
Applied Mathematics, 2013, 4, 1392-1396
http://dx.doi.org/10.4236/am.2013.410188 Published Online October 2013 (http://www.scirp.org/journal/am)

Copyright © 2013 SciRes. AM

In-Place Matrix Inversion by Modified Gauss-Jordan
Algorithm

Debabrata DasGupta1,2,3*
1(Former) LEAP Software, Inc., Tampa, FL, USA

2(Former) McDonnell Douglas Automation Co., St., Louis, MO, USA
3(Former) Central Water and Power Commission, New Delhi, India

Email: DDasGupta@email.com

Received July 30, 2013; revised August 30, 2013; accepted September 7, 2013

Copyright © 2013 Debabrata DasGupta. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT
The classical Gauss-Jordan method for matrix inversion involves augmenting the matrix with a unit matrix and requires
a workspace twice as large as the original matrix as well as computational operations to be performed on both the orig-
inal and the unit matrix. A modified version of the method for performing the inversion without explicitly generating
the unit matrix by replicating its functionality within the original matrix space for more efficient utilization of computa-
tional resources is presented in this article. Although the algorithm described here picks the pivots solely from the di-
agonal which, therefore, may not contain a zero, it did not pose any problem for the author because he used it to invert
structural stiffness matrices which met this requirement. Techniques such as row/column swapping to handle off-di-
agonal pivots are also applicable to this method but are beyond the scope of this article.

Keywords: Numerical Methods; Gauss-Jordan; Matrix; Inversion; In-Place; In-Core; Structural Analysis

1. Introduction
Gauss-Jordan [1] is a standard matrix inversion proce-
dure developed in 1887. It requires the original matrix to
be appended by a unit (identity) matrix and after the in-
version operation is completed the original matrix is
transformed into a unit matrix while the appended unit
matrix becomes the inverse.

During the early days of his career as a professional
engineer and software developer [2], the author created
an engineering software library for the Government of
India in the mid-1960s. Some of the softwares were in
the field of structural analysis which involved computing
displacement vectors for multiple load vectors applied to
the same stiffness matrix created using the modeling tech-
nique suggested by Tezcan [3].

Since his work involved handling large numbers of
loading cases applied to the same structure, he opted for
matrix inversion to generate flexibility matrices instead
of solution of equations to process the load vectors be-
cause the latter method would require either regeneration
or retrieval of the stiffness matrix to process every load
vector, either of which would substantially increase the
computational time and effort.

2. Development
The stiffness matrices encountered in structural analysis
have three important characteristics. Their largest ele-
ments always fall on the diagonal which can never have a
zero element and they are always symmetrical. The au-
thor started with the Gauss-Jordan algorithm however,
since both computing power and hardware speed were
severely limited in those days, he attempted to carry out
as much of his work within the computer memory (in-
core) as possible. Since Gauss-Jordan required an aug-
menting unit matrix and therefore both memory space
and amount of computation for a matrix twice as large as
the original matrix, he sought a way around this problem.

Since after a pivotal column of the original matrix is
processed with the Gauss-Jordan method, it always con-
tains a unity (1) on the diagonal and zeroes in all other
rows and remains unchanged during all subsequent oper-
ations without any mathematical utility, the author felt
that this memory space could be utilized to replicate the
corresponding column of a virtual unit matrix without
creating a real unit matrix. He used this idea to develop a
modified procedure to simulate a non-existent augment-
ing unit matrix and called it virtualization of the aug- *M. Tech., P.E., M.ASCE, MCP.

http://dx.doi.org/10.4236/am.2013.410188

D. DASGUPTA

Copyright © 2013 SciRes. AM

1393

menting matrix. It allowed for the inversion procedure to
be carried out within the memory space of the original
matrix which he called the In-Place Inversion method.

Since it made the entire memory space available to the
original matrix, it enabled him to invert matrices twice
the size possible with Gauss-Jordan with the available
resources and also reduced the computational time and
effort because its operations were confined to the original
matrix space.

Although the author first used the algorithm to invert
relatively small matrices within the computer memory
(in-core), he later also used it to invert large matrices
such as encountered in Finite-Element analysis which
involved disk operation. It increased computational effi-
ciency because not only the computation was confined to
a smaller number of elements but the length of the read/
written vectors was the same as the row width of the
original matrix and not twice as long as would have been
with Gauss-Jordan. It was also particularly useful for PC-
based applications.

Since this method uses the same underlying mathe-
matics as Gauss-Jordan and can be enhanced with the
same techniques applicable to it, it can be used wherever
Gauss-Jordan is used. It produced identical results as
Gauss-Jordan as shown in the examples cited in this ar-
ticle and a 5 × 5 Hilbert matrix [4] was also successfully
inverted.

The author has used certain terms in the following dis-
cussion which are defined as follows: Normalization is
dividing an entire row by its pivotal element to transform
the pivotal element to unity; Virtualization is replicating
an element or a vector of the current augmenting matrix
within the original matrix space without creating the real
unit matrix; the Complementary of a component of the
original matrix is its corresponding component in the
virtual augmenting matrix and the Reduction of a row is
the modification of the pivotal row by the ratio of the
row element on the pivotal column and the pivotal ele-
ment and then subtracting it from the row, thereby re-
ducing the row element on the pivotal column to zero.

3. Mathematics
Gauss-Jordan is a standard matrix inversion procedure
as outlined below:

For a matrix []A of size n × n, an identity (unit) ma-
trix of size n x n is appended to the matrix. After that the
following two operations are iterated on all rows to ob-
tain the inverse.

Operation 1: A pivotal row p is selected, usually the
one with the largest absolute diagonal element, from the
rows whose diagonal elements have not yet been used as
a pivot and the value of the pivotal element ,p pA is
saved as pP . Then the pivotal row is normalized by di-

viding the entire pivotal row by pP , i.e., , ,p j p j pA A P=
where 1 2j n= → . This transforms the pivotal element

,p pA to unity (1) and the complementary unit matrix ele-
ment ,p p nA + to 1 pP . However, from a practical view-
point, it is advisable to programmatically reset ,p pA to
1 to minimize truncation error.

Operation 2: Each non-pivotal row i , i.e.,
1i n p= → ≠ , is reduced by saving the value of its pi-

votal column element ,i pA as iP and then recomputing
all its row elements as , , ,i j i j p j iA A A P= − ∗ where j = 1
→ 2n. This is a shorter equivalent of the more explicit
operation , , , ,i j i j p j i p pA A A P A= − ∗ where j = 1 → 2n
since , 1p pA = after normalization of the pivotal row.
This transforms its pivotal column element ,i pA to zero
and after it is performed on all non-pivotal rows, their
pivotal column elements become 0 (zero), i.e., , 0i pA =
where 1i n p= → ≠ .

After performing these two operations on every row,
treating each row once as a pivotal row, the original ma-
trix becomes a unit matrix while the unit matrix becomes
the inverse.

Computational details of the inversion of a 3 × 3 ma-
trix [5] are given below in which the original matrix has
been multiplied with its inverse in the end to produce a
unit matrix as verification of the result.

Gauss-Jordan Inversion—Example

Original Matrix Unit Matrix
−1.0 −1.0 3.0 1.0 0.0 0.0
2.0 1.0 2.0 0.0 1.0 0.0
−2.0 −2.0 1.0 0.0 0.0 1.0

Iteration 1
Pivotal element = (1,1)
Operation 1: Normalize pivotal row 1

Saved Ap,p = −1 1.0 1.0 −3.0 −1.0 0.0 0.0
 2.0 1.0 2.0 0.0 1.0 0.0
 −2.0 −2.0 1.0 0.0 0.0 1.0

Operation 2: Reduce non-pivotal rows 2 and 3

 1.0 1.0 −3.0 −1.0 0.0 0.0
Saved Ai,p = 2 0.0 −1.0 8.0 2.0 1.0 0.0
Saved Ai,p = −2 0.0 0.0 −5.0 −2.0 0.0 1.0

Iteration 2
Pivotal element = (3,3)
Operation 1: Normalize pivotal row 3

 1.0 1.0 −3.0 −1.0 0.0 0.0
 0.0 −1.0 8.0 2.0 1.0 0.0

Saved Ap,p = −5 0.0 0.0 1.0 0.4 0.0 −0.2

D. DASGUPTA

Copyright © 2013 SciRes. AM

1394

Operation 2: Reduce non-pivotal rows 1 and 2

Saved Ai,p = −3 1.0 1.0 0.0 0.2 0.0 −0.6
Saved Ai,p = 8 0.0 −1.0 0.0 −1.2 1.0 1.6

 0.0 0.0 1.0 0.4 0.0 −0.2

Iteration 3
Pivotal element = (2,2)
Operation 1: Normalize pivotal row 2

 1.0 1.0 0.0 0.2 0.0 −0.6
Saved Ap,p = −1 0.0 1.0 0.0 1.2 −1.0 −1.6

 −1.0 0.0 1.0 0.4 0.0 −0.2

Operation 2: Reduce non-pivotal rows 1 and 3

Saved Ai,p = 1 1.0 0.0 0.0 −1.0 1.0 1.0
 0.0 1.0 0.0 1.2 −1.0 −1.6

Saved Ai,p = 0 −1.0 0.0 1.0 0.4 0.0 −0.2

Inversion complete

Verification:

Original Matrix Inverse Product

−1.0 −1.0 3.0 −1.0 1.0 1.0 1 0 0
2.0 1.0 2.0 1.2 −1.0 −1.6 0 1 0
−2.0 −2.0 1.0 0.4 0.0 −0.2 0 0 1

The author’s In-Place Inversion algorithm, on the

other hand, does not require augmenting with and per-
forming operations on an identity matrix and the proce-
dure is described below:

Just as with Gauss-Jordan, the following two opera-
tions are iterated on all rows to obtain the inverse.

Operation 1: The unpivoted row with the largest abso-
lute diagonal element is selected as the pivotal row p
and the value of its pivotal element ,p pA is saved as the
pivot pP after which the pivotal element ,p pA is re-
placed by unity (1) to virtualize the complementary ele-
ment ,p p nA + of the unit matrix. Then the pivotal row p
is normalized by dividing the entire row by pP , i.e.,

, ,p j p j pA A P= where 1j n= → . This changes the pi-
votal element ,p pA to 1 pP which replicates the cur-
rent value of its complementary element within the vir-
tual unit matrix.

Operation 2: Each non-pivotal row i , i.e.,
1i n p= → ≠ , is reduced by saving the value of its pi-

votal column element ,i pA as iP , recomputing all ele-
ments in the current row i as , , ,i j i j p j iA A A P= − ∗
where 1j n= → and then resetting ,i pA to 0 to mi-
nimize truncation error. As mentioned earlier, this is a
shorter version of the operation , , , ,i j i j p j i p pA A A P A= − ∗
where 1j n= → since , 1p pA = in the original matrix

after normalization of the pivotal row.
In the example shown, the pivotal column elements
,i pA of all non-pivotal rows have been saved and then

the column elements reset to zero, i.e., , 0i pA = where
1i n p= → ≠ to virtualize the entire complementary

column in the virtual unit matrix for explanatory purpos-
es. In reality, however, this part is performed individually
for each non-pivotal row as part of the next operation to
preclude the need for saving them all in a vector.

This procedure implicitly duplicates the functionality
of the unit matrix of the Gauss-Jordan method within the
original matrix. After performing these two operations on
every row, treating each row once as a pivotal row, the
original matrix is replaced by its inverse.

Notes: In the example below the items titled Saved
Ap,p and Saved Ai,p show the saved pivotal values pP
and all iP individually although they need only a single
memory location because, in reality, they are generated
sequentially and not all at the same time as a complete
vector.

The sequence of operations 1 and 2 can be reversed
but in that case the pivotal element ,p pA will not be
unity during operation 2 and the explicit formula will
have to be used, thereby substantially increasing the amount
of computation.

Computational details of the same 3 × 3 matrix are
given below for comparison. The verification step has
been omitted since the result is identical to that obtained
by Gauss-Jordan which has already been verified.

In-Place Inversion—Example

Original Matrix
 −1.0 −1.0 3.0
 2.0 1.0 2.0
 −2.0 −2.0 1.0

Iteration 1
Pivotal element = (1,1)
Operation 1: Save pivotal column elements, Virtualize

pivotal column 1, Normalize pivotal row 1

Saved Ap,p = −1 −1.0 1.0 −3.0
Saved Ai,p = 2 0.0 1.0 2.0
Saved Ai,p = −2 0.0 −2.0 1.0

Operation 2: Reduce non-pivotal rows 2 and 3

 −1.0 1.0 −3.0
 2.0 −1.0 8.0
 −2.0 0.0 −5.0

Iteration 2
Pivotal element = (3, 3)
Operation 1: Save pivotal column elements, Virtualize

D. DASGUPTA

Copyright © 2013 SciRes. AM

1395

pivotal column 3, Normalize pivotal row 3

Saved Ai,p = −3 −1.0 1.0 0.0
Saved Ai,p = 8 2.0 −1.0 0.0
Saved Ap,p = −5 0.4 0.0 −0.2

Operation 2: Reduce non-pivotal rows 1 and 2

 0.2 1.0 −0.6
 −1.2 −1.0 1.6
 0.4 0.0 −0.2

Iteration 3
Pivotal element = (2, 2)
Operation 1: Save pivotal column elements, Virtualize

pivotal column 2, Normalize pivotal row 2

Saved Ai,p = 1 0.2 0.0 −0.6
Saved Ap,p = −1 1.2 −1.0 −1.6
Saved Ai,p = 0 0.4 0.0 −0.2

Operation 2: Reduce non-pivotal rows 1 and 3

 −1.0 1.0 1.0
 1.2 −1.0 −1.6
 0.4 0.0 −0.2

Inversion complete

4. Practical Applications
The author’s initial application for the method was as the
analysis engine for static and dynamic analysis of 2D and
3D frame structures as well as finite-element analysis. He
used it for both small and large-scale tasks including plane
strain finite-element analysis of a gravity dam under El
Centro seismic loading (some disk operation was involved)
which produced results closely matching those published
by Clough and Chopra [6]. He later incorporated it in a
number of IBM-PC/MS-DOS based structural engineer-
ing softwares which have been used by both Federal and
state governmental agencies as well as many engineering
design and production firms in the U.S. [7]. Although
this algorithm was used first in India and then in the U.S.
for almost five decades, its logic has remained undocu-
mented so far and the author’s objective is to present it to
other software developers who may find it useful.

The author extensively searched all sources available
to him [8-11] and also corresponded with mathematicians
both in the U.S. and abroad for essentially similar inver-
sion methods developed by others but was unable to find
anything resembling this particular technique. He, there-
fore, concluded that the engineering profession is cur-

rently unfamiliar with this procedure and could benefit
from its application wherever Gauss-Jordan is used. Al-
though much of the hardware restrictions of the past which
prompted him to develop the procedure no longer exist,
still there would be no logical reason to use the lengthier
method when a shorter but mathematically identical al-
ternative was available.

5. Conclusions
The In-Place method is a shorter equivalent of the Gauss-
Jordan matrix inversion algorithm for making more effi-
cient use of the computational resources by virtualizing
the augmenting unit matrix. While the underlying mathe-
matics is the same for both, the In-Place method requires
only one-half of the computer resources needed by Gauss-
Jordan and less computational time and effort because
while its number of steps is the same, its operation is
confined to the same number of elements as in the origi-
nal matrix.

It can be used wherever Gauss-Jordan is used and it
has been demonstrated to be equally useful for inverting
both small and large matrices. Although the author him-
self used it exclusively for structural analysis, as a mathe-
matical algorithm it is equally applicable to other engi-
neering, scientific and mathematical tasks which involve
matrix inversion since problems encountered across di-
verse scientific and technological disciplines often exhi-
bit similar characteristics.

The time and resources available to the author did not
permit him to further refine the method to utilize the
symmetry property of structural stiffness matrices and he
hopes that others may pick up where he had left off and
make it even more efficient for special matrices with
similar properties.

The author wishes to mention that this procedure is
meant for those for whom speed and economy of compu-
ting power as well as minimization of truncation error are
important.

Two areas where he believes his algorithm could also
be useful are (a) large-scale real-time applications requir-
ing high-speed inversion and/or high-precision arithmetic
and (b) small-scale applications for portable devices with
limited memory space.

6. Acknowledgements
The author gratefully acknowledges the guidance and en-
couragement he received from his supervisor and mentor
late K. Madhavan, former Deputy Director, Central Wa-
ter and Power Commission, New Delhi, India and the
valuable contributions and suggestions of his ex-colleague
late M. R. Rao, former Mathematician/Programmer, Com-
puter Center, Planning Commission, New Delhi, India.

D. DASGUPTA

Copyright © 2013 SciRes. AM

1396

REFERENCES
[1] W. A. Smith, “Elementary Numerical Analysis,” Pren-

tice-Hall, Inc., Englewood Cliffs, 1986, pp. 51-52.
[2] D. DasGupta, “McAuto STRUDL RECON—A Rein-

forced Concrete Frame Design Software,” Concrete In-
ternational, Nov 1982, pp. 37-42.
http://www.concreteinternational.com/pages/featured_arti
cle.asp?ID=9129

[3] S. S. Tezcan, “Discussion,” Journal of the Structural
Division, American Society of Civil Engineers, Vol. 89,
No. ST6, Part I, 1963, p. 445.

[4] J. H. Mathews, “Lab for Matrix Inversion, Exercise 2,”
California State University, Fullerton, 1998.
http://math.fullerton.edu/mathews/numerical/mi.htm

[5] T. McFarland, “The Inverse of an n × n Matrix,” Univer-
sity of Wisconsin-Whitewater, Whitewater, 2007.
http://math.uww.edu/faculty/mcfarlat/inverse.htm

[6] R. W. Clough and A. K Chopra, “Earthquake Stress
Analysis in Earth Dams,” University of California,
Berkeley, 1965, 24p.

[7] Staff Reporter, “Roads, Bridges and Computers,” Roads
& Bridges Magazine, May 1987, p. 48.

[8] V. A. Patel, “Numerical Analysis,” Harcourt Brace Col-
lege Publishers, Fort Worth, 1994, pp. 216-218.

[9] B. Noble, “Applied Linear Algebra,” Prentice-Hall, Inc.,
Englewood Cliffs, 1969, pp. 214-215.

[10] G. Mills, “Introduction to Linear Algebra for Social
Scientists,” George Allen and Unwin, Ltd., London, 1969,
pp. 104-105.

[11] R. H. Pennington, “Introductory Computer Methods and
Numerical Analysis,” The McMillan Co., New York,
1968, pp. 323-325.

