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ABSTRACT 

It was noted earlier that the general relativity field equations for static systems with spherical symmetry can be put into 
a linear form when the source energy density equals radial stress. These linear equations lead to a delta function energy- 
momentum tensor for a point mass source for the Schwarzschild field that has vanishing self-stress, and whose integral 
therefore transforms properly under a Lorentz transformation, as though the particle is in the flat space-time of special 
relativity (SR). These findings were later extended to n spatial dimensions. Consistent with this SR-like result for the 
source tensor, Nordström and independently, Schrödinger, found for three spatial dimensions that the Einstein gravita-
tional energy-momentum pseudo-tensor vanished in proper quasi-rectangular coordinates. The present work shows that 
this vanishing holds for the pseudo-tensor when extended to n spatial dimensions. Two additional conse- quences of this 
work are: 1) the dependency of the Einstein gravitational coupling constant κ on spatial dimensionality employed earlier 
is further justified; 2) the Tolman expression for the mass of a static, isolated system is generalized to take into account 
the dimensionality of space for n ≥ 3. 
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1. Introduction 

Some years ago, the author [1] obtained Einstein’s field 
equations for static systems with spherical symmetry in n 
spatial dimensions, and one time dimension, which led to 
a generalization of Schwarzschild’s solution for three 
spatial dimensions. An earlier investigation by the author 
[2] had shown that for this symmetry with 3n  , and 
for a suitable choice of coordinates, when the field equa- 
tions were suitably rewritten, they were linear. Other cases 
for which the field equations are linear are mentioned, 
but these fall outside the scope of this work. The linearity 
which will be dealt with here is associated with the fact 
that for the source tensor, energy density equals radial 
stress, i.e., in the notation to be employed below, 

1 , a condition that is obviously satisfied for the 
homogenous solution. This linearity explains why the 
solution with an electrically charged source, the Reiss- 
ner-Nordström solution, for which the Maxwell energy- 
momentum tensor satisfies this condition, as well as the 
solution that includes the cosmological term, superimposes 
on the Schwarzschild solution for a point mass, so that 
for the standard line element (c = 1),  

0
0T T

2
00ds g

1

22 2 2 2 2 2
11 sindt g dr r d r d      , one has  

2 2 2
00 1 2 3g Gm r Ge r r    , with   1

11 00g g
  . 

This remarkable linearity enabled the author to extrapo-
late to the origin to find the source tensor for a point 
mass in terms of the Dirac delta function. Thus, for the 
source tensor T 

  of a point particle source, one has 

   
 

di ,1, 1 2, 1 2 2 ,

, 2,3 ,

T m r r
 

 

   



2ag 1

, 0,1
     (1) 

where  r  is the radial delta function. This tensor has 
the important property that the trace of the spatial 
stresses vanishes, 0i

iT  . (Latin indices run 1, 2, 3, and 
Einstein’s summation convention holds.) Because of this 
vanishing of the self-stress, see, e.g., Panofsky and Phil-
lips [3], also Rohrlich [4], if one rewrites T 

  in terms 
of quasi-rectangular coordinates (this will be done in sect. 
3 for n dimensions), then upon making a Lorentz trans- 
formation for a “boost” with velocity v, and integrating 
for the energy and momentum of the point particle, one 
finds ,E m m  p v , unlike the case for the classical 
electron based solely on the Maxwell energy-momentum 
tensor for which, as is well-known, the self-stress does 
not vanish, and one does not obtain the correct special 
relativistic values for the energy and momentum in the 
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absence of compensating stresses. 
The surprising consistency with special relativity (SR) 

of the delta function energy-momentum tensor for a point 
mass source for the Schwarzschild field raises the inter- 
esting question about the gravitational energy that might 
be associated with the solution. If one thinks of SR as the 
limiting case when the Einstein coupling constant   
vanishes, where  for three spatial dimensions, 
then it would seem reasonable that in this quasi-rectan- 
gular coordinate system, the Einstein gravitational en-
ergy-momentum pseudo-tensor should vanish for the 
Schwarzschild solution, if the analogy with SR continues 
to hold. This was indeed found to be the case by Nord- 
ström [5], and by Schrödinger [6], albeit without refer- 
ence to SR. Nordström showed that the pseudo-tensor 
vanished for 00 11 , and explicitly showed 
that the pseudo-tensor energy density vanished for this 
case, while Schrödinger, in an independent analysis, found 
that all the components of the pseudo-tensor vanished. In 
an investigation of the Reissner-Nordström solution for a 
charged particle in [7], the author calculated the pseudo- 
tensor in the same quasi-rectangular coordinates for the 
more general case in which , and found 

8 G  

cog g  nstant

00g g11 constant

     1 21 2 1
00 11 11,

2 2 1
r

i
jg t r g g g

      ,   (2) 

where , , 0
0 1  0

0 0i
i   

1

2
i
j i j ijn n     , where 

i
in x r . Thus it is clear that the constancy of 00 11g g  

is sufficient for the pseudo-tensor to vanish in this quasi- 
rectangular coordinate system. It should be emphasized, 
however, that if one transforms to the quasi-rectangular 
coordinates associated with the isotropic form of the 
above line element, for which the spatial metric is con- 
formally flat, the pseudo-tensor does not vanish, and in 
particular, outside the Schwarzschild event horizon, the 
energy density falls off as the fourth power of the radial 
coordinate, just as does the Maxwell tensor for a charged 
particle. However, a further discussion of this well- 
known problem concerning the pseudo-tensor, is outside 
the scope of this work, and will be taken up in a later 
work. 

Returning then to the situation at hand, the question 
naturally arises as to whether or not this surprising SR 
behavior of the point mass tensor, associated with the 
vanishing of the self-stress and the vanishing of the Ein-
stein pseudo-tensor, continues to hold after one extends 
the Schwarzschild solution to  spatial dimensions? Thus, 
in Section 2, after recapitulation of the field equations for 
static systems with spherical symmetry for arbitrary n as 
given earlier [1], in which there will be a clarification of 
the form given there for Einstein’s gravitational coupling 
constant, i.e., its dependency on the dimensionality of 
space, and also there will be given a correction to one of  

n

the terms in the field equations that contained a typo-
graphical sign error, the n dimensional generalization of 
(1) will be given and discussed. In Section 3, the Einstein 
pseudo-tensor for n dimensions will be given, and the 
results will be shown to be consistent with the findings 
for three dimensions. In Section 4, there are concluding 
remarks. 

2. The Field Equations in n Spatial  
Dimensions 

The field equations were given in [1], but are given here 
again for convenience, and because one of the field equa- 
tions (here individually numbered) contained a sign error 
of typographical origin, and is given here in corrected 
form. The line element, with a change in notation for the 
angles, is given by  

2 2 2

1
2 2 2 2 2 2

2 2 3
2

e e

sin sin ,
n

n

ds dt dr

r d d d

 

    
 



 
     
 








 (3) 

where  00 eg r   and  11 eg r  

T

. After a standard, 
albeit lengthy, calculation for the field equations in 
mixed form, nG 

  , where the form for n    is 
irrelevant at this point, and will be discussed later below, 
the equations reduce to  

       0
02 2

exp 1 22
1

2 2 n

n nn
n T

r r r

  
           

, 

(4) 

         1
12 2

exp 2 1 2
1

2 2
n

n n n
n T

r r r

  
    

    
 

 , 

(5) 

 

     

  

2

2

2
22

exp

2
3 2 2

2 2

2 3
,

2 n

n n n

rr

n n
T

r



   





       
     

 
 

  

 (6) 

and 2 3
2 3

n
nT T T    because of spherical symmetry. 

In [1], in the third equation of the group labeled (3.3), 
there was a plus sign before the fifth term in the square 
parentheses instead of a minus sign, given now correctly 
above as   2n r   1  . Upon setting 1

0
0T T , as 

is trivially the case for the vacuum, it follows that 
0   

1 2

, from which, for suitable normalization as- 
suming asymptotic flatness, one has 00 11 . Then, 
upon setting 00

1 g g
g U  , Equations (4)-(6) reduce to 

the following two linear equations 

   2 0
01

1 d

d
n

nn

n
r U T T

rr
 




    1

1n ,     (7) 
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 2 2
21

3 d

d
n

n n

n
U r U

rr





    2

nT ,      (8) 

Where  is the radial LaPlacian for n dimensions, 2
n
  2 2d d 1 d dU r n r U r 

1
1

. The stress equilibriume-
quation that follows from the contracted Bianchi identi-
ties, and physically from the covariant energy-momen- 
tum conservation law, for the static case under consid- 
eration (i.e., with ) is given by 0

0T T

 1 1 2
1 21

1 d 1
0

d
n

n

n
r T T

r rr





  .       (9) 

In [1] it was assumed that 

 1n n   nG ,            (10) 

where  22 n
n n    2  is the total solid angle, or 

area of the unit sphere, in n spatial dimensions. However, 
the factor  1n  ) was introduced solely on the basis 
that the left hand side of the field equations for  and 

 vanished for , and it seemed reasonable that 
the right hand side, proportional to  and 

0
0G

1

1
1G 1n 

0
0T 1T  respec- 

tively, should vanish as well. Further, it was noted that 
combining the factor  1n   for  with 33n  4    
gives the correct Einstein numerical factor of 8 . More 
recently, it was recognized that instead of this somewhat 
ad hoc way of obtaining the factor (n − 1), there is an 
argument based on the signature difference for the metric 
tensor. Thus, choose coordinates such that the metric 
tensor is locally diagonalized, and the individual terms 
normalized to plus or minus unity. Let  be the num- 
ber of positive metric coefficients, and   the number 
of negative metric coefficients, the signature difference is 

N
N


 N N  . (Note, this is sometimes referred to as the 
signature itself.) For a time-like metric  N N   yields 
   1 n  1n  , and clearly for a space-like metric, 
 N N   yields  1n  , and hence if the Einstein the 
field equations are written as 

 1
2 nG R R N N GT   

        



,     (11) 

they hold in this form, not only for n spatial dimensions, 
but independently of whether or not the metric is space- 
like, or time-like; the minus sign that appears, or doesn’t 
appear, on the right hand side is automatically taken care 
of by this signature-dependent form of the coupling con- 
stant. Thus (11) suggests that instead of the definition of 

 in (10), it is preferable to define it as  

n but it will not be used here. Further 
discussion is in the concluding section. 

n
  ,n N N G   

It is readily shown that the solution to the homogene- 
ous Equations (7) and (8) for  is 2n 

22 nU Gm r   , as given in [1], so that  

11 2
00 1 2 ng g Gm r      . To obtain the delta function  

expression for the T 
  of a point particle, it is conven- 

ient to introduce the step function  

   1, 0, 0 0,r r     and set   2 .nU Gm r r    
Then from Equation (7) one has 

  1
0

n
nm r r T   0 ,                (12) 

and since    2r   r , one has  
 0

0 1
1 12 n

nT m r r T    . To obtain, , it is 
convenient to use (9) and 

2
2

n
nT T 

   r r    r  to obtain 
   2 1 .r2 2 1 n

nT m r n     Hence the energy-momen- 
tum tensor for the point mass in  dimensions, , 
is given by  

n 2n 

 
1

21 1
diag 1,1, , ,

1 1 n
n

m r
T

n n r




 

      
 ,    (13) 

as obtained in [1], albeit with  r   used there replaced 
with  2 r  here. As was true for the  case, the 
trace of the spatial stresses vanishes,  

3n 

 1 2
1 21i

iT T n T 0    . Upon transforming to quasi-rec-  

tangular coordinates,  1 2
ji

ijr x x , the energy-mo-  

mentum tensor takes form 

 0 0 2 1 2
0 0 2 1 2, i

j ij iT T T T T T j      ,      (14) 

here i
i x r  , and  has been used. 

Since 

2
2

n
nT   T

1i i   , the trace of the spatial stresses in the 
quasi- rectangular coordinates is given by  

 1
1 n 21iT T T2i 0    , as must be the case since the 

spatial trace is invariant under purely spatial transforma- 
tions. Thus, not only in three spatial dimensions, but in 

 spatial dimensions, the energy-momentum tensor of 
the point particle source for the generalized Schwarzschild 
field transforms properly under a pure Lorentz transfor- 
mation to yield the correct SR energy-momentum rela- 
tions for a particle of mass m. However, the question 
arises as to whether the Einstein pseudo-tensor continues 
to vanish for 00 11

n

cog g nstant ? This will be shown to 
be the case in the next section. 

3. Einstein’s Pseudo-Tensor in n Spatial  
Dimensions 

The line element is that in (3), and it is necessary to con- 
vert it to quasi-rectangular coordinates to obtain the ap- 
propriate metric tensor to use in calculating the pseudo- 
tensor. This is most simply accomplished by rewriting 

2
11g dr  as   2

111 2g dr dr  , and then combining the 
 term with the angular terms to give the contribu- 

tion to the spatial metric as , where the bars 
over the spatial coordinates have been dropped, so that at 
this point the spatial line element is  

2dr
i j

ijdx dx

  2 i j
ij111 g dr


dx dx 

i j
i jdx dx

. Then, using , so that 
, and setting 

i
idx 

11g g
dr

00 e ,2dr   e   , the 
line element takes the form 

  2 2e 1 e i j
ij i jds dt dx dx       ,    (15) 
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and therefore the spatial metric is  
. The contravariant spatial met- 

ric is readily found to be 
 1 eij ij i jg      

 1 eij
ij i jg        , and 

likewise it is readily shown that in this new coordinate 
system     1 2

exp 2g     . The Einstein pseudo- 
tensor is given by  

     
, , ,

2

ln ,

n gt

g g g g g




  
   







       L
 (16) 

where  is  times the Lagrangian density, and is 
given by 

L 2 n

 g g     
        L .       (17) 

The Christoffel symbols of the second kind for the 
metric associated with (15) are 

0 0 0
00 0

10, 0,
2ij i i       ,        (18) 

 

 

0 00
10, e ,
2

1 e 1 .
2k

i i i
j i jk

i jk jr

 





 





     

            
j k




  (19) 

Also, from (18) and (19), 

   0
0 0 0

1, , 0,
2

j
i i i ij

    
       i              .  

This also follows directly using  1 2
ln g

     . Be- 
cause the system is static, and time derivatives as well as 
terms in 0ig  vanish, the gravitational energy density is 
proportional to . Hence upon carrying out the analysis, 
it follows that 

L

   20
02 e 1 e

2n gt n
r

            
 

L 1 . (20) 

Note that the right hand side vanishes for 1n  , con- 
sistent with the fact that both 1  and (4) and (5) vanish. 
Since , the only remaining terms left are the 
stresses 

0
0 0i

it t 
i
jt  which from (16) can be written as a sum of 

two terms,  1 2
2 i iK ig t    Ln j j j , and again, carry- 

ing out the analysis, it follows that  

      2e 1 e 2
2

i
j ij i jK n

r
              

 
, (21) 

which upon combining with i
j L  yields finally 

     2

2

e 1 e
2

i
n j

ij i j

gt

n
r

  



   



       
 

2 .
  (22) 

It should be noted that the right hand side, although it 
does not explicitly exhibit the quantity  1n  , never- 
theless vanishes for , since under these circum- 
stances there is only 11

1n 
1   and 1 1 , and hence 

the term in parentheses involving the difference of these 

two quantities vanishes. Also if one takes the trace, , 
then one has 

1 

i
it

   1ii i i n    

t

, so in this case the  
factor appears explicitly. Moreover, since there is spheri- 
cal symmetry, the diagonal terms  (no sum) are 


1n  

times the trace, and since there are no off-diagonal terms 
for 1n  , the vanishing for  follows. Since both 

 and 
1n 

0
0t

i
jt  are proportional to     00 11 ,r

 
the pseudo-tensor vanishes for 00 11 , so that 
the findings of Nordström [5] and Schrödinger [6] con- 
tinue to hold in n dimensions. Thus the tensor for the 
point mass in n dimensions not only transforms properly 
under a Lorentz transformation, but, in this coordinate 
system, it is unaccompanied by gravitational energy and 
momentum, as if it were in the flat space-time of SR; 
indeed, since one can obviously set 

ln g g  
constant

 

  
g g

1 2
1g

d
 

n x
, the space- 

time volume element is simply  as in SR. Re- 
grettably, the underlying physical reason for these sur- 
prising results is still unknown. 

dt

0
0 0.i

it t

There is an interesting property of the Einstein pseudo- 
tensor for static systems that was found by Papapetrou [8] 
for the case n = 3, and is known as Papapetrou’s identity. 
He found that    In a study of the source of the 
Schwarzschild field. the author [9] observed, using Euler’s 
theorem, and the general form for the pseudo-tensor from 
the action principle, that the trace of the spatial stresses, 
for a static system, in the notation of this paper, satisfies 

  0
02i

it n t  ,                (23) 

and observed that therefore the Papapetrou identity only 
holds in three spatial dimensions. Examination of (20) 
and (22) show that they obey (23), and this agreement 
can be seen as a check of the calculations leading to these 
two equations. The generalization of the Papapetrou 
identity given in (23), together with other assumptions 
given below, leads to a generalization of the Tolman [10] 
equations for the mass of an isolated static system. Thus, 
for n ≥ 3, one has  

    
  

0 0
0 0

10
0 2 di n

i

T t x
10

0d 2 d

,

n i n
im g g T n x

g T T n x





      

   

 



t
 

(24) 

where the last integral has made use of the fact that since  

  
,

0i i
j j

i
g T t   , upon multiplication by jx , and  

the use of the divergence theorem, together with suffi- 
cient fall-off of the stresses so that the surface integral of  

  j i
j j

ix g T t   vanishes, at infinity, one has that  

 d 0i i n
i ig T t x   . 

4. Concluding Remarks 

The primary purpose of this work was to investigate 
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1

whether the Einstein pseudo-tensor continued to vanish 
in n spatial dimensions as it had for 3 dimensions for 

00 11  As the above work shows, this is in- 
deed the case, so that the vanishing is invariant with re- 
spect to a change of spatial dimensionality. Since this 
condition on the metric tensor via the field equations is 
directly tied to the requirement on the energy-momentum 
tensor that 1 , there is obviously a physical reason 
underlying this influence on the metric tensor, as well as 
the resulting linearity of the field equations which con- 
tinues to hold in n dimensions. However, as emphasized 
above, there is no known physical principle that leads 
one to expect these results. Equally interesting is the fact 
that when one transforms to isotropic coordinates, one 
finds that the pseudo-tensor does not vanish for 

constant.g g 

0
0T T

0 1
0 1T T , 

and, as is well-known, no longer does g00g11 = constant 
for the Schwarzschild solution. A further study is in 
preparation in which the pseudo-tensor for isotropic co- 
ordinates in n spatial dimensions will be given, and 
compared with the results obtained in the coordinate sys- 
tem used here. Finally, it is of interest that the work 
strongly suggests that when one goes outside three spa- 
tial dimensions, one should allow for a dimensionality 
dependence of Einstein’s coupling constant, since the 
standard value of the constant, , is obtained to in- 
sure agreement with Newtonian theory in the limit of 
weak fields for . Interestingly, the proposed be- 
havior of the coupling constant in this work impacts on 
string theory, since the latter, in later models, leads to a 
spatial dimensionality of n

8 G

10

3n 

 , and so naturally the 
question arises—how does this higher dimensionality in- 
fluence the gravitational coupling constant for this theory? 
An answer to this question could facilitate a comparison 
of string theory with general relativity for higher dimen- 
sions, as well as three dimensions. Likewise to be com- 
pared are the energy-momentum tensors for gravitation 
in the two theories, bearing in mind that a spin-two the- 
ory would seem to predict a true tensor, whereas in ac- 
cordance with the principle of general covariance, and 
the demand for a true conservation law, general relativity 
predicts a pseudo-tensor. 

Also, it will be noted that unlike string theory, Ein- 
stein’s field equations do not in themselves impose a re- 
striction on the dimensionality of space, although to be 
sure, for , according to (11), the gravitational cou- 
pling vanishes, while for n = 2 outside the source, the ho- 
mogeneous solution indicates space-time is flat, and one 
therefore does not have the Newtonian logarithmic po- 
tential; for n ≥ 3, one has quasi-Newtonian behavior.  
The way n = 3 arrived at in [1] which was by requiring 
that there be stable bound orbits in the generalized Sch- 
warzschild field. This approach was a follow-up to the 
study of the dimensionality of space problem by Ehren- 

fest [11,12] who studied the stability of orbits in Newto-
nian theory extended to n dimensions. Ehrenfest’s ap-
proach for n ≥ 3 was later arrived at independently by 
Whitrow [13,14], who justified the stability assumption 
by an appeal to the anthropic principle. Of interest to the 
present work is the fact that in [1], the pseudo-tensor is 
not involved, and so the question arises as to whether the 
behavior of the pseudo-tensor in n dimensions has bear- 
ing on the dimensionality of space problem? A possible 
affirmative answer to this question seems to be provided 
by (23) that shows that Papapetrou’s identity for static 
systems, 

1n 

0
0

i
it t , only holds for n = 3, and hence Tol- 

man’s expression for the mass of an isolated static sys- 
tem as well. Consequently, further studies of the be- 
havior of Einstein’s pseudo-tensor may lead to another 
way to tackle the dimensionality of space problem in the 
framework of general relativity, and perhaps give insight 
as to how to involve the stability principle in a less ad 
hoc way. 
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