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ABSTRACT 

A variational formulation of the synthesis problem for plane radiating systems according to the prescribed power direc- 
tivity pattern (DP) is considered. The function representing the mean-square deviation of the prescribed and synthe- 
sized power DPs and containing the additional term with squared norm of the current or field in the antenna aperture is 
considered as the criterion of optimization. Freedom to choose the phase DP is used to improve the proximity of the 
prescribed and synthesized DPs. In such formulation, the classes of non-linear problems, for which the non-uniqueness 
of solutions, their branching and bifurcation are characteristic, arise. The properties of solutions depend on the electric 
size of radiating system and prescribed power DP. From a practical point of view, the existence of different solutions 
creating the same or similar DPs, gives the opportunity to choose the solution that has a simpler implementation. The 
synthesis problems for plane radiating systems and plane arrays are considered. 
 
Keywords: Power Radiation Pattern; Synthesis Problem; Non-Linear Equation; Bifurcation of Solutions; Numerical 

Modeling 

1. Introduction 

Increasing requirements to the modern radiating systems 
promote to further evolution of classical antenna synthe- 
sis theory [1-6] and development of new methods [7-11] 
in order to take into account a series of stringent re- 
quirements to control of the antenna directivity charac- 
teristics [12-14], consideration of the mutual coupling of 
radiators [15], noise-immunity [16] etc. 

In many practical applications at the design stage of 
antennas and arrays the requirements are imposed only to 
the power DP [17,18]. At that, the freedom of choice 
among the phase DPs is used for improvement of the 
approximation quality of the synthesized DP’s squared 
module to the prescribed power DP. Appearing at that a 
necessity to approximate the real positive function (pre- 
scribed power DP) by square of module of the complex 
valued function generates the classes of the non-linear 
synthesis problems. Non-uniqueness and bifurcation of 
solutions are the characteristic feature of such problems. 
From the practical point of view, the existence of several 

types of solutions, which create the same or close power 
DPs, gives a possibility to choose that solution, which 
has simpler realization. 

The problems of quantity and properties of the existing 
solutions using the methods of non-linear analysis [19] 
were investigated partially for the synthesis problems of 
linear antenna arrays in [10,11,15,18,20,21]. It was 
shown that the non-uniqueness and branching of solu- 
tions are the characteristics for these problems in the both 
cases if the mutual coupling of separate radiators of array 
is not being taken into account, and by being taken into 
account of such coupling. The properties of existing so-
lutions depend on the value of physical parameters of 
array and properties of the prescribed power DP. 

Investigation of solutions of the nonlinear synthesis 
problems for plane radiating systems substantively dif- 
fers from such investigation of the synthesis problems for 
linear antennas and arrays. In particular, unlike the exist- 
ing the branching points for the synthesis problems of 
linear antenna and arrays, the lines of branching of the 
solutions appear in the synthesis problems for the plane 
antenna systems. The problem to search these lines is *Corresponding author. 
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insufficiently investigated two-parameter non-linear spec- 
tral problem [22]. 

In the proposed work, the variational statement of the 
synthesis problems for the plane radiating systems ac- 
cording to the prescribed power DP is examined. These 
problems are reduced to the investigation and numerical 
solution of the non-linear integral equations of Hammer- 
stein’s type. The kernel of these equations contains two 
physical parameters, which describe the geometry of 
radiating aperture and region where the prescribed power 
DP is given. 

The method for search of the bifurcation lines of the 
optimal solutions is developed; the justified algorithms to 
determine the optimal solutions of the synthesis problems 
and to search the existing solutions of various types for 
the synthesis equations are elaborated. It is shown that 
freedom in choosing the obtained optimal phase DP im- 
proves the quality of approximation of the synthesized 
DP to the prescribed one considerably, as compared with 
the synthesis in the class of the cophased DPs. In par- 
ticular, this allows in some cases to decrease the dimen- 
sions of radiating system up to 30%, as compared with 
the synthesis in the class of cophased DPs, remaining the 
effectiveness of the synthesis the same. 

2. Statement of Problem 

The statement of the synthesis problem according to the 
prescribed power DP is used in many practical applica- 
tions [1,5,8]. In spite of fact that the power DP N can be 
easy obtained from the amplitude DP f : (

2
N f ), 

and vice versa, the synthesis problems of the given am- 
plitude DP F0 and the given power DP  are the 
different problems. For example, if 

2
0 0N F

*f  is optimal solu- 
tion for some variational synthesis problem according to 
the amplitude DP F then 

2

*f  will not be optimal solu- 
tion of the analogous problem according to the pre- 
scribed power DP N0. 

In general case the calculation of the DP f of antenna 
by the currents (fields) I in the antenna aperture is real- 
ized by action of some linear bounded operator A [11] 

f AI .                   (1) 

The functions f and I can be either the vectors if the 
vector character of electromagnetic field is taking into 
account in the process of statement and solving the syn- 
thesis problem, or scalar functions if some simplifica- 
tions for antenna are applicable. 

The specific forms of operator A, functions f and I will 
be presented below in the process of solving the synthe- 
sis problems for the investigated radiating systems. We 
demonstrate here the peculiarities of the synthesis prob- 
lem according to the prescribed power DP N0 on example 
of a plane continuous aperture. 

Introducing the specific generalized coordinate system 

[6] we pass from the vectorial statement of the synthesis 
problem to two scalar problems. Separation of the - and 
-components of the DP and current’s (field’s) compo- 
nents in the antenna elements is assumed too. We con- 
sider below the scalar synthesis problems for plane radi- 
ating apertures and arrays. 

The geometry of synthesis problem for plane rectan- 
gular aperture is shown in Figure 1. The DP of plane 
aperture is determined by formula [3] 

     1 1 2 2
1 2, , i c xs c ys

S

d df s s AI I x y e x y   ,    (2) 

where 

1 sin cos sin ,s 1               (3) 

2 sin sin sins 2                (4) 

are the generalized dimensionless coordinates that allows 
to consider the synthesis problem in two relatively-per- 
pendicular planes independently [1,6]. The parameters 

1 sinc ka 1 ,                (5) 

2 sinc kb 2                 (6) 

describe electrical size of antenna; a, b are the geometri- 
cal parameters of aperture; 1 , 2  are the angles char- 
acterizing the domain where DP N0 is prescribed (N0 = 0 
outside 1  and 2 ); 2k    is wave number. 

Use of generalized parameters c1 and c2 allows to con- 
sider the synthesis problem in wide region of frequencies, 
including the submm, mm, cm and longer lengths of the 
EM field’s waves. 

The variational formulation of the synthesis problem 
consists in minimization of functional 

     

 

22

0 1 2 1 2 1 2

2

, , d

              , d d .

G

S

dI N s s f s s s s

I x y x y





  
 






   (7) 

The respective Euler’s equation relative to optimal 
current distribution I is given by 
 

 

Figure 1. Geometry of synthesis problem for plane aper- 
ture. 
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 
 

     
    1 1 2 2

21 2
0 1 2 1 22

1 2 1 2

, ,
2 2

                 , d d ,

G

i c xs c ys

c c
I x y N s s AI s s

AI s s e s s 


 





 ,
  (8) 

and respective equation for the DP f has form 

       

   

2

1 2 0 1 2 1 2

1 2 1 2 1 2 1 2 1 2

2
, , ,

                               , , , ; , , d d .
G

f s s B f N s s f s s

K s s s s c c f s s s s

      





   


 


(9) 

The kernel  1 2 1 2 1 2, , , ; ,K s s s s c c   in the general case 
is expressed as 

 

 
    

1 2 1 2 1 2

1 2
1 1 1 2 2 22

, , , ; ,

exp d d
2 G

K s s s s c c

c c
i c x s s c y s s x y



 

      
 (10) 

and depends essentially on the form of aperture. For the 
rectangular aperture (10) has form 

   
 

 
 

1 1 1 2 2 2
1 2 1 2 1 2

1 1 2 2

sin sin
, , , ; , .(11) 

π π

c s s c s s
K s s s s c c

s s s s

  
   

  

If the optimal solution *f  to (9) is found, then opti- 
mal distribution of current is determined by formula 

   
   1 1 2 2

21 2
* 0 1 2 *2

* 1 2 1 2

, ( , ) (
2 π

                , d d .

G

i c xs c ys

c c
I x y N s s f s s

f s s e s s


 

 



 1 2, )
   (12) 

Numerical solving Equation (9) is simpler than solving 
Equation (8), therefore we use below in the process of 
solving the specific synthesis problems solution to Equa- 
tion (9) and determine the optimal current distribution 

*I  by formula (12). 

3. Determination of Bifurcation Lines:  
Case of the Plane Rectangular Aperture 

The non-linear Equation (9) has only zero solution at 
small values of parameters c1 and c2 which contain in the 
kernel (11). The non-zero solutions appear, namely the 
bifurcation of solutions occurs, if c1 and c2 increase. The 
bifurcated solutions have the different properties de- 
pending on the form of the prescribed power DP N0, val- 
ues c1 and c2. For one’s turn, these solutions correspond 
to the different optimal current distributions *I , calcu- 
lated by (12). Of course, the different sets of functions 

*  and *f I  give the different values of functional  . 
In this connection, investigation of the branching process, 
search of different solutions, and determination of those 
provide the minimal value of   is of practical interest. 

Accordingly to the theory of branching the solutions 
[23], the bifurcation points of solutions to (9) are deter- 
mined using the next linear equation 

     

 

1 2 0 1 2 1 2 1 2 1 2

1 2 1 2

2
, , , , ,

                 , d d .
G

; ,f s s N s s K s s s s c c

f s s s s


   

   


  (13) 

On the other hand, this equation can be considered as 
the non-linear two-parameter spectral problem. We use 
the method of implicit function proposed in [22] for de- 
termination of values of the parameters c1 and c2 at which 
(13) has non-zero solutions. The non-zero solutions ori- 
ginate at the values c1 and c2, for which except the evi- 
dent eigen value  1 1  , the other eigen values   1i   
of Equation (13) appear. 

Using the cubature formulas we obtain on the basis of 
(13) the homogeneous linear algebraic system (LAS) of 
P-th order for determination of eigenfunctions and cor- 
responding eigenvalues 

   

   

1 2 0
1 1

1 2

,

        , , , , , 1 .

P P

in P jm jm
j m

in jm jm

x A c c a N Q

K Q Q c c x i n P

 

 

 

x



x

   (14) 

Here the number P corresponds to quantity of discre- 
tization points. In Equation (14) ,  
is vector of unknowns eigenfunctions, 

    1 2,jm jm
jmQ s s

jma  are the coef- 
ficients of cubature formula. 

In order LAS (14) has different from zero solutions, it 
is necessary that parameters c1 and c2 be the solutions of 
equation 

    1 2 1 2, det ,P Pc c A c c I 0P    ,    (15) 

where PI  is unit matrix. 
According to the method of implicit functions, search 

of solutions to (15) is reduced to the next Cauchy prob- 
lem 

 
 

1 2 12

1 1 2

,

,
P

P

c c cdc

dc c c c2

 
 

 
,         (16) 

    
2 1 2 , 1, 2,3,c c c             (17) 

Initial conditions (17) are determined by solving the 
auxiliary non-linear one-parameter spectral problem on 
the beam 2 1c c  in (15). As result, we receive the 
next equation for finding the zeros of determinant 

   1 1 1det ( , ) 0P P Pc A c c I    ,      (18) 

which are determined by some known method, for ex- 
ample, by the bisection method. 

Consequently, solving the Cauchy problem, we obtain 
a set of bifurcation points of the solution to (9). As the 
matrix of (15) is analytical function of parameters c1 and 
c2, the respective curves, which describe the spectrum’s 
connected components of (14), are the continuous solu- 
tions of Cauchy problem (16)-(17). 
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Note that eigenfunctions of the problem (14), which 
correspond to bifurcation points, describe the properties 
of solutions of the initial Equation (9) in the first ap- 
proximation. 

We consider the results related to determination of the 
bifurcation lines for the synthesis problem of plane aper- 
ture at the prescribed power DP  0 1 2,N s s 1

c

. The bi- 
furcation points, obtained as the result of solving the 
auxiliary one-dimensional spectral problem (18) on the 
beams 2 1c 

c

1c

, are shown in Figure 2. The obtained 
sets of values ( ) are the initial conditions (17) for 
the Cauchy problem (16). The first four curves, obtained 
in the process of solving the problem (16)-(17), are pre- 
sented in Figure 3. The both Runge-Kutta and Adams 
methods were used to obtain the numerical solution. The 
initial values ( ), which were chosen on the beam 

, are indicated by small circles. 

0 0
1 2,c c

0 0
1 2,c

2 0.6c 
 

0

0.5

1

1.5

2

0 0.5 1 1.5 2

c 2 c 2=c 1

c 1

c 2=0.6c 1

 

Figure 2. The bifurcation points on the beams 2c βc1  for 

plane aperture. 
 

0

0.5

1

1.5

2

0 0.5 1 1.5 2

c 2

c 1

c 2=c 1

c 2=0.6c 1

 

Figure 3. The bifurcation lines in the plane (c1,c2) for plane 
aperture. 

The eigenfunctions of LAS (14) are used in the proc- 
ess of construction of the bifurcated solutions of the non- 
linear Equation (9), which branch off the zero solution. 
The properties of bifurcated solutions depend on the 
properties of symmetry (parity) of the prescribed DP N0 
and on the properties of eigenfunctions. In the process of 
construction of the bifurcated solutions one should take 
into account that the properties of the eigenfunctions 
differ for the various set of parameters c1 and c2 in the 
plane . 1 2c Oc

4. Features of Statement for Specific  
Radiating Systems 

4.1. Elliptic Aperture 

The synthesis problem for an elliptic aperture is reduced 
to minimization of functional (7), and the respective Eu-
ler’s equation for determination of optimal current in the 
aperture is determined by formula similar to (8). By this, 
integration is carried out over the elliptic domain of the 
antenna aperture. 

The aperture DP is determined by formula similar to 
(2). The kernel (10) for elliptic aperture is given by 

  

   



 

1
2 2

1 2 1 2 1 2 1 1 1
1

2

2 2 2

2 2 2

, , , ; , ; , 2 cos

sin 1
                                        d ,

K s s s s c c a b a b c x s s

c s s x
x

c s s



     

    




(19) 

where a and b are semiaxes of ellipse. The optimal cur- 
rent is determined by the DP *f  found from (9) as fol- 
lows 

      
   1 1 2 2

21 2
0 1 2 1 2

1 2 1 2

2
, ,

                , d d .

G

i c xs c ys

c c
I x y ab N s s f s s

f s s e s s

 

 


  



 ,



   (20) 

The numerical results of synthesis for specific pre- 
scribed power DPs N0 will be given in Subsection 5.2. 

4.2. Plane Equidistant Rectangular Array,  
Bifurcation of Solutions 

In the case of scalar consideration of the synthesis prob- 
lem one can restrict by the following representation for 
DP (array multiplier) 

   1 1 2 2
1 2,

N M
i c ns c ms

nm
n N m M

f s s AI I e 

 

    ,    (21) 

where    2 2 2 1 2 1N M N M    
sin cos / sins

 is number of ra- 
diators; 1 1   , 2 2sin sin / sins   

sinc kd
 

are the generalized angular coordinates; 1 1 1 , 

2 2 2sindc k  ; 2πk   is wavenumber;  and  1d 2d
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are the distances between radiators along the  and 
 axes, respectively; 1

Ox
Oy   and 2  are the angles 
where the DP 0 1  is given ( 2,N s s  0 1 2,N s s 

 

0  out- 
side these angles). 

 1 2,f s s  is 1cFunction 2 -periodical relative to 

1s  and 2c2 -periodical relative to 2s . In this connec- 
tion, one can consider the synthesis problem for such 
array within the limits of one period. 

The minimizing functional has form similar to (7), the 
Euler’s equation for the optimal currents I and DP f are 
determined by formulas similar to (8) and (9), respec- 
tively. 

The kernel K is degenerated and it is presented as the 
product of two independent functions 

 1 2 2, ,  1  2 2 2, 2, 

Figure 4. The bifurcation points in the plane  for 

rectangular array. 
1 2(c ,c )



1 2 1 1 1, , , , ,1K c c c ss s s s  

 

K s K c s s , (22)  

lines obtained by solving the Cauchy problem (16) with 
the initial values (17) are presented in Figure 5. Simi- 
larly to the case of rectangular plane aperture, the bifur- 
cation lines are symmetrical relatively the axes 1 , 

2 , and intersection of the curves corresponding to the 
second and third eigenvalues is observed. 

Oc
Oc

where 

 

 

2 1

1
1 1 1 1

1

2
, ,

2

N c
1 1

1 1

sin

sin

s s
c

K s s c
c

  
 

   
 

s s






 ,      (23) 

4.3. Plane Hexagonal Array, Bifurcation of  
Solutions 

 
 

 

2 2
2 2

2
2 2 2 2

2
2 2

2
, ,

2

M c
sin

sin

s s
c

K c s s
c

s s

  
  

   
 


.    (24) 

The DP of hexagonal array has the form similar to (21): 

   1 1 2 2

( )

1 2
( )

,
M nN

i c ns c ms
nm

n N m M n

f s s AI I e 

 

    .    (26) 
The investigation of solution to respective Euler’s eq-

uations is carried out in the manner similar to the case of 
plane aperture. If the optimal DP *f  by solving equa- 
tion type of (9) is found, the optimal current distribution 

*I  is given by 

   1 1
*

i c js 2 221 2
* 0 * 1 22

d d
2

, .

c ls
jl

c c
,I

The number of linear subarrays along the  axes 
(coordinate 2

Oy
s ) is odd, and number of radiators in the 

central linear subarray along the  axes (coordinate 

1

Ox
s ) is odd too. For such array’s geometry, the kernel of 
integral Equation (9) can be written in form (27). N f f

j N N l M M

 

    
     

 e  s s

0 1 2s

In the case when the above assumption regarding the 
number of radiators in the subarrays does not satisfied, 
(27) has more complicate form. 

 (25) 

The numerical results for rectangular array are pre- 
sented for the problems of determination of the bifurca- 
tion lines for the array consisting of N2 × M2 = 11 × 11 
radiators for the prescribed power DP , 1N s  , 

0.5

Search of bifurcation lines for the solutions to nonlin- 
ear Equation (9) is carried out for array consisting of 61 
radiators for the prescribed power DP  0 1 2, 1N s s   in 
the region   2.0, 0 2.0c 1 2c   at 
the various values of parameter 

1, : 0 2c c c 
  in functional (7). In 

the first stage, the one-dimensional auxiliary problems is 
solved on the beams 2 1c c . The bifurcation points in 

 
c

. In Figure 4 the bifurcation points on the beams 

2 1c , received by solving the series of auxiliary 
one-parameter problems, are shown. The bifurcation  
 

 
   

    

  
    

  
 

1
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M n

c M

 

( )
1 1 1

1 2 1 1 2 2 2 2
11 1 1

1 1 1

1 1 1

1 1 1

sin 0 0.5
, , , , 2 cos

0.5

sin ( ) 0.5
, is odd,

0.5
                            

2 0.5 , is even.

M n

m

n

s s
2 ,
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the respective beams are presented in Figure 6. The 
points ( ), for which eigen values ( ) ( )

1 2,i ic c ( ) 1i   deter- 
mined approximately from plot data in this stage. 

In the second stage, the specification of the values 
( ) by solving the transcendental equation type of 
(18) is carried out. The points ( ) considered as 
initial approximations in this procedure. The bijection 
method is used for this goal. In the third finish stage after 
the specifications of the values ( ), the bifurcation 
lines in the plane ( 1 2 ) are determined by solving 
Chauchy problem (16)-(17). In Figure 7, the curves cor- 
responding to the first four eigenvalues 

( ) ( )
1 2,i ic c

( ) ( )
1 2,i ic c

( ) ( )
1 2,i ic c

,c c

( ) 1i   are 
shown. Similarly to previous investigations, the cross 
section of curves corresponding to the second and third 
eigenvalues is observed. 

Note that the problem of specification of the roots of 
Equation (18), as well as correct solving the Cauchy 
problem (16)-(17) are quite complicate computational 
problems, because they require for their solving a series 
of computational experiments with the various initial 
approximations. 
 

 

Figure 5. The bifurcation lines in the plane  for rec- 

tangular array.  
1 2(c ,c )

 

 

Figure 6. The bifurcation points in the plane  for 

hexagonal array. 
1 2(c ,c

 

Figure 7. The bifurcation lines in the plane  for he- 

xagonal array. 
1 2(c ,c )

5. Computational Results of Synthesis 

The results of numerical calculations are presented for 
the synthesis problems of several prescribed power DPs. 
We use the iterative process [24] 

  1 1 ( ),  0,1,2,n n nf f B f n           (28) 

for numerical solution of (9). Parameter  0, 1   is 
used for convergence acceleration of (28). 

The numerical results demonstrate that for the certain 
ranges of the physical parameters of antennas there exist 
different types of solutions to (9). These solutions pro- 
vide different degree of approximation of the synthesized 
power DP to the prescribed one. The investigations 
which show the dependence of the mean square deviation 
of the DP on the type of parity of the prescribed initial 
approximations are carried out for the various types of 
the considered antennas. 

In the process of numerical calculations one substanti- 
ated that for the prescribed power DP  with 
two axes of symmetry, there exist the solutions of dif- 
ferent types of parity relative to the coordinates 1

0 1 2,N s s 

s  and 

2s . It is ascertained that for this case there exist various 
types of solutions to (9) with the next properties of the 
phase of synthesized DP, namely function  21arg ,f s s : 

1) even relatively 1s  and 2s ; 
2) even relatively 1s  and odd relatively 2s ; 
3) odd relatively 1s  and even relatively 2s ; 
4) odd relatively 1s  and 2s . 
In order to obtain these solutions, one should to give 

initial approximation of the respective type for (28). 

5.1. Plane Rectangular Aperture 

The computational results related to solving the synthesis 
problem of plane rectangular aperture are shown at the 
prescribed power DP 0 1N   (Figure 8). The problem 
is reduced to solving the non-linear Equation (11) by the 
successive approximation method (28). In order to obtain 

)
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the different types of solutions, the initial approximations 
of type 1) - 4) were chosen for the iterative process (28). 
The synthesized power DP 

2
f  and phase DP arg f are 

shown in Figures 9 and 10 at , .  1 2

One can see that the phase DP arg f presented in Fig- 
ure 10 is even relative to 1

8.0c  8.0c 

s  and odd relative to 2s . 
This indicates that phase DP arg f has the same parity 
properties that the eigenfunction which corresponds to 
the eigenvalue  2  in Figure 3 (curve corresponds to 
this value of  2  crosses the beam 2 1  in the 
point 1 , 2 ). Optimal current distribu- 
tion 

0.6c  c
1.2c  4 0.74c

I  (see Figure 11) creating the synthesized power 
DP is symmetrical relative to  axis and non-sym- 
metrical relative to  axis. This optimal current dis- 
tribution corresponds to solution of Equation (9) with 
initial approximation of type 2). The mean-square devia- 
tion of the prescribed DP N0 and synthesized DP 

Ox
Oy

2
f  

(the first summand in functional (7)) for this type of so-  
 

 

Figure 8. The prescribed power DP  for rectangu- 
lar aperture. 

0N 1

 

 

Figure 9. The synthesized DP 
2

f  for the rectangular 
aperture. 

 

Figure 10. The phase DP arg f for the rectangular aperture. 

 

 

Figure 11. The optimal non-symmetrical distribution of 
current. 
 
lution is approximately three times smaller than the 
mean-square deviation for symmetrical solution of type 
1). 

In that way, the optimal symmetrical power DP can be 
created by the non-symmetric current’s distribution in the 
antenna aperture. 

As the numerical calculations show, the effectiveness 
of synthesis essentially depends on the form of the pre- 
scribed power DP N0, on the parameters 1  and 2  de- 
scribing size of aperture, and on the type of obtained op- 
timal solution. 

c c

5.2. Plane Circular Aperture 

The numerical results for circular aperture (particular 
case of elliptic aperture considered in Subsection 4.1) are 
shown for the synthesis of the prescribed power DP in 
the form of the figure of revolution with zero value in the 
centre (Figure 12), which is even on 1s  and 2s  

Copyright © 2013 SciRes.                                                                                OJAPr 



Non-Linear Synthesis Problems for Plane Radiating Systems According to the Prescribed Power Directivity Pattern 30 

 

Figure 12. The prescribed power DP (29) in form of the 
figure of revolution. 

 

 
2 2 2 2 2 2
1 2 1 2 1 2

0 1 2
2 2
1 2

2 1 ,
,

0,                                 1.    

s s s s s s
N s s

s s

      
 

1,
(29) 

The synthesized DP 
2

f  (Figure 13) and optimal 
amplitude current distributions I  (Figures 14-16) at 

1 2  are presented. The optimal current distri- 
butions correspond to various types of bifurcated solu- 
tions, namely function 

8.0c c 

 1 2arg ,f s s  which has different 
parity properties relative to arguments 1s  and 2s . 

In particular, the phase DP 1 2 , arg f s s  even respect 
to 1s  and 2s  corresponds to amplitude distribution I  
of current presented in Figure 14. As a result this distri- 
bution is symmetric relatively two coordinate axes. Even 
relative to 1s  and odd respect to 2s  phase DP 

1 2arg , f s s
Oy

 correspond to non-symmetrical relative to 
 axis amplitude distribution of current in aperture, 

presented in Figure 15. 
In Figure 16, the amplitude distribution I  of cur- 

rent, which correspond to odd relative to 1s  and 2s  
phase DP  1 2arg , f s s , is shown. The synthesized 
power DP 

2
f  presented in Figure 13 is created by this 

current distribution. This current distribution essentially 
differs on those presented in Figures 14 and 15. 

The cross sections of the synthesized power DPs in the 
plane 1  demonstrate effectiveness of the synthesis 
for the obtained optimal current distributions (see Figure 
17). Curve 1 corresponds to prescribed power DP N0, 
curves 2, 3, and 4 correspond to amplitude distributions 
of current presented in Figure 16, Figures 14 and 15, 
respectively. One can see that the current distribution 
presented in Figure 16 is more effective, because the 
synthesized power DP created by it approximate the 
prescribed DP in the best way; this properties the most 
evidently is observed in the neighborhood of central zero 
point. 

0s 

 

Figure 13. The synthesized power DP 
2

f  of the plane 
aperture for prescribed DP (29). 

 

 

Figure 14. The symmetric optimal current distribution. 

 

 

Figure 15. The optimal current distribution non-symmetric 
relative to Oy  axis. 
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Figure 16. The optimal current distribution non-symmetric 
relative to both axes. 
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Figure 17. The cross sections of the synthesized DP in the 
plane . 1 0s 
 
5.3. Plane Rectangular Equidistant Array 

The results of synthesis for the prescribed power DP 

0  are shown for the solutions with properties 1) 
(Figure 18) and properties 2) (Figure 19); the equidis-
tant plane array consisting of  radiators is 
examined. In spite of the fact that phase DP 

1N 

11 11N  
arg f  for 

the latter solution is odd respect to the coordinate 2s  the 
synthesized power DP 

2
f  is even relative to 1s  and 

2s , but the value of mean-square deviation of the pre-
scribed and synthesized power DPs for the latter solution 
is equal to 0.0562 against 0.0897 for the solution of type 
1). 

In order to demonstrate the effectiveness of synthesis 
for the different type of solutions, the value of functional 

 are shown for the solutions of type 1) - 4) at 

2 1 , 1 ,  (see Figure 20). The 
numbers of lines corresponds to types of solutions. One 
can see that the solution of type 4) provides the worst 
approximation of the prescribed power DP. The even 
relative to 


 0.8c c 1.0c 

1

0.5 

s  and 2s  solution is more optimal for such 

 

Figure 18. The synthesized power DP 
2

f  corresponding 
to solution of type 1). 

 

 

Figure 19. The synthesized power DP 
2

f  corresponding 
to solution of type 2). 

 

 

Figure 20. The value of functional  for different types 
of solution to Equation (11), . 



0 1N 
 
prescribed DP in the considered range of  and . 1 2

The effectiveness of synthesis also depends on the 
c c
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form of the prescribed power DP considerably. The syn- 
thesis results for the prescribed power DP 

     0 1 2 1 2, sin π sin πN s s s s        (30) 

are presented in Figures 21 and 22. The synthesized 
power DP for the same values N, 1 , 2 , and c c   as in 
the previous example is shown in Figure 21. The initial 
approximation odd relative to 1s  and 2s  was given for 
iterative process (28). Such type of approximation pro- 
vides the smallest value of 

0.64

 among the solutions with 
properties 1) - 4). In Figure 22, the values of functional 

  are shown for the solutions of type 1) - 4). One can 
see that solution of type 4) provides the worst value of 

  at 1 , at 1  this solution is the best 
among the considered ones. The solution with the phase 
DP arg f even respective to 1



 0.6c  c 

s  and 2s  is the better for 
, but is the worst for the values . 1c  0.49 1  0.63c

 

 

Figure 21. The synthesized power DP 
2

f  corresponding 
to solution of type 4). 

 

 

Figure 22. The value of functional   for different types 
of solution to Equation (11) for prescribed power DP (30). 



5.4. Plane Hexagonal Array 

The synthesis results are presented for prescribed power 
DP 0 1 2( , ) 1N s s   and DP (29). The array consisting of 
127 radiators is considered, parameter . The syn- 
thesis problem is reduced to solving Equation (11) by the 
method of successive approximations (28). The main 
lobe of synthesized power DP 

0.5 

2
f  for the prescribed N0 

is narrower than the main lobe of prescribed DP. The 
maximal deviation of the both DPs does not exceed −10 
dB in the main lobe; the level of the first side lobe does 
not exceed −45 dB. The mean-square deviations (values 
of the first summand in (9)) are equal to 0.3774 and 
0.2218 for the first and second prescribed DPs, respec- 
tively. The level of the first side lobe for the prescribed 
DP (29) does not exceed −35 dB. The plots of synthe- 
sized power DPs 

2
f  are shown in Figures 23 and 24. 

In Figures 25 and 26, the cross-sections of both the pre- 
scribed and synthesized DPs in the planes 1s 0  and 

2s 0  are shown. 
 

 

Figure 23. The synthesized power DP 
2

f  for 0 1N   at 
. 1 2= 2.0, = 2.236c c

 

 

Figure 24. The synthesized power DP 
2

f  for the pre- 
scribed DP (29) at . 1 2= 2.0, = 2.236c c
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Figure 25. Cross-section of the synthesized DP 
2

f  in the 
planes  and  for . 1 0s  2 0s  0 1N 
 

 

Figure 26. Cross-section of the synthesized DP 
2

f  in the 
planes  and  for the prescribed DP (29). 1 0s  2 0s 
 

The solid line per
0N

0

 presents the cross-section of the 
prescribed power DPs N0, the dashed lines 1 and 2 cor- 
responds to the synthesized DPs in the cross-sections 

1  and 2 , respectively. The level of the first 
side lobe for the synthesized power DP 

0s  s 
2

f  does not 
exceed −50 dB in the plane  and −36 dB in the 
plane 2  for case if DP 0  is synthesized. For 
the case of DP (29), these values are −52 dB and −35 dB, 
respectively. The level of side lobes grows considerably 
if either the values  and , or number of radiators in 
array decrease. 

1 0s 
1N 

2

0s 

1c c

The quality of approximation to the prescribed power 
DP depends also on the parameter  in functional (7). 
The dependence of mean-square deviation (msd) of the 
prescribed and synthesized power DPs on the parameter 

 at the various 1  on the beam 2 1  is 
shown in Figures 27 and 28. Such ratio of 1  and 2  
provide the regularity of the array geometry, and, as the  



 c 1.118c c
c c

 

Figure 27. The msd value versus parameter  for the pre- 
scribed DP 0 1N  . 
 

 

Figure 28. The msd value versus parameter  for the pre- 
scribed DP (29). 
 
numerical calculations showed, gives possibility to ob- 
tain close DPs in the planes  and . 1 2

The maximal value of msd for the prescribed DP 

0

0s  0s 

1N   is attained at 1.0   for 1 , and it is 
equal to 1.96443. The value of msd diminishes as 

0.5c 
  

decreases almost linearly. The maximal value of msd for 
DP (29) is equal to 1.43685. As is easy to see that in the 
general the value of msd diminishes as  decreases, 
but the value of the second term in functional (7) (con- 
tainning terms with the current’s norm) grows considera- 
bly that yields in total increase of . 





6. Conclusions 

The generalized technique for the synthesis of plane ra- 
diating systems according to the prescribed power DP is 
proposed on the basic of the variational approach. The 
non-linear synthesis equation is received, the investiga- 
tion of their solutions is carried out, and it is shown that 
bifurcation of solutions is a characteristic feature of ob- 
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