ascertain the importance of correlation level between the 
auxiliary variable and the study variable to maximally accomplish the importance of auxiliary variable(s) in double 
sampling. Based on the Statistics criteria employed, which are minimum variance, coefficient of variation and relative 
efficiency, it was established that the higher the correlation level between the study and auxiliary variable(s) is, the bet- 
ter the estimator is. 
 
Keywords: Correlation Level; Auxiliary Variable; Regression Estimator; Double Sampling and Relative Efficiency of 

Estimator 

1. Introduction 

In sampling theory, auxiliary information may be utilized 
at any of these three stages or by combining two or all of 
the three stages. These stages are: (1) at the pre-selection 
stage or designing stage of the survey in stratifying the 
population; (2) at the sample selection stage; and (3) at 
the post-selection or estimation stage. In whatever case, 
the use of auxiliary information in sample survey is bet- 
ter than the case where no auxiliary information is util- 
ized. Ratio, regression, product and difference estimators 
take advantage of auxiliary information at the estimation 
stage. However, when the population information is not 
known then double sampling method becomes necessary 
for estimation. [1] is of the opinion that estimation of re- 
quired parameters can efficiently be done with ratio and 
regression methods of estimation with two-phase sam- 
pling or double sampling method. Double sampling for 
ratio estimation becomes necessary over double sampling 
for regression estimation if the data under consideration 
are well fitted by a straight line through the origin [2]. 
Among the authors who have recently contributed to the 
use of auxiliary variable(s) to establish various estimators 
for the population parameters are [3-5]. However, in both 

cases of ratio and regression estimations or the use of 
double sampling in ratio and regression estimations, there 
must exists positive correlation between the auxiliary va- 
riable x  and study variable . This article, empirical- 
ly, investigates to ascertain the importance of correlation 
level in the use of auxiliary variable in estimating the po- 
pulation parameter using double sampling for regression 
estimation method. 

y

2. Methodology 

2.1. The Regression Estimator 

Let  , 1, 2, ,i iy x i n 
y

 be the sample values of the 
main character  and the auxiliary character x  re- 
spectively obtained with simple random sampling with- 
out replacement (SRSWOR) of sample size  from the 
population size . The linear regression estimator of 
the mean as giving by [6] is: 

n
N

ˆ
ly y X x                  (1) 

where 

2
ˆ xy

x

S

S
  ;                  (2) 

ˆ estimated regression coefficient   *Corresponding author. 
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 is the population mean;X  
mean of the auxiliary information; anx   

mean of the study variabley   
The mean square error (MSE) of ly  is giving as: 

  2 2 21
2l y x

f
V y S S S

n
     

xy
  

      (3) 

Similarly, the estimated mean square error (MSE) of 

ly  is giving as: 

  2 2 21ˆ ˆ ˆ2l y x

f
V y s s s

n
       

xy




        (4) 

expressing Equation (4) in terms of correlation coefficient; 

(where ˆ ˆ y

x

s

s
  ) 

  2 21ˆ ˆ1l y

f
V y s

n
      

           (5) 

2.2. Double Sampling for Regression Estimator 

The When double sampling for regression estimation is 
to be used, then there must exist non-zero interception of 
the regression line on the study variable axis of the scat- 
tered diagram. The double sampling linear regression es- 
timator of population mean is giving as 

 ˆ
dly y x x                 (6) 

where 
ˆ estimated simple linear regression coefficient   

sample mean at the first phasex   
Reference [7], hence, presented the estimated variance 

of dly  as 

 
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   (7) 

Equation (7) can be expressed in terms of ̂  (where 

ˆ ˆ y

x

s

s
 
 


 

 ), this gives 
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    (8) 

Similarly, [7] presented the optimum variance of dou- 
ble sampling regression estimator as: 

      
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2.3. Correlation Coefficient and Coefficient of 
Determination 

The simplest method for measuring the relationship exis- 
tence between two variables (one dependent variable and 
one independent variable) is with the tool of correlation 
and regression analysis [8]. Correlation coefficient deter- 
mines the degree of relationship between variables. It is 
linear when all parts  ,i ix y  on a scattered diagram seem 
to lie near a straight line or it is nonlinear when all parts 
seem to lie near a curve. This work focuses on linear cor- 
relation. Correlation between variables can be measured 
with the use of different indices (coefficients). The three 
most popular of these indices are: Pearson’s Product-mo- 
ment correlation, Spearman’s rank coefficient and kan- 
dall’s tau coefficients. Kendall’s tau established by [9] 
can be used as an alternative to spearman’s rank correla- 
tion coefficient for ranked data. [10] analysed the proper- 
ties of kendall’s coefficient and states that “the coeffi- 
cient we have introduced provides a kind of average 
measure of the agreement between pairs of numbers 
(“agreement”, that is to say, in respect of order) and thus 
has evident recommendation as a measure of the concor- 
dance between two rankings” and “In general,   is an 
easier coefficient to calculation than  . We shall see... 
that from most theoretical points of view   is prefer- 
able to  )”. It should be noted that Kendall uses   to 
represent Spearman’s rank correlation coefficient and 
  as Kendall Tau correlation coefficient. [11] declared 
that nowadays the calculation of Kendall’s coefficient 
posses no problem. Kendall’s coefficient is equivalent to 
Spearman’s rank coefficient in terms of the underlying 
assumptions, but they are not identical in magnitude, 
since their underlying logic and computational formulae 
are quite different. Similarly, Kendall’s coefficient and 
spearman’s rank correlation coefficient imply different in- 
terpretations. [12,13] examined the use of Pearson’s pro- 
duct moment correlation coefficient and Spearman’s rank 
correlation coefficient for geographical data (on map data 
that are spatially correlated). 

2ˆ 


     (10) 

Spearman’s rank correlation coefficient is a nonpara- 
metric (that is distribution free) rank statistic proposed as 
a measure of the strength of the association between two 
variables as compared to Pearson’s product-moment co- 
efficient, that is a parametric statistic. Similarly, [14] cla- 
rified that Spearman’s rank correlation is not a measure 
of the linear relationship between two variables as some 
statisticians declared. It accesses how well an arbitrary 
monotonic function can describe the relationship between 
two variables, without making any assumptions about the 
frequency distribution of the variables. Unlike Pearson’s 
product-moment coefficient, it does not require the as- 
sumption that the relationship between the variables is 
linear nor does it require the variables to be measured on 
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interval scales. [14] confirmed that Pearson’s product- 
moment correlation coefficient (represented with r) was 
the first formal correlation measure and it is still the most 
widely used measure of relationship. 

The idea of this paper is to use correlation coefficient 
to determine the level of relationship between the auxil- 
iary and study variables, after which such data will be 
analysed with double sampling for regression type esti- 
mator to know which correlation level significantly con- 
tributes to the objective of implementing auxiliary vari- 
able. However, having considered all the correlation co- 
efficient measures, this paper will use Pearson’s product- 
moment correlation coefficient. 

2.4. Pearson’s Product—Moment Correlation 
Coefficient and Its Coefficient of 
Determination 

Pearson first developed the mathematical formula for this 
important measure in 1985 

  

   
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i ii
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i ii i
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 
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  


  


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     (11) 

[12] presented correlation in Equation (11) as the “func- 
tion of raw scores and mean”. Equation (11) describes r 
as the Centred and standardized sum of cross-product of 
two variables. Using the Cauchy-Schwartz inequality, [15] 
claim that it can be shown that the absolute value of the 
numerator is less than or equal to the denominator, there- 
fore, . [14] further presented Pearson Product- 
moment correlation coefficient as standard covariance. 
The correlation coefficient is a rescaled covariance and 
presented as; 

1 r  

xy

x y

s
r

s s
                     (12) 

where 

xys  Sample covariance of x  and  y

xs  = Sample standard deviation of x  

ys
 

When the covariance is divided by two standard devia- 
tions, the range of the covariance is rescaled to the inter- 
val between −1 and +1, thus the interpretation of correla- 
tion follows as in the case of Equation (11). 

= Sample standard deviation of  y

Correlation is sometimes criticized as having no clini- 
cal interpretation or meaning [16]. This criticism is miti- 
gated by taking the square of the correlation coefficient 
which is often called COEFFICIENT OF DETERMI- 
NATION. [17] expressed coefficient of determination 
 2r  proportion of common variation in the two vari- 
ables (that is the “strength” or “magnitude” of the rela- 
tionship). He emphasized that it is important to know this 
magnitude or strength in order to evaluate the correlation 

between variables. The square index is interpreted as pro- 
portion of variation in one variable accounted for by dif- 
ferences in the other variable. According to [16], 

  
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Or 

2

2 xy
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r
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 
  
  

               (14) 

where .  21 0r 

Error and Interpretation in Correlation Coefficient 
Most common error associated with correlation and re- 
gression analysis, as emphasized by [16], is confusing 
when interpreting correlation coefficient result. The most 
common error in correlation coefficient interpretation is 
to conclude that changes in one variable causes changes 
in the other. Correlation coefficient indicates that char- 
acteristics vary together or in opposite direction. How- 
ever, not interpreting the results of Correlation coeffi- 
cient is another common error. [16] claims that the coef- 
ficient must be interpreted in light of the relationship 
under study and [18] has given different ways to interpret 
and estimate for coefficient of determination, though bas- 
ed on theory dependent. 

For the purpose of this investigation, this article will 
make use of the interpretation criteria established by [19] 
(as seen in Table 1) but with boundary amendment (as in 
Table 2). 

3. Comparison of Estimators 

This section proposes on how the empirical comparison 
will be executed. Minimum variance, coefficient of vari- 
ation and relative efficiency are the statistical measures 
that will be used to compare the estimated variance and 
 
Table 1. Correlation coefficient interpretation as presented 
by [19]. 

Size of Correlation Interpretation 

0.90 to 1.0  
(−0.90 to −1.0) 

Very high positive (negative) correlation 

0.70 to 0.90  
(−0.70 to −0.90) 

High positive (negative) correlation 

0.50 to 0.70  
(−0.50 to −0.70) 

Moderate positive (negative) correlation 

0.30 to 0.50  
(−0.30 to −0.50) 

Low positive (negative) correlation 

0.00 to 0.30  
(−0.00 to −0.30) 

Negligible correlation 
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Table 2. Correlation coefficient interpretation proposed for 
this investigation. 

Size of Correlation Interpretation 

0.90 to 1.0 Very high positive correlation 

0.70 to <0.90 High positive correlation 

0.50 to <0.70 Moderate positive correlation 

0.30 to <0.50 Low positive correlation 

0.00 to <0.30 Negligible correlation 

 
the standard deviation of double sampling for regression 
type estimator at three levels of correlation coefficient 
which will be termed as high, moderate and low positive 
linear correlation coefficients (see Table 2 for the details 
on the correlation coefficient). 

3.1. Coefficient of Variation (CV) 

Coefficient of variation is a statistical measure that will 
be used to know the level of variability in each of these 
levels of correlation coefficients. [2] defines the coeffi- 
cient of variation of an estimator  y  as the measure of 
relative variability. Mathematically, it is presented as; 

   SE y
CV y

y
               (15) 

where y  = Sample mean;  SE y  = Standard Error of 
the estimator y ; and 0.y   

The estimated Coefficient of Variation is the standard 
error expressed as a percentage of the mean. 

 
 

 
dl

dl
dl

V y
CV y

y
             (16) 

This can also be presented as; 

   
 

dl
dl

dl

SE y
CV y

y
              (17) 

In this article, Equation (16) will be used for the com- 
putation of the coefficient of variation at different levels 
of the correlation coefficient after which a tabular com- 
parison will be made. 

3.2. Relative Efficiency 

Relative Efficiency is another statistical measure that will 
be used to measure the efficiency of one estimator over 
another. The relative efficiency of estimator “a” to esti- 
mator “b” is expressed as; 

 
 

Var
*100%

Varab

b
RE

a
           (18) 

3.2.1. Relative Efficiency of High Positive Linear 
Correlation to Medium Positive Linear 
Correlation 

This measures the efficiency of double sampling for re- 
gression estimator with high positive linear correlation 
coefficient to double sampling for regression estimator 
with medium positive linear correlation coefficient. This 
is presented as: 

 
 

medium
1

high

Var
*100%

Var

b
RE

a
        (19) 

3.2.2. Relative Efficiency of High Positive Linear 
Correlation to Low Positive Linear Correlation 

This measures the efficiency of double sampling for re- 
gression estimator with high positive linear correlation 
coefficient to double sampling for regression estimator 
with low positive linear correlation coefficient. This is pre- 
sented as: 

 
 

low
2

high

Var
*100%

Var

b
RE

a
         (20) 

3.2.3. Relative Efficiency of High Positive Linear 
Correlation to Low Positive Linear Correlation 

This measures the efficiency of double sampling for re- 
gression estimator with high positive linear correlation 
coefficient to double sampling for regression estimator 
with low positive linear correlation coefficient. This is 
presented as: 

 
 

low
3

medium

Var
*100%

Var

b
RE

a
         (19) 

4. Empirical Comparison 

This research work uses primary data obtained from five 
hundred and seventy four (574) questionnaires distrib- 
uted to the staff and students of Nursing school, Periope- 
rative Nursing School, School of mid-wifery and Occu- 
pational Health School, all in University College Hospi- 
tal (UCH) in Oyo state of Nigeria. The double sampling 
uses the household monthly average expenditure (in thou- 
sands of Naira) on food consumption as the study vari- 
able  y  and the household size as the auxiliary vari- 
able  x . The double sampling obtains the first and se- 
cond sample sizes at five different levels as presented 
below. n  is the sample size at first phase and  is the 
sample size at the second phase. 

n

It will be observed in Table 3 that the minimum pro- 
portion is obtained at  Hence,    120 and  40.n n  

   120 and  40n n    are the optimum sample sizes for 
the first and second phases respectively. This investiga- 
tion will obtain all requirements at this optimum sample 
sizes. 
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Table 3. Summary of the first and second phase sample 
sizes at different levels. 

Level 1 2 3 4 5 

n  140 130 120 100 80 

n  50 45 40 35 30 

n n  0.3571 0.3462 0.3333 0.3500 0.3750 

4.1. At High Positive Correlation 

Where there exists high positive correlation, Figure 1 
shows the existence of positive linear relationship be- 
tween the auxiliary and the study variables at   120n   

 SPSS software was used to perform simple 
linear regression analysis on the data, the model obtained 
is presented in Equation (22) below. 

and  40.n 

ˆ 10.8820 6.524y    x e            (22) 

And the Pearson’s Product-moment Correlation Coef- 
ficient is obtained as  and the Coefficient of 
determination is obtained as . From Equation 
22 and Figure 1, this means that the intercept on  
axis is not zero; hence, these data are suitable for double 
sampling for regression type estimation. Similarly, the 
result of the correlation coefficient shows that  of 
the variation in the household expenditure 

79.1%r 
2r  63%

y

63%
y  is ex- 

plained by the household size  x . , 574N  12n 0  , 
, 40n  25.4325 2 44s 

7913
dl

.4205
y  , y , , 

, 
1.9769 2

x 6.5026s
42xys  0.   and 6.5237  . 

Using Equation (8),  ˆ 5.6671dlV y  and the corres- 
ponding standard error is   2.3806dlSE y  . 

4.2. At Medium Positive Correlation 

Where there exists medium positive correlation, Figure 2 
shows the existence of approximately positive linear re- 
lationship between the auxiliary and the study variables 
at  and . SPSS software was used to 
perform simple linear regression analysis on the data, the 
model obtained is presented in Equation (23) below. 

120n  40n 

ˆ 4.218 5.480y    x e             (23) 

And the Pearson’s Product-moment Correlation Coef- 
ficient is obtained as  and the Coefficient of 
determination is obtained as . From Equa- 
tion (23) and Figure 2, this means that the intercept on 

 axis is not zero, hence, these data are suitable for 
double sampling for regression type estimation. Similarly, 
the result of the correlation coefficient shows that of the 
variation in the household expenditure 

60.8%r 
2r 36.9%



y

y  is explained 
by the household size  x . , , 574 nN  120

40n  ,  26.0154 2 44s dly  ,  ,  ,  1.9769y
2s  5.4333x

29.7769xys  ,  0.6076   and 5.4804  .  Using  
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Figure 1. Scatter plot of y against x at high correlation level. 
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Figure 2. Scatter plot of y against x at high correlation level. 
 

Equation (8),  ˆ 7.5596dl opt
V y   and the corresponding  

standard error is   2.7495.dlSE y 
 

4.3. At Low Positive Correlation 

Where there exists medium positive correlation, Figure 3 
shows the existence of approximately positive linear re- 
lationship between the auxiliary and the study variables 
at 120n   and 40n  . SPSS software was used to 
perform simple linear regression analysis on the data, the 
model obtained is presented in Equation (24) below. 

1.478 4.745y x e             (24) 

And the Pearson’s Product-moment Correlation Coef- 
ficient is obtained as 42.9%r   and the Coefficient of 
determination is obtained as . From Equation 
(24) and Figure 3, this means that the intercept on  
axis is not zero, hence, these data are suitable for double 
sampling for regression type estimation. Similarly, the 
result of the correlation coefficient shows that of the va- 
riation in the household expenditure 

2r 18.4%
y

y  is explained 
by the household size  x . , , 574 nN  120 
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40n  ,  25.2132dly  ,  ,  ,  2 511.4045ys  2 4.1788xs 

19.8288xys  , 0.4289   and 4.7451  . Using Equ- 

ation (8),   10.3260dl opt
y V̂  and the corresponding  

standard error is   3.2134.dlSE y   
Summary of the various computations at the three cor- 

relation levels is presented in Table 4. 

4.4. Computation of the Coefficient of Variation 

As proposed in Equation (17), the coefficient of variation 
for each correlation coefficient level is obtained and in- 
terpreted in Table 5. 
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Figure 3. Scatter plot of y against x at low correlation level. 
 
Table 4. Summary of the different estimated variances at 
three different correlation levels. 

Level 
High  

Correlation 
Medium  

Correlation 
Low  

Correlation 

n  120 120 120 

n  40 40 40 

̂  79.1% 60.8% 42.9% 

dly  25.4335 26.0154 25.2132 

 ˆ
dlV y  5.6671 7.5596 10.3260 

 dlSE y  2.3806 2.7495 3.2134 

 
Table 5. Summary of the different estimated variances at 
three different correlation levels. 

Level 
High  

Correlation
Medium  

Correlation 
Low  

Correlation

̂  79.1% 60.8% 42.9% 

dly  25.4335 26.0154 25.2132 

 dlSE y  5.6671 7.5596 10.3260 

Coefficient of  
Variation 

9.4% 12.3% 14.6% 

CV Interpretation 
Highest 

precision 
Higher 

 precision 
High  

precision 

4.5. Computation of the Relative Efficiency 

4.5.1. Relative Efficiency of High Positive Linear 
Correlation Coefficient to Medium Positive 
Linear Correlation Coefficient 

Using Equation (19): 

 
 

medium
1

high

1

Var
*100%

Var

7.5596
*100% 133%

5.6671

b
RE

a

RE



 

          (25) 

4.5.2. Relative Efficiency of High Positive Linear 
Correlation Coefficient to Low Positive Linear 
Correlation Coefficient 

Using Equation (19): 

 
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2

high

2

Var
*100%

Var

10.3260
*100% 182%

5.6671

b
RE

a

RE


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        (26) 

4.5.3. Relative Efficiency of Medium Positive Linear 
Correlation Coefficient to Low Positive Linear 
Correlation Coefficient 

Using Equation (19): 

 
 

low
3

medium

3

Var
*100%

Var

10.3260
*100% 137%

7.5596

b
RE

a

RE



 

        (27) 

The result obtained for the relative efficiency as de- 
rived in Equations (25)-(27) are tabulated as seen in Ta- 
ble 6. 

5. Conclusion 

This paper examines the effect of correlation level on the 
use of auxiliary variable in double sampling for regres- 
sion estimation. The findings revealed that double sam- 
pling for regression with high correlation coefficient (be- 
tween the auxiliary and study variables) has the minimum 
variance  variance 5.6671 ,  hence, is the most effi- 
cient estimator. Double sampling for regression with me- 
dium correlation coefficient performs better variance  
 

Table 6. Summary of the computed relative efficiency. 

Level R.E. Conclusion 

High Correlation to 
Medium Correlation 

133%
High correlation is 133% efficient 
over medium correlation. 

High Correlation to  
Low Correlation 

182%
High correlation is 182% efficient
 over low correlation. 

Medium Correlation to 
Low Correlation 

137%
Medium correlation is 137%  
efficient over low correlation. 
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7.5596 ; while least efficient estimator is double sam- 
pling for regression with low correlation level variance

 
. Thus, the higher the correlation coefficient 

(between the auxiliary and the study variables) is, the 
smaller the variance (as seen in Table 4) is. Similarly, it 
was discovered that double sampling for regression with 
high correlation coefficient has the highest precision 

; with double sampling for regression with 
medium correlation coefficient having higher precision 

10.3260

 9.4%CV 





12CV 



.3%  and finally is double sampling for re- 
gression with low correlation coefficient having least 
precision 14.6%CV . Hence, the higher the correla- 
tion coefficient (between the auxiliary and the study va- 
riables) is, the higher the precision of the estimate (as re- 
vealed in Table 5) is. Finally, Table 6 revealed the rela- 
tive efficiency of double sampling for regression with high 
correlation coefficient over double sampling for regres- 
sion with medium correlation coefficient. Similarly, it is 
the relative efficiency of double sampling for regression 
with high correlation coefficient over double sampling 
for regression with low correlation coefficient. Hence, the 
higher the correlation coefficient (between the auxiliary 
and the study variables) is, the more efficient the estima- 
tor is. 

Although, auxiliary information in double sampling 
procedure increases the precision of an estimate, this pa- 
per, therefore, suggested for researchers to know that the 
correlation level between the study variable and the aux- 
iliary variable will contribute to the efficiency of the es- 
timator under study. In addition, this result can be gener- 
alised to all sample survey methodologies that use auxil- 
iary variable to increase the precision of the estimator. 
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