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ABSTRACT 

We propose a solution method of Time Dependent Schrödinger Equation (TDSE) and the advection equation by quan- 
tum walk/quantum cellular automaton with spatially or temporally variable parameters. Using numerical method, we 
establish the quantitative relation between the quantum walk with the space dependent parameters and the “Time De- 
pendent Schrödinger Equation with a space dependent imaginary diffusion coefficient” or “the advection equation with 
space dependent velocity fields”. Using the 4-point-averaging manipulation in the solution of advection equation by 
quantum walk, we find that only one component can be extracted out of two components of left-moving and right-mov- 
ing solutions. In general it is not so easy to solve an advection equation without numerical diffusion, but this method 
provides perfectly diffusion free solution by virtue of its unitarity. Moreover our findings provide a clue to find more 
general space dependent formalisms such as solution method of TDSE with space dependent resolution by quantum 
walk. 
 
Keywords: Quantum Walk; Quantum Cellular Automaton; Time Dependent Schrödinger Equation; Advection 

Equation 

1. Introduction 

Quantum walk is a mechanical system evolved by a dis-
crete local unitary transformation and is regarded as a 
quantum version of the classical random walk [1,2]. In 
recent years, relations between the quantum walk and 
continuous quantum wave equations were shown [3-9] 
and more recently a certain view point was added to the 
relation between the quantum walk and the Time De- 
pendent Schrödinger Equation (TDSE) [10]. 

There are some formalisms on the broadly-defined 
quantum walk. Here we use the formalism usually called 
as quantum cellular automaton (QCA). Namely, we 
simply consider it as a mechanical system evolved by a 
unitary transformation by a banded matrix. 

A quantum walk can be most easily conceived by 
comparing it with classical random walk. One-dimen- 
sional classical random walk is defined by a transition 
probability matrix  applying a probability distribu- 
tion 

îjP

i . 

  ˆ
i ij

j

t t P t     j             (1.1) 

The conservation of probability requires 

ˆ 1ij
i

P                    (1.2) 

And the requirement that 
between neighboring grid points means that  should 
be

e
l

the transition occurs only 

îjP
 a banded matrix. 
In quantum walk, where probability amplitud  evolves 

instead, this transition probability matrix is rep aced by 
the unitary banded matrix. Namely, 

    *,ˆ ˆ ˆ
i ij j ki kj ij

j k

t t U t U U           (1.3) 

Incidentally the difference between a random
and a quantum process is that in the latter case the pro- 
ba

 process 

bility is given by squaring the amplitude. In order to 
conserve total probability, the transformation must be 
unitary, 

2
 ˆ 1ijU                   (1.4) 

i

and therefore formally the correspondence relation 

Copyright © 2013 SciRes.                                                                                 JQIS 



S. HAMADA  ET  AL. 108 

2ˆ ˆ
ij ijP U  holds. 

While it is apparently easy to make some transition 
f pro- 

bability ( (1.2)), it requires some devices to 
con

probability matrix that satisfies the conservation o
Equation 

struct a unitary banded matrix. 
However we note that the unitary banded matrix re- 

presented on discrete space is quite similar to the two- 
scale transformation matrix in an orthogonal wavelet 
with compact support [11]. 

One of the easiest way to construct the unitary banded 
matrix is to use the product of trivial unitary banded 
matrices as shown in Figure 1. Here we refer to a block 
diagonal matrix whose block diagonal components are 2 
× 2 unitary matrices as a trivial unitary banded matrix. 

By using the product of trivial unitary matrices in the 
RHS, we can construct a non-trivial unitary banded 
matrix in the LHS of Figure 1. In fact, reversely it is true 
that any translationally invariant unitary banded matrix 
can be factorized in the form of the RHS (see Appendix 
B). 

In general we can introduce space dependent para- 
meters       , ,x x b x   in the quantum walk (see 
Appendix A). 

       

 
 cos sin

si cos

i x
ib xx i x e

U x e
i x x

 






 

 
 (1.5) 

   n i xe 
 
 

Here we use U in place of E and F in Figure 1. 
In these parameters, b(x) means potential te

TDSE (see Appendix A). 
rm in 

 x  is a local gauge transformation pa
amely redefinition of the phase of wave functio

rameter 
(n n), but 
we don’t discuss space dependent  x  here while it is 
an interesting subject. 

2. Time Dependent Schrödinger Equation 
with Space Dependent Imaginary 
Diffusion Coefficient 

Here we discuss space dependent parameters  
    ,x b x  in the TDSE-type quantum walk. 

 cos x i
     sin cosi x x 

  
 

tion 

   sin ib xx
U x e

   


    (2.1) 

By the rela 1 tanm   (see Appendix A),  x  
can be interpreted as a parameter for the space
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Figure 1. Product of trivial unitary banded matrices (E, F 
are 2 × 2 unitary matrices). 

imaginary diffusion coefficient   1 2m . 
erges in the cThe Hamiltonian that em ontinuum limit 

evolution equation 

   
,

,
x t

i H x t


            (2.2

 and/or their linear com- 
rmitian an  

t

may have the following form

) 

binations because H must be He d 

21

2
H D

m
   for constant A(x). 

     

    2 2 2 (
1

2
)

x

        

2 2

2

1

2

1
xx

A x A x
x

H A x DA x DA x

A

A xA x D A x D

x

 




 



where 



  

    (2.3) 

   1A x m x ,    ,
x xx

A x A x

pects to space x

 are first and 

second derivatives with res  and .D

x




 

We show some examples as follows. 

   

   

     

    

0

2

1
,

2
1

,

1

2

H DA x A x D

H A x DDA x1 2
1

1

2 2
H A x DA x D A  x

A x D A x

 

 



 (2.4

By making 

      ) 

1

2

H  as a basis for which theoretical solu- 

tion can be obtained easily, H  can be rewritten as 

     

1

2

2
21 1 1

H H

2 2 2xx x
A x A x A x 



 
          



 
   

 (2.5) 

ona ges We must note that additi l potential term emer
when   is changed. 

HFor the case of H as the linear combination of , we 
have more general form 

      2

1

2

 
xx x

H H A x A x A x      (2.6) 

Since analytical derivationof ,   is not straight- 
forwar because of the d broken tra slational invariance, 
w

n
e determine ,   using a numerical method. 
Namely, the solution for  

      2
 

xx x
H A x A x A x   is calculated usin

type quantum walk with space dependent

g TDSE- 

  x  with 
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additional potential term     2 xx x
A x A x    and  

compared with the analytical solution for 
A x

1

2

H . 

We determine ,   so that the two solutions com- 
pletely coincide. 

The used 2 × 2 matrix of quantum



 walk is 

   
   

cos s

sin cos

x i
U x e

i x x


 


  
 

      (2.7) 
   in ib xx 

   
 

where tan ,

       2
'

2

xx x

x A x

x

 

b x A x A x A x    
 

(Note that for the space dependent  x , phase com- 
pensation term  x , the first term in  b x  is crucial 
and leads to m ss results without it). 

In our numerical method, we use periodic boundary 
condition for the range [0,1], and use two types of A(x). 

(More precisely, in the actual calculation the range 
[0,1] was mapped to the range [0,512]) 

1) sine function type 

eaningle

     0
0  0.5, 5

1 sin 2π

A
A x A

x
 


   (2.8) 0.

2) elliptic function type 

      
 0.5, 0A  2

0 .9k 

          (2.9) 

where 4K(k) is the period along the real axis of
elliptic function 

s 

02π

4 4 ,

A
A x

K k dn K k x k


 Jacobi’s 

Both type of A(x) satisfie

 
1

00

d 1x

A x A
              (2.10) 

In order to calculate the theoretical solution for 

   

      

1

2

,
2

2

1

,
 ,

t x
i H t x

t

A x D A x t x 

  (2.11) 

we can simply reduce it to the solution of the free fields 
TD









SE  0 ,t x . 

   0 2
0

, 1
,

2

t x
i D

t





 


t x         (2.12) 

 
  

 

   

2
0 0

0

0

wh

,?

e dre
x A

          (2.13) 

   1 1B x B x  

,

 

tA B x
t x

A x

B x x
A x









 

(Note that as , the periodicity  
   ,t x  is guaranteed). 

nction forms for the B(
, 1t x  

Concrete fu x) are  

    

        

cos 2π 1 ,
2π

1
arg 4 , 4 ,

2π

B x x x

B x cn K k x k isn K k x k


  

 
(2.14) 

for sine function type and elliptic function type respec- 
tiv

We use the fact olution of the free 
fie n be written 
[12] as 

ely. 
that theoretical s

ld TDSE for the Gaussian wave packet ca

   
     

   

2

00 , exp
0

1 1

C t
t x C t x B

C
  

     (2.15) 

an


 

condition. 
Here C, B are complex numbers and B is constant in 

general (Note that as C, B are complex n
wave packet center of 

where 2
0

it
C t C

 

d we use periodic superposition of this  

   0ψ , ,t x t x n 
  


  for the periodic boundary 00

n

umbers, the 
  2

,t x  is not B but changes 
with time). 

  for the 

We show the result of th
ures 2-5. 

We used   0 0, exp 10 0.t x x    
initial wave packet. 

 2
5

e numerical solution in Fig- 

 

 

Figure 2. Parameter fitting for sine function type A(x) (after 
50000 walks) dash-dotted red: theoretical solution, dotted 
green: (α′, β) = (0, −0.125), solid blue: (α′, β) = (−0.25, 
−0.125), dashed magenta: (α′, β) = (−0.5, −0.125). Here, β = 
−0.125 is fixed and α′ is varied. At α′ = −0.25, the quantum 
walk solution coincides with the theoretical solution. 512 
grid points are used. Absolute values of two-point-averaged 

ψ are plotted.          , , ,ave2ψ 1 2 ψ ψ Δt x t x t x x   . 
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Figure 3. Parameter fitting for sine function type A(x) (after 
150000 walks) dash-dotted red: theoretical solution, dotted 
green: (α′, β) = (−0.25, 0), solid blue: (α′, β) = (−0.25, −0.125), 
dashed magenta: (α′, β) = (−0.25, −0.25). Here, α′ = −0.25 is 
fixed and β is varied. At β = −0.125, the quantum walk solu- 
tion coincides with ints the theoretical solution. 512 grid po  
are used. Absolute values of two-point-averaged ψ are 

plotted.         , , ,ave2ψ 1 2 ψ ψ Δt x t x t x x   .  

 

 

Figure 4. Parameter fitting for elliptic function type A(x) 
(after 50000 walks) dash-dotted red: theoretical solution, 
dotted green: (α′, β) = (0, −0.125), solid blue: (α′, β) = (−0.25, 
−0.125), d
−0.125 is

ashed magenta:(α′, β) = (−0.5, −0.125). Here, β = 
 fixed and α′ is varied. At α′ = −0.25, the quantum 

alk solution coincides with the theoretical solution. 512 
 points are used. Absolute values of two-point-averaged 

ψ are plotted. 

w
grid

        , , ,ave2ψ 1 2 ψ ψ Δt x t x t x x   . 
 

To summarize these results, we find that by selecting 
only two parameters 1 4, 1 8     ,

tum walk num

 

Figure 5. Parameter fitting for elliptic function type A(x
(after 100000 walks) dash-dotted red: theoretical solution, 
dotted green: (α′, β) = (−0.25, 0), solid blue: (α′, β) = (−0.25, 
−0.125), dashed magenta: (α′, β) = (−0.25, −0.25). Here, α′ = 
−0.25 is fixed and β is varied. At β = −0.125, the quantum 
walk solution coincides with the theoretical solution. 512 
grid points are used. Absolute values of two-point-averaged 

ψ are plotted.  

) 

       , , ,ave2ψ 1 2 ψ ψ Δt x t x t x x   . 

 

Because 
2

1 1 1 1
,

2 2
             

 
 for 

2 2 
H ,  

this result leads to 0  . 

Namely we find that    0

1

2
H DA x A x D   is the  

right Hamiltonian for the continuum limit evolution equ- 
ation corresponding to the TDSE-type quantum walk 
with space dependent  x . 

3. Advection Equation with Space  
Dependent Velocity Field 

We consider space dependentparameters   x
x A). 

 in the 
advection-type quantum walk (see Appendi

    
   

cos sin
 

sin cos

x x
U x

x x

 
 

 
  
 

 


      (3.1) 

Here we use  U x  in place of E and F in Figure 1  

and    π
, 0

2
x b x    are chosen in Equation (1.5). 

The evolution equation that emerges as the continuum 
limit for the advection-type quantum walk with space 
dependent velocity field     sinA x x  is in general 

   

       

1Ψ
Ψ

1 Ψ

A x DA x
t

DA x A x D

 

 





  

 

     (3.2) 
 a theoretical 

solution and a quan erical solution co- 
incides completely. 

where  D
x


  
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Especiall
1

0, 1
2

and y  correspond to

y-type and conserving-type advection 
ely (Note that there is a relation 

 non-con-  

serving-type, unitar
equations respectiv
   between unitar d con- y-type solution  an
serving-type solution  ). 

However since quantum walk is a unitary transforma- 
tion, only the unitary-type advection equation is allowed. 

In the following, w vee in stigate using a numerical 
ion indeed 

e periodic boundary 
follow

(More precisely, in the actual calculation the range 
[0,1] was mapped to the range [0,512]) 

method if the unitary-type advection equat
emerges as a solution for continuum limit. 

In our numerical method, we us
condition for the range [0,1], and use the ing type 
of A(x). 

     0   0.5 0.5A x A   ，    (3.3) 0

1 sin 2π

A



an

x

d this satisfies 

 
1

0

d 1x

A x        (3.4) 
0

 
A

          

In order to calculate the theoretical solution for 

       1,
,

t x
A x DA x t x

t
 





    (3.5) 

we can simply reduce it to the solution of the constant 
velocity field (   1A x 

x  (w
) adve
here F

ction equation  
  ,t x F t (x) is an arbitrary periodic 0

function of which period = 1). 

   0
0

,
,

t x
D t x

t








           (3.6)   

 
  

 

   

0 0 ,?
,

tA B x
t x


 

0where d
x

A x

A
B x x



 
           (3.7) 

0 A x

(Note that as    1 1B x B x   , the periodicity  
t x    , 1 ,t x  is guaranteed). 

We used      2

0 0, exp 10t x x     0.5  for the  

initial wave packet. 
In fact, in the case of advection type quantu

both left moving and right moving components emerge. 
 that using the 4-point-averaging mani- 

ract only the one component (see 
Appendix C). 

4-point-averaging is an aver
four neighboring grid points in space-time. 

m walk, 

However we find
pulation, we can ext

aging manipulation over 

 

   
   Δ  , Δ , Δt t x t t x x     

Now, if we a

4 ,ave t x
1

, , Δ
4

t x t x x     

ssume 

    (3.8) 

   , , Δt x t x x     then 1

 
 
Δ , Δ cos sin 1t t x x        

  Δ  , sin cos 1

cos

cos sin

t t x  


 

   


   

 
sin 

  (3.9) 
 
 

and therefore   2
4

1 cos
, c

2
osave t x


2

 
  . It means  

that by 4-point-averaging the wave function  

factor of 

scales with a 

2cos
2


. 

In order to so tions by using quan
int-averaging, we

lve advection equa - 
tum walk with 4-po  must consider this 
fa ot straightforward to deduce the ri
scrip to account the factor in a purely th

e examined three different prescrip- 
tio

ctor. It is n ght pre- 
tion to take in eo- 

retical way. We her
ns to account the factor using numerical method. 
Here we refer to the wave function of quantum walk as 
 ,t x , and refer to the solution of the advection 

equation to be solved as  ,t x . 
Three methods we use  follows (At initial time  are as

 0t  ,  0,t x   is loaded to  0,t x   with/ 
without scaling factor, and at any time  
( 0)t   4 ,ave t x  is  copied to  ,t x  with/w ithout 

ng). scaling factor for plotti

   

 , :t x   

2

ave4

0,
0, : ,

cos
2

ψ ,

t x
t x

t x







 


     (Method 1) 

   

   ave4

0,
0, : ,

cos
2

ψ ,
, :

cos
2

t x
t x

t x
t x










 






      (Method 2) 

   

   ave4

2cos
2



We show the numerical solutions in Figures 6-8 using 
the above prescriptions. 

To summarize, from the numerical examination we 
find that method 2 is the right prescription. 

0, : 0, ,t x t x   

ψ ,
, :

t x
t x         (Method 3) 
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Figure 6. Comparison of three methods for different scal- 
ings (after 100 walks) dash-dotted red: theoretical solution, 
dotted green: method1 solid blue: met
genta: method 3, solid cyan: velocity A(x). When the wave 
packet locates the region where A(x) is small, the solution of 
all methods coincide with the theoretical solution with good 
accuracy. 
 

hod 2, dashed ma- 

 

Figure 7. Comparison of three methods for different scal- 
ings (after 200 walks) dash-dotted red: theoretical solution, 
dotted green: method 1 solid blue: method 2, dashed ma- 
genta: method 3, solid cyan: velocity A(x). As the wave 
packet comes close to the region where A(x) ≈ 1, the differ- 
ences among these methods become non-negligible and only 
the solution of method 2 coincides with the theoretical solu- 
tion. 
 

he mathematics of quantum walk with variable para- 
meters is not well established and difficult to derive 
space-time equation for its continuum limit by purely 

In general it is not so easy to solve an advection equ- 
ation without numerical diffusion, but this method pro- 
vides perfectly diffusion free solution by virtue of its uni- 
tarity. 

4. Conclusion 

T

 

Figure 8. Comparison of three methods for different scal- 
ings (after 350 walks) dash-dotted red: theoretical solution, 
dotted green: method 1 solid blue: method 2, dashed ma- 
genta: method 3, solid cyan: velocity A(x). When the wave 
packet locates around the region where A(x) ≈ 1, the dif- 
ferences among these methods become large and only the 
solution of method 2 coincides with the theoretical solution. 
 
mathematical method. And it is indispensable to compare 
th

is work, we propose clear-cut numerical methods 
to identify the right relation between the quantum walk 

ndent parameters and the continuous 

velocity fields”. 
Using the 4-point-averaging manipulation in the solu- 

tion of advection equation by quantum walk, we find that 
only one component can be extracted out of two compo-
nents of left-moving and right-moving solutions. 

In the present work, we employ QCA formalism where 
extended space generated by combining original physical 
space and coin space (internal degree of freedom) is 
used. 

On the extended discrete space, mathematics of quan- 
tum walks becomes more clear. 

The extension to the multidimensional space is straight- 
forward and currently we are applying the methodology 
to more realistic inhomogeneous quantum system in or- 

his research was supported in part by TUT Programs on 

eories with numerical methods especially in the case of 
space dependent parameters or broken translational in- 
variance. 

In th

with the space depe
space-time evolution equations. Using the method we 
establish the right relation between quantum walk and 
“TDSE with a space dependent imaginary diffusion coef- 
ficient” or “the advection equation with space dependent 

der to examine its practicality. Moreover our findings 
provide a clue to find more general space dependent 
formalisms such as solution method of TDSE with space 
dependent resolution by quantum walk/QCA. 
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Appendix 

Appendix A (Continuum Limit of Quantum 
Walk with Constant Parameters) 

Here we briefly review the way how an evolution equa- 
tion can be derived as a continuum (zero wave number) 
limit of a quantum walk with constant parameters. This 
derivation technique is also used when 4-point-averaging 
is introduced (Appendix C). 

In the method described here, the time evolution gen-
erator is expanded with respect to wavenumber k around 
k = 0. This treatment is essentially the same described in 
other literatures [4,6]. 

In the latter, the effective mass  

 
12

2

0

d
tan

d
k

k
m

k








 
  
  

  was given from the dispersion  

relation cosω(k) = cosθcosk (though their model is diffe-  

rent from ours and their θ corresponds to our 
π

2
 ). 

Note that the derivation in this appendix is athnot m e- 
m

uous function 

atically rigorous, we rather provide an outline of the 
derivation needed to explain or interpret the background 
and results of our numerical experiments. 

We regard the wavefunction as a contin
 x

in spa
, when the shape of the wavefunction varies slowly 
ce as compared with the grid spacing of the quan- 

tum walk. We show the continuous space-time evolution 
equation thus introduced. 

First we consider the continuum limit of the classical 
ra

tin

ndom walk, classical counterpart of the quantum walk. 
It is well known that by central limit theorem, the con- 
uum limit of the classical random walk is a diffusion 

equation (If the left-right balance of the walk is broken, it 
leads to an advection-diffusion equation with an advec- 
tive term) 

2

2
A B

t x x

    
 

  
           (A.1) 

First, we review how this equation can be derived. 
We assume that the transition probability matrix P̂  is 

translationally invariant. Namely P̂  commutes with ne- 
grid shift (to the negative directio operation matrix Ŝ . 

Below is a simplest example of classical random w lk 

 o

a
n) 

w

yclic lattice of size N or periodic 
bo

ith probabilities of both left and right walks being the 
equivalent value 1/2. 

Here we assume c
undary condition. 

0 1 2 0 0 1 2

1 2 0 1 2 0 0

0 1 2 0 1 2 0ˆ      
0 0 1 2 0 0

1 2

1 2 0 0 0 1 2 0

P


 
 
   
 
 
 
 






    

     (A.2) 


       

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0
    

0 0 0 0 0

1

1 0 0 0 0 0

Ŝ

 
 
 


 
 
 
  
 






    

      (A.3) 

0ˆ , ˆ  P S                     (A.4) 

In treating translationally invariant 
is usual technique to diagonalize 

discrete system, it 
both Ŝ  and P̂  si- 

multaneously using Z-transformation. 

   1
0̂

1

2
i

i
i

P s P s s s    

w  P s  is the diagonal element of the diagonalized here 
P̂  corresponding to the eigenvalue s of Ŝ . 

Next we extend the problem from discrete time to con- 
tinuous time and assume this leads to the f llowing con- 
tinuous time evolution equation  

o  

     
s

H s s
t








         (A.5) 

(In this appendix we use ,H H  for gen rators  e

, i
t t

 
 

 respectively). 

As transition probability matrix for a unit time is 
   H sP s e ,  H s  can be calculated by 

   logH s P s     

e co long 
range lim use the relation bet
shift op e differential operator  

         (A.6) 

In order to investigate th ntinuum limit (or 
it) behavior, we ween the 

erator ( Ŝ ) and th

( D
x





) ˆ DS e  and we have only to expand H(s) in a  

iks e  around k = 0. Taylor series with respect to k of 
In this example, 

     

   
2 2

4 4

log log cos

log

H s P s k

k k
o k o k

 

 
      

    (A.7) 
1


Therefore in the real space representation by replacing  

2 2

ik
x


 


 we obtain a diffusion e n quatio

2

2

1

2t x

  


 
        

In the case of quantum walk, we can use basically the 
sa
has 
translational invariance. 

    (A.8) 

me technique. the difference is that the quantum walk 
not an 1-grid translational invariance but a 2-grid 
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2, 0,ˆ ˆˆ ˆ , 0U S U S                 (A.9) 

We 2 × 2-block-diagonalize both  and  simul- 
taneously by Z-transformation. 

This time, unlike the case of classical random walk, 
w

      (A.10) 

a t
ndices) of 

Z-transformation of U is obtained by the matrix 
multiplication of Z-transformation of each factor. 

Û Ŝ

e use Z-transformation of 2 × 2 matrix unit. 

 2 2
0:1,2 :2 1

2 2

ˆ

ˆ

i
i i

i

U s U s 

  0:1,2 :2 1 2

0 1

0
i

i i
i

S s S s
s
 

  


 


Here 0:1,2 :2 1
ˆ

i iU   denotes 2 × 2 subm trix (0 o 1 row 
indices and 2i to 2i + 1 column i Û . 

If we use the factorization form 1ˆ ˆˆ ˆ ˆU S ESF  of 
Figure 1. 

        12 2 2 2

2 0 10
 

U s S s E s S s F s

s
E F







   


 

2

2 01 0 s
   

  

   (A.11) 

E, F beingNow we assume the 2 × 2 matrix form of  

 A B 
E F

C D
   

 
              (A.12) 

 
2

1
2

21 1

  0

0

  

A Bs
U s

C Ds

Cs Ds

As Bs



 

   
    
   

 
  


   

Then we regard the square root of as 1-walk 
evolution matrix. 

 

    (A.13) 

  2U s
 

   
1 1

2   Cs Ds
U s U s

As Bs

  
   

 
      (A.14) 

The logarithm of U(s) is obtained by dec
into the scalar part and the traceless part as follows. 

omposing U(s) 

   2 2

2 2

exp

arctan
 

    


   (A.15) 
arccos

U s I i i    

  

     

        

( , , C   , : 2 2   matrix with trace   0   and 
2 I  ) 

     
2 2log i

log logH s U s I i 

     
.16) 

As  has eigenvalues +1 and −1, we can obtain 

   
     (A

Δ
,   fro

   1trace 2U s Cs Bs            (A.17) 

    
   2 2

det U s AD BC

i i     

  

    
        (A.18) 

Now we c der m A, B, C

b

H




 are Pauli’s matri-  

ces. 
Then using 

onsi ore concrete form for ( , D). 

    
exp cos sin

cos sin

sin cos

x y

i
ib

i

A B
i i

C D

i e
e

i e





    

 
 




 
  

 
 

  
 

ere, 

  (A.19) 

0 1 0
,

1 0 0x y

i

i


  
   
  

iks e  we have 

    1
trace sin cos

2
ibU s i k e        (A.20) 

  2 2 det i ibU s e            (A.21) 

and therefore 

 

    

 

 

2 2

2 2 2

π
,

2

arccos sin cos 0 π

sin 1 sin cos

cos

m 

sin sin

H s b i i

k

k

k


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  

  

     
 

   

  
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   (A.22) 

 
 

sin sin cos1

sin cos sin sin

ik

ik

k e

e k

  
   

  
     

 (A.23) 

In order to investigate the continuum
ehavior, we expand

 limit (or long 
range limit) b   s  in a Taylor 
series with respect to k of iks e  around k = 0 and we 
have 

 
  

 

 
 

2 2

2
2 3

3
2 2 2

arccos sin cos

sin sin
arccos sin cos

1 s

1 sin cos cos

2
1 sin co

in cos

s

ik

k o k

e

k

k

 



 
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





 




 











   (A.24) 

Here we use the Taylor expansion of arccos, 

 

 
 

 

 

2
3

32
2 2

arccos a x

1
arccos

21 1

0 arccos π .

x ax
a o x

a a

   
 

 
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Two cases ( 0   or 
π

2
  ) are particularly impor-  

tant, and from now on we restrict our arguments to these 
cases. 

   

 
 

2 4

arccos sin cos

π 1
tan

2 2
for 0

ike k

k o

 

 





   



k      (A.25) 

   

 3

arccos sin sin

π
sin

2
π

for
2

ike k 

k o k



  

  
 

           (A.26) 

 
0 1 sin cos

0 ,
1 cos sin

k
0

2

π
for 0, respectively

 
 

     
      (A.27) 

  

   


 
Now we consider eigenfunctions of  k  or (which 

is the same)  ikH e  

       ike k      k  

The equation of motion for wavenumber represen- 
tation  is 

     (A.28) 

   ,t k 

 
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 

 
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2

0

H
t

i b k

 
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










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 (A.29) 
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2 2

π
and 0
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 
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H i
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b

  




            

   

 
   (A.30) 

ation o otion for real space representation 
 is  ,t x 

 
 

 

 

2

2

π π 1
tan

2 2

r

2

o 0

t

b
x

 








                



   (A.31) 

i H
  



 
   π π

sin
2 2

π
and 0

2
for

H i
t

b

  




          

   
 

 
x




 (A.32) 

Thus we obtain the TDSE with potential term 
 for 0   and advection equation. 

π
andf 0

2
or b   

 
. 

Here we drop higher-order terms. 
cribe the physical meaning of  Now we des    

briefly. 

For TDSE-type ( 0  ),  
0 1

0
1 0

k
 

    
 

 and its 

eigenvector are 
1

1

 
  

. 

It is plausible that the eigenvector  corresponds to  

the wave function slowly varying in space, 

1

1

 
 
 

namely 
   , , Δt x t x x   . 
On the contrary, for advection-type  

(
π

2
  ),  0

cos sin
k

sin cos 
 

    
 

 and 
1 
 

 is not  

r, so the wave functio

  1 

the eigenvecto n slowly varying in 
space must have both  Ψ   and  components corre- 
sponding to left-m d ri g wave packets. 

on relation for the 
TD

that if we shift the horizontal axis by 

 Ψ 

ght-movinoving an
In Figure A1 we plot the dispersi
SE type quantum walk (Equation (A.25)). 

Note 
π

2
 , we  

ca ph as the dispersion rela
advection type quantum walk (Equation (A. 26)). 

se,  

n regard this gra tion for 

In the TDSE ca as comes close to 
π

2
  , the dis-  

persion relation around 0k   changesfrom quadratic to 
linear and this corresponds to the one-dimensional Dirac  

equation with a small mass 
1 π

tan 2
m 


   . 

This can be seen as follows (shown by the article [6]). 

 

    

10
log exp

0

π π

x

z

s
H i

s

i



 

  
     

 

factor

log exp exp

π

x xik   

   
log exp ?

2z xi ik i        
   

 

    (A.33) 

2 2z xi k         
  

π
if both and are small

2
k    

  



Therefore in a real space representation without the  

constant phase rotation  
π

  in Equation (A.33), 
2
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Figure A1. dispersion relation for TDSE (or advection) type 
quantum walk. 
 
we have 

2z xi i
t x

                 
     (A.34) 

Finally we comment about unit system. By comparing 
the continuum limit evolution equation for the TDSE- 
type quantum walk with     and b 

 

 

 
2

2

1
tan

2

i
t

H

b
x





  












 
    



        (A.35) 

and the usual TDSE 

2

2

ψ 1
Hψi V

2t m x


  
    

      (A.36) 
 

y that the correspondence relation  we can sa
1

tan and V b
m

     hold. It is true if we u  

units system of  where means the time 
in

se the 

 1t x    t  
terval of each step and Δx  means the grid interval. If 

we use more general units system, we must say that  

 2

1
tan and

t
V t b

m x
 

     


using dimensionless  

quantities. 

Throughout this article we call 
1

2m
 as imaginary  

   

     

diffusion coefficient. 
One more important comment to say is that in a finite 

difference (leap-frog) method 

 2

Δ ,

2Δ
, Δ , Δ 21

2 Δ

t t x
i

t
t x x t x x

m x

  



   


there is a sharp stability
nondimensionalized imag

Δ ,t t x  

,t x
  (A.37) 

 condition (CFL condition) for 
inary diffusion coefficient  

 2

1 1

2

t

m x





 [1 uantum walk there is no such  

limitation. 

3], but in q

Appendix B (Factorization of Unitary 

H on 
la . 

trix can be found in articles such as 

Banded 
Matrix) 

ere we briefly review the factorizati of 2-grid trans- 
tionally invariant unitary banded matrix
Factorization of ma

[14]. 
We will show 

    2 2 4 2 2 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆS A BS CS S DS S ES F       (B.1) 

that corresponds to Figure A2, or equivalently. 

2 4ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆA BS CS DSESF             (B.2) 

(Note that 2Ŝ  commutes with any matrix dealt here). 
By the unitarity 

   2 4 2 4ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆÂ BS CS A BS CS I


        (B.3) 

or equivalently (after Z-transformation) 


   
 

2 4 2 4A Bs A BsCs Cs


   

 2

I

    

  2 4 4

A A B B C C A B B C

B A C B A C C As

s

s s     

    

   

  (B.4) 


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we can 
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B C
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Figure A2. Factorization of unitary banded matrix. 
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0

0

A A B B C C I

A B B C B A C B

C A A C

  

   

 

  

   

 

       

erscript (+) denotes Hermitian conjugate). 
efine Hermitian matrices  

 and P, Q can be diagonalized simul- 
taneously  unitary matrix  diagonalized P, 
Q have the forms of 

  (B.5) 

(Here sup
Now we d

,A Q CC   . 
As 0PQ QP 

P A

by some D ,

1

2

0 00
,

00 0
D PD D QD




    
    
   

    (B.6) 

Namely 

  

  

1

2

0

0 0

0 0

0

D A D A

D C D C





 

 

 
  
 
 

  
 

          (B.7) 

Therefore, D A  and should have the form of D C  

 2 2 2 2

1 2, a b c d

0 0
,

0 0

a b
D A D C

c d

    

    
   
          (B.8) 

the above equations can Figure A3. 
(b wer half of 

k-w

This can be expressed by 




be illustrated as 
Aoth lo  and upper half of C are zero). 

Namely by applying from the left D  to U, the band 
width can be reduced from 3-bloc idth to 2-block- 
width. 

   2 4ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆD A BS CS S X YS      2     (B.9) 

or 

 2 4ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ 2A BS CS DS X YS           (B.10) 

Next similar procedure can be applied to  2ˆˆ ˆX YS  
and we can say that 

2ˆ ˆˆ ˆ ˆ ˆ  X YS               (B.11) ESF

so finally Equation (B.2) 

2 4ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆA BS CS DSESF    

is obtained. 

r four 
ne

Appendix C (4-Point-Averaging) 

4-point-averaging is an averaging manipulation ove
ighboring grid points in space-time. 

 

  1
, ,

4
t x t  

ave4ψ ,t x



   

Δ

Δ  , Δ , Δ

x x

t t x t t x x 



    

      (C.1) 

we let the 2 × 2 unitary matrix of a constant para-  

meter quantum walk 

Now 
  A B

U
C D

 
 
 

  and 

t, es at grid

let o, p, q, r, s,  

u, v, w, x, y, z be the wave function valu  
points as shown in Figure A4. 

Namely 

, ,

,

r A B o u A B q

s C D p v C D r

w A B s y A B v

x C D t z C D w

        
   

   

        
      

      

 


    

    







   (C.2) 

ed values. 

 
 

and let a, c, d, e be their 4-point-averag

 

 

 

 

4a r vuq   

4

4

4

c s t w x

d o p r s

e v w zy

   

   

   

             (C.3) 

a, c, d, e, can be represented by q, r, s, t as follows. 
 

A
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B
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C
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C

Figure A3. Band-width reduction of unitary banded matrix. 
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Figure A4. Illustration of 4-point averaging. 
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       
   

1 1 0 0

0 0 1 1

1 1 1 1

0 1 1 A 0

where

A C B Da q

A C B Dc r

C A C D A C A B D B B De s

D C Bd t

AD BC

 



       
                       
            
 

           (C.4) 

 
By a simple calculation , we can find that this matrix is 

singular and can have a relation  
1 1   

 
Cs Ds

U s
As Bs

  
  
 

           (C.10) 

we can find that 
 e Ca Bc d              (C.5) 

If we regard the change    , , , ,a d c a e c
rall one-step evolution e
(We refer to this ma

 as a one- 
step time evolution, ove quation 
can be written as follows trix as F̂

     
). 

*

      (C.6) 

ep evolution matrix can 
be written as 

s

1

1
 

* *

* 1

a a

e C B d

c c

C B





     
     
     
     

     
     
     
     

      1

det det ,

 trace trace

T s U s

T s U s Cs Bs




  

  
   (C.11) 

and therefore both  T s  and  U s  have the same 

* *C      

Using shift matrix Ŝ , two-st

eigenvalues. 
Therefore if we use 

b

 (C.12) 

w

    
exp cos sin

cos sin
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x y

i
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i

A B
i i

C D

i e
e

i e





    

 
 




 
  

 
 

  
 

e can derive TDSE or advection equation for 0    1ˆT̂ S FSF                 (C.7) 

And Z-transformation (by 2 × 2 matrix unit) of thi  is 
obtained as 

ˆˆ ˆ

         12 2 2 2 2

2

2 2

21 1

1 0 0 1 1 00

01 0

0

T s S s F s S s F s

s

C Bs s C Bs

Cs Ds s

s

2 
 (C.8) 







 



    
          

 
  
 

Now we consider its square root as 1-step evolution 
matrix. 

   
1 1Bs s 2  

0
T s T s

s
   

 
    (C.9) 

Cs 

Comparing with the Z-transformation of the original 
quantum walk 

and 
π

2
   respectively in the same way shown in  

Appendix A. 
The only difference between T(s) and U(s) is the 

 eigenfunctions of  Δ ike . 
s)) In this case (T(

 
sin 1 0 11

0 ,
1 sin 1 0cos

0, respectively

i
k

i




  
         




Therefore this time, the advection-type quantum walk  

has an eigenvector  and we can assume that the  

wave function spatially-varying slowly must have only  

one component out of two 



for
π 

  (C.13) 

2

1

1

 
 
 

   Ψ   components. 

 


