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ABSTRACT

This paper proposes an adaptive sparsity-based direct position determination (DPD) appoach to locate multiple targets
in the case of time-varying channels. The novel feature of this method is to dynamically adjust both the overcomplete
basis and the sparse solution based on a two-step dictionary learning (DL) framework. The method first performs su-
pervised offline DL by using the quadratic programming approach, and then the dictionary is continuously updated in
an incremental fashion to adapt to the time-varying channel during the online stage. Furthermore, the method does not
need the number of emitters a prior. Simulation results demonstrate the performance of the proposed algorithm on the

location estimation accuracy.
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1. Introduction

Wireless localization as a fundamental task in various
fields like communications, radar, sonar, seismology and
radio astronomy has drawn increasing attention in the
past decade. The traditiona approach to solve the locali-
zation problem consists of two-step procedure. First, the
signal parameters such as angle of arriva (AOA) and
time of arrival (TOA) are estimated, and second the coor-
dinates of unknown-location targets are calculated by ex-
ploiting the parameters estimated in the first step. Al-
though most localization algorithms presented so far con-
centrate on the two-step method, it is suboptimal in gen-
eral as explained in references [1]. Recently, a kind of
novel DPD methods that directly estimate the results of
indeed interest to the end-user, i.e., position coordinates,
have been proposed, as a promising positioning tech-
nigque that is shown to outperform the conventional two-
step methods [2]. Weiss et al proposed a unique DPD
criterion gathering all signals of all stations firstly for a
single emitter [3] and then proposed a decoupled ap-
proach to treat the multiple emitters case [4]. Since the
measurement-to-association step is avoided, the decoupled
DPD method can provide superior localization capability
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in multi-emitter context. But this method depends on the
initial position estimates, and the number of sources needs
to be known a priori. Other studies have extended the DPD
method to handle the globa navigation satellite system
[5,6]. Basically, the above DPD agorithms generate a set
of support points in which the maximum likelihood cost
function is evaluated. Therefore, these DPD methods have
higher complexity than the two-step approach, which can
exploit the explicit geometric relationship.

Compressed sensing (CS), which receives a great deal
of attention in recent years, has been successfully applied
in the two-step localization method by reducing the di-
mensions of measurement vectors [7,8]. However, there
are few works discussing the CS pattern for more accu-
rate DPD estimation. To the best of our knowledge, only
Picard and Weiss treat the DPD problem as a spatial spar-
sity representation by exploiting the covariance-matrix
fitting method in [9]. However, this work makes the pre-
mise that the predefined overcomplete basis (a.k.a. dic-
tionary) isideal and invariable in the localization process.
In practice, due to the dynamical change of multipath
channels and random noise, the predefined basis may
mismatch the actual signals stochagtically so that the esti-
mation performance is degraded. In this paper, we pro-
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pose an adaptive sparsity-based DPD (ASDPD) agorithm
to dynamicaly adjust both the overcomplete basis and the
sparse solution so that the solution can better match the
actual scenario. The method first performs supervised of-
fline dictionary training by using the quadratic program-
ming approach. During the online stage, the dictionary is
continuously updated in an incremental fashion to adapt
to time-varying factors.

The notation used in this paper is according to the
convention. Symbols for matrices (upper case) and vec-
tors (lower case) arein boldface. ()", [0]. . [6],. [o], .
I, ® and CN denote conjugate transpose (Hermitian),
I, norm, |, norm, |, norm, identity matrix with the
dimension N, the Kronecker product and complex Gaus-
dan digtribution, respectively. For any matrix Y, vec(Y)
is denoted as the vertical concatenation of the columns of
Y. Finaly, x denotes the estimate of the parameter of
interest x.

The remainder of the paper is organized as follows.
Section 2 briefly describes the system model assumed
throughout this paper and formulates as a sparse recovery
problem. In Section 3, we introduce a scheme calibrating
the overcomplete basis dynamically and estimating the
sparse solution adaptively. Simulation results are given
in Section 4. Finaly, Section 5 concludes the paper.

2. System Model and Problem Formulation

Consider N base stations (BS) intercepting the narrow-
band signals transmitted by L possible sources. Each BS
which knows its coordinates is equipped with an antenna
array consisting of M elements. Denote the Ith unknown
target position by the vector of coordinates P,. We use
the far-field point-target model, which is commonly used
for source localization due to its simplicity [3,4,9]. Based
on this model, the received signal observed by the nth BS
isgiven by

£0= 28,8 (t-7,()) + v, (0, 0<t<T (1

where §(t) is the signal waveform considered known.
a, (p,) isthearray response at the nth BS from a signal
transmitted position, and the propagation delay from the
Ith transmitter to the nth BS is given by z,(p,). The
vectorr, =H 0+ v, ,ne{l---,N} represents noise
terms, which is assumed as the independent and identi-
caly distributed (i.i.d.) complex Gaussian process, un-
correlated with the signals.

We divide the area of interest into K grids. In general,
K> M > L. Then, we formulate the location problem
as afollowing CS problem

r,=H 0+v, ,ne{l---,N} 2

where H, =[h{",---,h{?"] is an overcomplete basis ma-
trix at the nth BS, and h{” corresponds to the noiseless
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signal vector between the ith grid and the nth BS.
0=[6,,---,6,]is a sparse vector that having in total L
nonzero entries, where the indices of nonzero entries in
0 which represents the actua locations. It should be
emphasized that the above matrix H,, is constructed by
ideal signals, where the parameters such as AOA and
TOA can be calculated according to the geometric rela
tionship directly. Denote H the matrix obtained by
concatenation of all the matricesH,,, i.e.,

H=[H], -, H,]" . Similarly, by denoting
R=[r,,ry]" and V=[v],--,vy]", wecanobtan
R=HO+V ©)

Notethat H isknown under the ideal channel condi-
tion, which means that we can estimate the actual coor-
dinates of targets as long as we find the positions of
nonzero valuesin 0. That is, the problem of localization
is converted into one of sparse signal recovery from (3).
Moreover, the number of these dominant nonzero values
givesL.

However, the non-ideal factors are inevitable in a prac-
tical localization system. These factors include the chan-
nel attenuation, phase error, time-varying fluctuations of
the radio channel and so forth. When these happen, the
predefined dictionary cannot effectively express the ac-
tual signal, which will cause performance degradation in
Sparse recovery process.

For avoiding the difficulty of estimate al kinds of the
time-varying factors, we assume the error dictionary ma-
trix T' which describe the difference between the prede-
fined dictionary and the practical received signals. Note
that the error matrix T is time-varying and cannot be
known in advance. In this scenario, the sparse position-
ing model is correspondingly modified as:

R=THO+V =DO+V 4

where D=TH denotes the actual overcomplete basis
with the time-varying interference. To prevent D from
having arbitrarily large values (which would lead to arbi-
trarily small values of 0), it is common to constrain its
columns d,,---,d, to have a |, norm less than or
equal to one. Obvioudly, the mismatch exists between the
columns of D and the corresponding columns of the pre-
defined basis H , and thus the performance degradation
is inevitable in the sparse recovery process. Focused on
this problem, an adaptive sparse recovery agorithm is
proposed in this paper, which dynamically calibrate the
overcomplete basis so that the sparse solution can better
fit the actual scenario.

3. Sparse Representation Based on the
Two-stage Dictionary Learning

The key feature of adaptive sparse recovery is the adap-
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tive adjustment of the overcomplete basis. This process
generaly learns the uncertainty of the dictionary, which
is not available from the prior knowledge, but rather has
to be estimated using a given set of training samples.
Severa different DL algorithms have been presented re-
cently [10]. However, these methods generally cannot
effectively handle very large training sets or dynamic
training data changing over time. To overcome these
shortcomings, we propose a two-stage DL approach that
can adapt to the varied upcoming samples.

So far, the most DL methods are generally based on
alternating minimization. In one step, a sparse recovery
algorithm finds sparse representations of the training sam-
ples with a fixed dictionary. In the other step, the dictio-
nary is updated to decrease the average approximation
error while the sparse coefficients remain fixed. The pro-
posed method in this paper also uses this formulation of
alternating minimization.

3.1. Sparse Recovery Phase

The above problem of noisy sparse signal recovery can
then be converted into a following optimization problem

min|[R-D6| /2+4]6, )

where A is the regularization parameter. However, it
should be emphasized that larger coefficients in 6 are
penalized more heavily in the I; norm than smaller coef-
ficients, unlike the more democratic penaization of the
I, norm [11]. In practice, large coefficients are usually
the entries corresponding to the actual positions of tar-
gets, while small coefficients commonly represent the
noise entries. The imbalance of the |, norm penalty will
serioudly influence the recovery accuracy, which may
result in many false targets. Therefore, in this paper we
choose the reweighted |, norm minimization algorithm
in [11] as our sparse recovery method, which can over-
come the mismatch between |, norm minimization and
I, norm minimization while keeping the problem solva-
ble with convex estimation tools.

3.2. Dictionary Learning Phase

In this paper, we propose a two-stage DL framework in
which the offline DL method allows to train the dictio-
nary in a supervised manner to integrate the large train-
ing sets, and the incremental DL method based on the
results in the offline stage handles the unseen online var-
iation to enhance its adaptability.

1) Offline dictionary learning

In this stage, the ideal overcomplete basis H is op-
timized to better represent the data of the training sets.
Since the sparse coefficients 0 are fixed in the DL
stage, the resulting optimization problem becomes:
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min|R-D6|>/2, stdi'd <li=1-,K (6)
in which ||R—De||§ can be written as
|R -D8|; = tr[(R -D6)" (R~ DO)]
=tr(DO0"D") - 2tr(RO" D" ) + tr(RR™)
=vec(D")" (1®00" )vec(D")
—2vec(OR™)" vec(D" ) + tr(RR")

@)

Let’s introduce several new expressions for clarity of
notation

a = vec(D™)
G21®600"
¥ £ vec(OR")

Omitting the terms that do not depend on D, the objec-
tive function in (6) can be equivaent to

min%a“Ga—yHa, st.d’'d, <li=1---,K (8)

Note that (8) is a standard form of constrained qua
dratic programming problem which can be solved by any
standard optimization method, such as the gradient pro-
jection algorithm in [12]. Moreover, the matrix G is ob-
vioudly a positively definite matrix, and thus (8) is con-
vex function and can be guaranteed to find a global op-
timum [13] in this DL phase.

2) Online dictionary learning

Although the offline DL stage has adjust the overcom-
plete basis according the training data, it isimpossible to
be fit for al kinds of time-varying interference patterns.
Moreover, its computation load is quite large for real-
time localization. On the contrary, the online incremental
learning is especially applicable when one seeks to find
the variation in the sense that the time-varying channels
pattern might not be specifically learned offline but can
be distinguished from the past online observations. Based
on the incremental learning pattern, the online learning
algorithm in [14] can use the result of the offline DL
stage as a warm restart for computing the next dictionary
where the new samples will be fed into the online dictio-
nary learning procedure, and thus a single iteration has
empirically been found to be enough [14].

For completeness, afull description of the algorithm is
givenin Algorithm 1.

Algorithm 1 Two-stage DL algorithm
Initialization: set the training sample set; generate the ideal dictionary
H
Offline DL stage:
Input: the training sample set; D® = H ; the number of itera-
tionsT;
for j=1toT
1) use the reweighted 1-norm algorithm to compute the vector
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09 with DU fixed for each sample;
2) use the gradient projection algorithm to minimize the objec-
tive function in (8) with respect to D) keeping 0%
fixed;
end for
Output: D, =D7;
Online DL stage:
Input: D@ =D ; 09 =0, ; the latest observation samples;
1) update the pre-trained dictionary according to the latest
observations using the online DL algorithm in [14] with D,

A A,
90" _eoﬂ !

aswarm restart, and return the learned dictionary D ;
2) use the reweighted 1-norm algorithm to minimize the objec-
tive function in (6) with respectto 0© keeping D@ fixed;
3) DO =p®: O =g® -
Output: D, =D ; 0 _=09;

4. Simulation Results

In order to examine the performance of the proposed
ASDPD method, we compare it with the decoupled DPD
approach in [4] and covariance-based sparse DPD (CDPD)
method [9]. Consider four BSs placed at the corners of a
1 km x 1 km square. Assume the number of gridsin the
location area is K =26x26, which means yielding a
40m resolution along both x and y axes. The carrier fre-
guency of the simulated signa is assumed to be 900
MHz. Each BS s equipped with a uniform linear array of
ten antenna elements with the adjacent elements spacing
of half awavelength. The locations of targets are selected
at random, uniformly, within the square. All the simula-
tion results are obtained based on 200 Monte Carlo rea
lizations. In each simulation, we consider the following
multipath channel model

o)=Y A7) ©)

to obtain a set of channel data. {4} isaet of indepen-
dent and identically distributed (i.i.d.) random variables
which satisfy S ~CN(0,e™). b = 1/16 is the expo-
nential power delay profile and z, is the delay spread
for theith path [15].

As shown in Figure 1, the improvement in location
accuracy for the proposed method can be seen in terms of
the root mean square error (RMSE), when the number of
emitters is two and the SNR is set to 5 dB. We can ob-
serve that the location performance of DPD and CDPD
algorithms decreases evidently as the number of multi-
path increases. On the contrary, the variation of RMSE in
the ASDPD algorithm is very small due to its adaptive
ability through DL technique. This result reveals that our
method is very robust to multipath channels and effec-
tively enhances location accuracy.

Figure 2 illustrates the location error with respect to
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the number of emitters when the SNR isset to 5 dB. Here,
real lines describe the case of single-path channel for three
algorithms, while dashed lines represent the case of three
paths. With the increase in the number of emitters, the
RMSE of DPD agorithm increases quickly due to the
high sensitivity to the estimated number of targets. Note
that the CDPD method does not rely on a good estimate
of the number of emitters in the single-case, but its per-
formance decreases evidently as the number of multipath
increases. On the contrary, the ASDPD algorithm is very
robust to two scenarios. The importance of the low sensi-
tivity of our algorithm to the number of targetsis twofold:
firgt, the number of sourcesis usualy unknown, and second
low sensitivity provides robustness against mistakes in
estimating the number of targets.
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Figure 1. The localization error with respect to the number
of multipaths.
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Figure 2. The localization error with respect to the number
of emitters.
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5. Conclusion

In this paper, we exploit the inherent spatial sparsity to
present a novel direct location method by combining the
offline training and online learning into a unified DL
framework, thereby better matching time-varying scena
rios. The effectiveness of the proposed scheme has been
demongtrated by simulation results where substantial im-
provement for localization performance is achieved. Fur-
ther research will emphasize on the off-grid error analy-
sis and the theoretic bound on the location estimation
precision.
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