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ABSTRACT 
The classical Gauss-Jordan method for matrix inversion involves augmenting the matrix with a unit matrix and requires 
a workspace twice as large as the original matrix as well as computational operations to be performed on both the orig-
inal and the unit matrix. A modified version of the method for performing the inversion without explicitly generating 
the unit matrix by replicating its functionality within the original matrix space for more efficient utilization of computa-
tional resources is presented in this article. Although the algorithm described here picks the pivots solely from the di-
agonal which, therefore, may not contain a zero, it did not pose any problem for the author because he used it to invert 
structural stiffness matrices which met this requirement. Techniques such as row/column swapping to handle off-di- 
agonal pivots are also applicable to this method but are beyond the scope of this article. 
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1. Introduction 
Gauss-Jordan [1] is a standard matrix inversion proce-
dure developed in 1887. It requires the original matrix to 
be appended by a unit (identity) matrix and after the in-
version operation is completed the original matrix is 
transformed into a unit matrix while the appended unit 
matrix becomes the inverse. 

During the early days of his career as a professional 
engineer and software developer [2], the author created 
an engineering software library for the Government of 
India in the mid-1960s. Some of the softwares were in 
the field of structural analysis which involved computing 
displacement vectors for multiple load vectors applied to 
the same stiffness matrix created using the modeling tech-
nique suggested by Tezcan [3]. 

Since his work involved handling large numbers of 
loading cases applied to the same structure, he opted for 
matrix inversion to generate flexibility matrices instead 
of solution of equations to process the load vectors be-
cause the latter method would require either regeneration 
or retrieval of the stiffness matrix to process every load 
vector, either of which would substantially increase the 
computational time and effort. 

2. Development 
The stiffness matrices encountered in structural analysis 
have three important characteristics. Their largest ele-
ments always fall on the diagonal which can never have a 
zero element and they are always symmetrical. The au-
thor started with the Gauss-Jordan algorithm however, 
since both computing power and hardware speed were 
severely limited in those days, he attempted to carry out 
as much of his work within the computer memory (in- 
core) as possible. Since Gauss-Jordan required an aug-
menting unit matrix and therefore both memory space 
and amount of computation for a matrix twice as large as 
the original matrix, he sought a way around this problem. 

Since after a pivotal column of the original matrix is 
processed with the Gauss-Jordan method, it always con-
tains a unity (1) on the diagonal and zeroes in all other 
rows and remains unchanged during all subsequent oper-
ations without any mathematical utility, the author felt 
that this memory space could be utilized to replicate the 
corresponding column of a virtual unit matrix without 
creating a real unit matrix. He used this idea to develop a 
modified procedure to simulate a non-existent augment-
ing unit matrix and called it virtualization of the aug- *M. Tech., P.E., M.ASCE, MCP. 
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menting matrix. It allowed for the inversion procedure to 
be carried out within the memory space of the original 
matrix which he called the In-Place Inversion method. 

Since it made the entire memory space available to the 
original matrix, it enabled him to invert matrices twice 
the size possible with Gauss-Jordan with the available 
resources and also reduced the computational time and 
effort because its operations were confined to the original 
matrix space. 

Although the author first used the algorithm to invert 
relatively small matrices within the computer memory 
(in-core), he later also used it to invert large matrices 
such as encountered in Finite-Element analysis which 
involved disk operation. It increased computational effi-
ciency because not only the computation was confined to 
a smaller number of elements but the length of the read/ 
written vectors was the same as the row width of the 
original matrix and not twice as long as would have been 
with Gauss-Jordan. It was also particularly useful for PC- 
based applications. 

Since this method uses the same underlying mathe-
matics as Gauss-Jordan and can be enhanced with the 
same techniques applicable to it, it can be used wherever 
Gauss-Jordan is used. It produced identical results as 
Gauss-Jordan as shown in the examples cited in this ar-
ticle and a 5 × 5 Hilbert matrix [4] was also successfully 
inverted. 

The author has used certain terms in the following dis-
cussion which are defined as follows: Normalization is 
dividing an entire row by its pivotal element to transform 
the pivotal element to unity; Virtualization is replicating 
an element or a vector of the current augmenting matrix 
within the original matrix space without creating the real 
unit matrix; the Complementary of a component of the 
original matrix is its corresponding component in the 
virtual augmenting matrix and the Reduction of a row is 
the modification of the pivotal row by the ratio of the 
row element on the pivotal column and the pivotal ele-
ment and then subtracting it from the row, thereby re-
ducing the row element on the pivotal column to zero.  

3. Mathematics 
Gauss-Jordan is a standard matrix inversion procedure 
as outlined below: 

For a matrix [ ]A  of size n × n, an identity (unit) ma-
trix of size n x n is appended to the matrix. After that the 
following two operations are iterated on all rows to ob-
tain the inverse. 

Operation 1: A pivotal row p  is selected, usually the 
one with the largest absolute diagonal element, from the 
rows whose diagonal elements have not yet been used as 
a pivot and the value of the pivotal element ,p pA  is 
saved as pP . Then the pivotal row is normalized by di-

viding the entire pivotal row by pP , i.e., , ,p j p j pA A P=  
where 1 2j n= → . This transforms the pivotal element 

,p pA  to unity (1) and the complementary unit matrix ele-
ment ,p p nA +  to 1 pP . However, from a practical view-
point, it is advisable to programmatically reset ,p pA  to 
1 to minimize truncation error. 

Operation 2: Each non-pivotal row i , i.e.,  
1i n p= → ≠ , is reduced by saving the value of its pi-

votal column element ,i pA  as iP  and then recomputing 
all its row elements as , , ,i j i j p j iA A A P= − ∗  where j = 1 
→ 2n. This is a shorter equivalent of the more explicit 
operation , , , ,i j i j p j i p pA A A P A= − ∗  where j = 1 → 2n 
since , 1p pA =  after normalization of the pivotal row. 
This transforms its pivotal column element ,i pA  to zero 
and after it is performed on all non-pivotal rows, their 
pivotal column elements become 0 (zero), i.e., , 0i pA =  
where 1i n p= → ≠ . 

After performing these two operations on every row, 
treating each row once as a pivotal row, the original ma-
trix becomes a unit matrix while the unit matrix becomes 
the inverse. 

Computational details of the inversion of a 3 × 3 ma-
trix [5] are given below in which the original matrix has 
been multiplied with its inverse in the end to produce a 
unit matrix as verification of the result. 

 
Gauss-Jordan Inversion—Example 
 
Original Matrix  Unit Matrix  
−1.0 −1.0 3.0 1.0 0.0 0.0 
2.0 1.0 2.0 0.0 1.0 0.0 
−2.0 −2.0 1.0 0.0 0.0 1.0 

 
Iteration 1 
Pivotal element = (1,1) 
Operation 1: Normalize pivotal row 1 
 

Saved Ap,p = −1 1.0 1.0 −3.0 −1.0 0.0 0.0 
   2.0 1.0 2.0 0.0 1.0 0.0 
   −2.0 −2.0 1.0 0.0 0.0 1.0 

 
Operation 2: Reduce non-pivotal rows 2 and 3 
 

   1.0 1.0 −3.0 −1.0 0.0 0.0 
Saved Ai,p = 2 0.0 −1.0 8.0 2.0 1.0 0.0 
Saved Ai,p = −2 0.0 0.0 −5.0 −2.0 0.0 1.0 

 
Iteration 2 
Pivotal element = (3,3) 
Operation 1: Normalize pivotal row 3 
 
   1.0 1.0 −3.0 −1.0 0.0 0.0 
   0.0 −1.0 8.0 2.0 1.0 0.0 

Saved Ap,p = −5 0.0 0.0 1.0 0.4 0.0 −0.2 
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Operation 2: Reduce non-pivotal rows 1 and 2 
 

Saved Ai,p = −3 1.0 1.0 0.0 0.2 0.0 −0.6 
Saved Ai,p = 8 0.0 −1.0 0.0 −1.2 1.0 1.6 

   0.0 0.0 1.0 0.4 0.0 −0.2 

 
Iteration 3 
Pivotal element = (2,2) 
Operation 1: Normalize pivotal row 2 
 

   1.0 1.0 0.0 0.2 0.0 −0.6 
Saved Ap,p = −1 0.0 1.0 0.0 1.2 −1.0 −1.6 

   −1.0 0.0 1.0 0.4 0.0 −0.2 

 
Operation 2: Reduce non-pivotal rows 1 and 3 
 

Saved Ai,p = 1 1.0 0.0 0.0 −1.0 1.0 1.0 
   0.0 1.0 0.0 1.2 −1.0 −1.6 

Saved Ai,p = 0 −1.0 0.0 1.0 0.4 0.0 −0.2 
 
Inversion complete 
 
Verification: 
 
Original Matrix Inverse Product 

−1.0 −1.0 3.0 −1.0 1.0 1.0 1 0 0 
2.0 1.0 2.0 1.2 −1.0 −1.6 0 1 0 
−2.0 −2.0 1.0 0.4 0.0 −0.2 0 0 1 
 
The author’s In-Place Inversion algorithm, on the 

other hand, does not require augmenting with and per-
forming operations on an identity matrix and the proce-
dure is described below: 

Just as with Gauss-Jordan, the following two opera-
tions are iterated on all rows to obtain the inverse. 

Operation 1: The unpivoted row with the largest abso-
lute diagonal element is selected as the pivotal row p  
and the value of its pivotal element ,p pA  is saved as the 
pivot pP  after which the pivotal element ,p pA  is re-
placed by unity (1) to virtualize the complementary ele-
ment ,p p nA +  of the unit matrix. Then the pivotal row p  
is normalized by dividing the entire row by pP , i.e., 

, ,p j p j pA A P=  where 1j n= → . This changes the pi-
votal element ,p pA  to 1 pP  which replicates the cur-
rent value of its complementary element within the vir-
tual unit matrix. 

Operation 2: Each non-pivotal row i , i.e.,  
1i n p= → ≠ , is reduced by saving the value of its pi-

votal column element ,i pA  as iP , recomputing all ele-
ments in the current row i  as , , ,i j i j p j iA A A P= − ∗  
where 1j n= →  and then resetting ,i pA  to 0 to mi-
nimize truncation error. As mentioned earlier, this is a 
shorter version of the operation , , , ,i j i j p j i p pA A A P A= − ∗  
where 1j n= →  since , 1p pA =  in the original matrix 

after normalization of the pivotal row. 
In the example shown, the pivotal column elements 
,i pA  of all non-pivotal rows have been saved and then 

the column elements reset to zero, i.e., , 0i pA =  where 
1i n p= → ≠  to virtualize the entire complementary 

column in the virtual unit matrix for explanatory purpos-
es. In reality, however, this part is performed individually 
for each non-pivotal row as part of the next operation to 
preclude the need for saving them all in a vector. 

This procedure implicitly duplicates the functionality 
of the unit matrix of the Gauss-Jordan method within the 
original matrix. After performing these two operations on 
every row, treating each row once as a pivotal row, the 
original matrix is replaced by its inverse. 

Notes: In the example below the items titled Saved 
Ap,p and Saved Ai,p show the saved pivotal values pP  
and all iP  individually although they need only a single 
memory location because, in reality, they are generated 
sequentially and not all at the same time as a complete 
vector. 

The sequence of operations 1 and 2 can be reversed 
but in that case the pivotal element ,p pA  will not be 
unity during operation 2 and the explicit formula will 
have to be used, thereby substantially increasing the amount 
of computation. 

Computational details of the same 3 × 3 matrix are 
given below for comparison. The verification step has 
been omitted since the result is identical to that obtained 
by Gauss-Jordan which has already been verified. 

 
In-Place Inversion—Example 
 

Original Matrix 
 −1.0 −1.0 3.0 
 2.0 1.0 2.0 
 −2.0 −2.0 1.0 

 
Iteration 1 
Pivotal element = (1,1) 
Operation 1: Save pivotal column elements, Virtualize 

pivotal column 1, Normalize pivotal row 1 
 

Saved Ap,p = −1 −1.0 1.0 −3.0 
Saved Ai,p = 2 0.0 1.0 2.0 
Saved Ai,p = −2 0.0 −2.0 1.0 

 
Operation 2: Reduce non-pivotal rows 2 and 3 
 

 −1.0 1.0 −3.0 
 2.0 −1.0 8.0 
 −2.0 0.0 −5.0 

 
Iteration 2 
Pivotal element = (3, 3) 
Operation 1: Save pivotal column elements, Virtualize 
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pivotal column 3, Normalize pivotal row 3 
 

Saved Ai,p = −3 −1.0 1.0 0.0 
Saved Ai,p = 8 2.0 −1.0 0.0 
Saved Ap,p = −5 0.4 0.0 −0.2 

 
Operation 2: Reduce non-pivotal rows 1 and 2 
 

 0.2 1.0 −0.6 
 −1.2 −1.0 1.6 
 0.4 0.0 −0.2 

 
Iteration 3 
Pivotal element = (2, 2) 
Operation 1: Save pivotal column elements, Virtualize 

pivotal column 2, Normalize pivotal row 2 
 

Saved Ai,p = 1 0.2 0.0 −0.6 
Saved Ap,p = −1 1.2 −1.0 −1.6 
Saved Ai,p = 0 0.4 0.0 −0.2 

 
Operation 2: Reduce non-pivotal rows 1 and 3 
 

 −1.0 1.0 1.0 
 1.2 −1.0 −1.6 
 0.4 0.0 −0.2 

 
Inversion complete 

4. Practical Applications 
The author’s initial application for the method was as the 
analysis engine for static and dynamic analysis of 2D and 
3D frame structures as well as finite-element analysis. He 
used it for both small and large-scale tasks including plane 
strain finite-element analysis of a gravity dam under El 
Centro seismic loading (some disk operation was involved) 
which produced results closely matching those published 
by Clough and Chopra [6]. He later incorporated it in a 
number of IBM-PC/MS-DOS based structural engineer-
ing softwares which have been used by both Federal and 
state governmental agencies as well as many engineering 
design and production firms in the U.S. [7]. Although 
this algorithm was used first in India and then in the U.S. 
for almost five decades, its logic has remained undocu-
mented so far and the author’s objective is to present it to 
other software developers who may find it useful. 

The author extensively searched all sources available 
to him [8-11] and also corresponded with mathematicians 
both in the U.S. and abroad for essentially similar inver-
sion methods developed by others but was unable to find 
anything resembling this particular technique. He, there-
fore, concluded that the engineering profession is cur-

rently unfamiliar with this procedure and could benefit 
from its application wherever Gauss-Jordan is used. Al-
though much of the hardware restrictions of the past which 
prompted him to develop the procedure no longer exist, 
still there would be no logical reason to use the lengthier 
method when a shorter but mathematically identical al-
ternative was available. 

5. Conclusions 
The In-Place method is a shorter equivalent of the Gauss- 
Jordan matrix inversion algorithm for making more effi-
cient use of the computational resources by virtualizing 
the augmenting unit matrix. While the underlying mathe-
matics is the same for both, the In-Place method requires 
only one-half of the computer resources needed by Gauss- 
Jordan and less computational time and effort because 
while its number of steps is the same, its operation is 
confined to the same number of elements as in the origi-
nal matrix. 

It can be used wherever Gauss-Jordan is used and it 
has been demonstrated to be equally useful for inverting 
both small and large matrices. Although the author him-
self used it exclusively for structural analysis, as a mathe-
matical algorithm it is equally applicable to other engi-
neering, scientific and mathematical tasks which involve 
matrix inversion since problems encountered across di-
verse scientific and technological disciplines often exhi-
bit similar characteristics. 

The time and resources available to the author did not 
permit him to further refine the method to utilize the 
symmetry property of structural stiffness matrices and he 
hopes that others may pick up where he had left off and 
make it even more efficient for special matrices with 
similar properties. 

The author wishes to mention that this procedure is 
meant for those for whom speed and economy of compu-
ting power as well as minimization of truncation error are 
important. 

Two areas where he believes his algorithm could also 
be useful are (a) large-scale real-time applications requir-
ing high-speed inversion and/or high-precision arithmetic 
and (b) small-scale applications for portable devices with 
limited memory space. 
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