
Food and Nutrition Sciences, 2013, 4, 202-211 
http://dx.doi.org/10.4236/fns.2013.49A1028 Published Online September 2013 (http://www.scirp.org/journal/fns) 

Regulatory Role of Free Fatty Acids 
(FFAs)—Palmitoylation and Myristoylation 

Chung S. Kim, Ivan A. Ross 
 

Center for Food Safety and Applied Nutrition, Division of Toxicology, Office of Applied Research and Safety Assessment, Food and 
Drug Administration, Laurel, USA. 
Email: chung.kim@gda.hhs.gov 
 
Received May 16th, 2013; revised June 16th, 2013; accepted June 24th, 2013 
 
Copyright © 2013 Chung S. Kim, Ivan A. Ross. This is an open access article distributed under the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

Multicellular organisms use chemical messengers to transmit signals among organelles and to other cells. Relatively 
small hydrophobic molecules such as lipids are excellent candidates for this signaling purpose. In most proteins, 
palmitic acid and other saturated and some unsaturated fatty acids are esterified to the free thiol of cysteines and to the 
N-amide terminal. This palmitoylation process enhances the surface hydrophobicity and membrane affinity of protein 
substrates and plays important roles in modulating proteins’ trafficking, stability, and sorting etc. Protein palmitoylation 
has been involved in numerous cellular processes, including signaling, apoptosis, and neuronal transmission. The 
palmitoylation process is involved in multiple diseases such as Huntington’s disease, various cardiovascular and T-cell 
mediated immune disorders, as well as cancer. Protein palmitoylation through the thioester (S-acylation) is unique in 
that it is the only reversible lipid modification. Our study on lipopolysaccharide (LPS) and deoxynivalenol (DON) 
treatment to rats provides some insights to the complex role of protein palmitoylation in chemical and microbial toxicity. 
In contrast, myrisoylated proteins contain the 14-carbon fatty acid myristate attached via amide linkage to the N-termi- 
nal glycine residue of protein, and occur cotranslationally. The bacterial outer membrane enzyme lipid A palmitoyl- 
transferase (PagP) confers resistance to host immune defenses by transferring a palmitate chain from a phospholipid to 
the lipid A component of LPS. PagP is sensitive to cationic antimicrobial peptides (CAMP) which are included among 
the products of the Toll-like receptor 4 (TLR4) signal transduction pathway. This modification of lipid A with a palmi- 
tate appears to both and protects the pathogenic bacteria from host immune defenses and attenuates the activation of 
those same defenses through the TLR4 signal transduction pathway. 
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1. Introduction 

Saturated FFAs play important roles for various biologi- 
cal functions such as the production of hormones, cellu- 
lar membrane signaling, and the stabilization processes 
in the body. These are the 18-carbon stearic acid, the 
16-carbon palmitic acid, and the 14-carbon myristic acid. 
When these important saturated fatty acids are not read- 
ily available, certain growth factors in the cells and or- 
gans will not be properly aligned. This is because the 
various receptors, such as G-protein receptors, need to be 
coupled with lipids in order to provide localization of 
function [1,2]. A biochemical process called palmitoyla- 
tion, in which the body uses palmitic acid in stabilization 
processes, is very important to the body by regulating G  

protein-coupled receptor signaling [3,4]. Myristic acid, 
also called tetradecanoic acid, is a saturated fatty acid. It 
is commonly added co-transitionally to the nitrogen ter- 
minus of glycine in receptor-associated kinases to confer 
the membrane localization of the enzyme. Myristic acid 
has a sufficiently high hydrophobicity to become incur- 
porated into the fatty acyl core of the phospholipid bi- 
layer of the plasma membrane. In this way, myristic acid 
acts as a lipid anchor in biomembranes [5]. Myristic acid 
is known to be a very important fatty acid which the 
body uses to stabilize many different proteins, including 
proteins that are used in the immune system and also 
those that fight tumors [6]. This function is called myris- 
toylation; it occurs when myristic acid is attached to the 
protein in a specific position where it functions usefully 
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[7-10]. For example, the body has the ability to suppress 
production of tumors from lung cancer cells if a certain 
genetically determined suppressor gene is available. This 
gene codes for Fus-1 which is a protein that has been 
modified with covalent addition of the saturated fatty 
acid myristic acid [6]. Myristoleic acid is an omega-5- 
fatty acid that is biosynthesized from myristic acid by the 
enzyme delta-9-desaturase. This uncommon (n-9) fatty 
acid has been described in the retina; acylating an NH2 
terminus of a protein related to signal transduction in 
photoreceptors [11]. Furthermore, the presence of this 
fatty acid was shown to be of diagnostic value in patients 
with defects of long-chain fatty acid oxidation [12], and 
is known to be cytotoxic to tumor cells. It induces apop- 
tosis and necrosis in human prostate cancer LNCaP cells 
[13].  

Multicellular organisms use chemical messengers to 
transmit signals among organelles and to other cells. 
Relatively small hydrophobic molecules such as lipids 
are excellent candidates for this signaling purpose. The 
two most common modifications, myristoylation and pal- 
mitoylation, differ with respect to the type and chemical 
nature of fatty acid attachment to the polypeptide back- 
bone. 

1.1. Myristoylation 

After the initiating methionine is removed, the 14-carbon 
fatty acid myristate is attached via amide linkage to the 
N-terminal glycine residue. The reaction occurs cotrans- 
lationally and is catalyzed by the soluble enzyme N- 
myristoyl transferase (NMT). NMT exhibits strict speci- 
ficity for an N-terminal glycine and mutation of this gly- 
cine to alanme abrogates myristoylation [14]. 

FFAs are known to be markers of cellular membrane 
degradation through lipid peroxidation and are substrates 
for the production of reactive oxygen species (ROS) [15]. 
Since the generation of ROS during the metabolism of 
arsenic is thought to be involved in arsenic toxicosis, 
understanding the deleterious effects caused by ROS that 
attack the vital molecules like DNA, has become impor- 
tant [16]. 

Ross et al. [17] have investigated the FFAs profile 
from the rats treated with sodium arsenite (NaAs O2), a 
single oral dose, in water, and in a lipid medium, to preg- 
nant rats on gestational day (GD) 10, a time point at mid- 
organogenesis. NaAsO2 was administered in deionized 
water (AsH2O) or in half and half dairy cream (AsHH) at 
a dose of 41 mg NaAsO2/kg body weight. Control ani- 
mals were treated with either dairy cream (HH) or de- 
ionized water (H2O). The animals were sacrificed on GD 
20. 

The study reveals an elevation of FFAs in the maternal 
liver and brain, and the fetal brain. In the fetal brain, 
myristic and stearic acids concentrations were higher in 

animals treated with AsHH vs. AsH2O (Figure 1). This 
could be due to the aggregation of NaAs with HH which 
could delay its metabolism and excretion as compared to 
NaAs in H2O that can be readily cleared by the kidneys. 
The fact that NaAs crosses the blood-brain barrier as well 
as the placental barrier freely [18-20], the NaAs-HH 
complex could be retained longer in the brain as com- 
pared to NaAs and AsH2O which are washed out of the 
brain easily by the efflux system of the brain [21]. This 
prolonged presence of AsHH in the cells probably in- 
duces the process of myristoylation and palmitoylation in 
the cellular signaling pathways. The increase of oleic and 
arachidonic acid in the liver of AsH2O vs. H2O group, 
indicates a direct effect of NaAs on these fatty acids. The 
depletion of myristoleic acid in the maternal brain, as 
indicated in Figure 2, could be due to the active partici- 
pation of myristoylation against the toxic effect of NaAs 
in the maternal brain. Myristoylation is an irreversible 
process and normally precedes the process of palmitoyla- 
tion [14]. The palmitoylation process is, in contrast, re- 
versible and palmitic acid can be substituted by fatty acids  
 

 

Figure 1. The formula used for the calculation of percent 
changes in Figure 1 is as follows: [{(AsH2O − AsHH)/AsHH} 
× 100]. 
 

 

Figure 2. The formula used for the calculation of percent 
changes in Figure 2 is as follows: [{(AsH2O − H2O)/H2O} × 
100]. 
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disease, various cardiovascular and T-cell mediated im- 
mune disorders, as well as cancer. Protein palmitoylation 
through the thioester (S-acylation) is unique in that it is 
the only reversible lipid modification. 

such as stearic, oleic, and arachidonic acids for the palmi- 
toylation process to regulate the cellular functions [22]. 
As shown in the fetal brain (Figure 3), the enhancement 
of myristic, stearic, and arachidonic acids in the AsHH 
group could be a protective effect due to the slow clear- 
ance of the AsHH from the fetal brain. This, in turn, 
could be explained by differences in the sensitivity of 
membrane functions for signal pathways during the de- 
velopmental stages of the fetal brain, as compared to the 
maternal brain. Taken together, findings of different lev- 
els of myristic and myristoleic acids in the maternal and 
fetal brains and the other organs indicate that the antitu- 
moric activity against NaAsO2 treatment is more pro- 
nounced in the brain than in the kidney and liver.  

 Palmitoylation is involved in the process of protein 
trafficking between organelles and in the segregation 
or clustering of proteins in membrane compartments 
[25-27].  

 Palmitoylation increases the hydrophobicity of pro- 
teins to promote protein-membrane association [28, 
29]. 

  Modification of proteins to control protein-protein 
interaction [30-32], lipid raft targeting [33] and intra- 
cellular trafficking [34,35]. 

 The palmitoylation process is involved in multiple 
diseases such as Huntington’s disease, various car- 
diovascular and T-cell mediated immune disorders, as 
well as cancer [36]. 

1.2. Palmitoylation 

In contrast, palmitoylated proteins contain the 16-carbon 
fatty acid palmitate attached via throester linkage to one 
or more cysteme residues. Palmitoylation is a posttrans- 
lational reaction that appears to be mediated by a mem- 
brane-bound palmitoyl acyl transferase. Unlike myris- 
toylation, whrch is generally a relatively stable modifica- 
tion, palmitoylatron can be reversed by the action of 
thioesterases.  

1.3. The Role of Palmitoylation in Microbial and 
Chemical Toxicity: Signal Pathways, Protein 
Binding and Trafficking 

Lipopolysaccharide (LPS) 
 

In most proteins, palmitic acid and some other fatty 
acids are esterified to the free thiol of cysteines and to the 
N-amide terminal as shown in Figure 4. This palmitoy- 
lation process enhances the surface hydrophobicity and 
membrane affinity of protein substrates and play impor- 
tant roles in modulating proteins’ trafficking, stability 
and sorting. Since this linkage between the palmitate and 
protein is readily cleaved, cycles of palmitoylation and 
depalmitoylation occur in a regulated manner for many 
proteins [23].  

 
Protein palmitoylation has been involved in numerous 

cellular processes, including signaling, apoptosis, and 
neuronal transmission [24]. The palmitoylation process is 
also involved in multiple diseases such as Huntington’s  

Figure 3. The formula used for the calculation of percent 
changes in Figure 3 is as follows: [{(AsHH − HH)/HH} × 100]. 

 

 

Figure 4. Protein S-palmitoylation—the thioester linkage of long-chain fatty acids to cysteine residues in proteins.   
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An essential virulence property of bacterial pathogens 

is the ability to sense the environment within the host 
tissues and to coordinate the expression of the virulence 
factors that promote the bacterial survival and replication 
strategies.  
 The infected host also senses the presence of invading 

bacteria and responds by activation of the innate im- 
mune system. In Gram-negative bacteria, Lipid A is 
the region of LPS (Figure 5), also known as en- 
dotoxin, which is responsible for the immunostimu- 
latory activity of LPS.  

 The inflammatory response is necessary to eliminate 
most infections and, at the same time, responsible for 
some of the main pathophysiological symptoms asso- 
ciated with persistent infections. Bacterial pathogens 
can coexist with their hosts in part because they mod- 
ify the structure of lipid A to attenuate the inflamma- 
tory response and evade immune recognition (Figure 
6) [37]. 

 Palmitoylated lipid A can both protect pathogenic 
bacteria from host immune defenses and attenuate the 
activation of those same defenses through the Toll- 
like receptor 4 (TLR4) signal transduction pathway 
(Figure 7). 

Deoxynivalenol (DON) 
Several DON contamination episodes have caused the 

FDA to establish regulatory measures needed to control 
DON in foods [38]. 
 Exposure to sublethal levels of trichothecenes can 

stimulate or suppress immune parameters such as 
lymphocyte proliferation, host resistance, cell-medi- 
ated immunity, and humoral immune function in a 
variety of animal and cell culture models depending 
on dose, exposure frequency, and timing of exposure 
[39]. 

 LPS-induced nitric oxide (NO) production by 
RAW264 cells was dose-dependently inhibited by 
DON [40]. 

 

 

Figure 5. Lipopolysaccharide—the main component of the outer leaflet of the bacteria outer membrane is the immuno- 
dominant antigen of most Gram-negative pathogen. 
 

 

Figure 6. A palmitate chain from a phospholipid is incorporated into lipid A by an outer membrane enzyme PagP. 
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Figure 7. A group of proteins that comprise the TLR4 family of receptors detects invading pathogen and mount a rapid de- 
fensive response. 
 
 DON has also suppressed LPS-induced inducible NO 

synthase (iNOS) promoter activity and the expression 
of iNOS protein in a similar concentration range to 
that of the inhibitory effect on NO production [41].  

 DON induced IgA nephropathy in mice by upregu- 
lating IL-6 expression, which is suppressed by the 
consumption of some of the polyunsaturated fatty ac- 
ids [42].  

To examine the role of palmitoylation in animals 
treated with lipopolysaccharide and deoxynivalenol indi- 
vidually and concurrently at doses that alone would not 
cause overt toxicity, the following study has been carried 
out and presented at the Society of Toxicology Annual 
Meetings [43,44]. 

2. Methods 

Male Harlan Hsd:Sprague-Dawley rats (virus and anti- 
body-free), 9 weeks of age, were acclimated to their en- 
vironment for approximately one week. The animals 
were housed individually in polycarbonate cages in a 
temperature controlled environment (24˚C - 26˚C), and a 
relative humidity of 40% - 70%. A light-dark cycle was 
maintained with lights on at 7:00 AM and off at 7:00 PM. 
After a period of acclimation, the rats were randomly 
assigned to the different treatment groups of eight ani- 
mals each. The animals were fed ground Purina rodent 
chow 5002 (Purina Mills, Inc., Richmond, IN) and water 
from an in-house water system ad libitum throughout the 
study. The rats were divided into 4 groups. Group 1 was 
administered an IP dose of 10 mg DON/kg; group 2: 83 

µg LPS/kg; group 3: 10 mg DON and 83 µg LPS/kg; 
group 4: 1 mL saline/kg. Animals were sacrificed at 3, 24, 
and 72 hr after dosing. The liver and brain were immedi- 
ately harvested and frozen in liquid nitrogen. The speci- 
mens were then stored at −80˚C until the fatty acids were 
extracted. Extraction of free fatty acids and analysis by 
gas chromatography were described in Ross et al. [17]. 

3. Statistical Analysis  

All response parameters were tested using the Shapiro- 
Wilk Test to determine whether the response parameter 
follows a normal distribution. This information was used 
to determine whether a parametric or non-parametric 
analysis was used for subsequent analysis. Time differ- 
ences for each level of DON and LPS (that is, presence 
or absence) were tested by a one-way Analysis of Vari- 
ance (ANOVA). If the ANOVA was statistically signifi- 
cant (p < 0.05), a protested LSD t-test was used for pair- 
wise comparison of 3, 24 and 72 hours. For each time 
period and level of DON, a t-test was used to compare 
presence and absence of LPS. For each time period and 
level of LPS, a t-test was used to compare presence and 
absence of DON. Time differences for each level of 
DON and LPS were analyzed by the nonparametric 
Kruskal-Wallis test. If this test was significant (p < 0.05), 
the Mann-Whitney test was used for pair wise compari- 
son of 3, 24 and 72 hours. For each time period and level 
of DON, the Mann-Whitney test was used to compare 
presence and absence of LPS. For each time period and 
level of LPS, the Mann-Whitney test was used to com- 
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pare presence and absence of DON. 

4. Results 

The individual and concurrent administration of LPS and 
DON had no effect on the fatty acids of the brain and the 
glutathione levels of the brain and liver (data not shown). 
In the liver of animals treated with DON, there was a 
significant decrease in palmitic acid at 24 hours (Figure 
8(b)) compared to 3 hr (Figure 8(a)) and an increase at 
72 hr (Figure 8(c)) compared to 24 hr (Figure 8(b)) after 
dosing. This profile is an indication of palmitic acid 
utilization between 3 and 24 hours and its restoration by 
72 hr, when the mild toxic effect was neutralized. In the 
liver of animals treated with LPS, elaidic acid was sig- 
nificantly decreased at 24 hr (Figure 8(e)) and at 72 hr 
Figure 8(f)) when compared to 3 hr (Figure 8(d)). 
Stearic acid was significantly decreased at 72 hr (Figure 
8(f)) compared to 3 hr (Figure 8(d)) after dosing. The 
minimally toxic doses of LPS and DON concurrent ad- 
ministration produced no changes in the fatty acids of the 
liver (Figures 8(g)-(i)). 

5. Discussion 

The administration of LPS (83 µg/kg BW) activated the 
innate immune response of the Sprague-Dawley rat and 
induced a classical but reversible (48 - 72 hr) sickness 
syndrome response with clear evidence of inflammation 
[45]. Liver histopathology of this study revealed early 
mild hepatotoxicity following IP dose of 10 mg/kg DON 
[46]. The fatty acid profile of this study indicates utiliza- 
tion of palmitic acid in the liver of animals treated with 
DON (Figure 8(b)) and the utilization of stearic and 
elaidic acids in the liver of animals treated with LPS 
(Figure 8(f)). This is indication of the involvement of 
these fatty acids in the palmitoylation process. The de- 
crease in palmitic acid at 24 hr with DON treatment is 
indication of the utilization of palmitic acid by the early 
exposure of the cells to the toxin. After this mild toxic 
effect was counteracted, the level of palmitic acid was 
restored. The decrease of stearic (C18:0) and elaidic ac- 
ids (C18:1 t) in the liver of animals treated with LPS 
could be due to substitution of these fatty acids for 
palmitic acid. LPS administration intraperitoneally in- 
duced hepatic vascular cell adhesion molecule (VCAM) 
mRNA as early as 0.5 hour after dosing [47]. Therefore, 
it is possible that palmitic acid (C16:0) was depleted and 
restored before our first sampling time of 3 hour after 
dosing, and by this time stearic and elaidic acids were 
substituted for palmitic acid. There were no changes in 
the free fatty acids of animals treated with LPS and DON 
concurrently. This lack of fatty acid activity may be due 
to the competition of DON and LPS for binding sites, 
and also to the combination of activities induced by DON  

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Figure 8. (a) The effect of DON on the fatty acids of the 
liver 3 hours after dosing. Values are means ± SEM of 8 
animals; (b) Effect of DON on fatty acids of the liver 24 
hours after dosing. Values are means ± SEM of 8 animals. 
*Palmitic acid significantly decreased from 3 after dosing (p 
< 0.02); (c) Effect of DON on fatty acids of the liver 72 
hours after dosing. Values are means ± SEM of 7 animals. 
*Palmitic acid significantly increased from 24 hours after 
dosing (p < 0.01); (d) Effect of LPS on fatty acids of the 
liver 3 hours after dosing. Values are means ± SEM of 8 
animals; (e) Effect of LPS on fatty acid of the liver 24 hours 
after dosing. Values are means ± SEM of 8 animals. *Elaidic 
acid significantly decreased from 3 hours after dosing (p < 
0.01); (f) Effect of LPS on fatty acids of the liver 72 hours 
after dosing. Values are means ± SEM of 7 animals. *Elaidic 
acid significantly decreased from 3 hours after dosing (p < 
0.01). **Stearic acid significantly decreased from 3 hours 
after dosing (p < 0.03); (g) Effect of LPS and DON concur- 
rent administration on fatty acids of the liver 3 hours after 
dosing. Values are means SEM of 8 animals; (h) Effect of 
LPS and DON concurrent administration on fatty acids of 
the liver 24 hours after dosing. Values are means SEM of 7 
animals; (i) Effect of LPS and DON concurrent administra- 
tion on fatty acids of the liver 72 hours after dosing. Values 
are means SEM of 8 animals. 
 
and LPS. For example, the LPS binding protein CD14 
recognizes LPS and aids in the loading of LPS onto the 
LPS receptor complex [48]. It has been observed by 
Wache et al., 2009 [49] that DON decreased the cell sur- 
face expression of CD14 in a dose-dependent manner. 
Also, macrophages stimulated by LPS produce large 
amounts of NO [50] and DON has been shown to sup- 
pressed LPS-induced NO production by the mouse 
macrophage cell line, RAW264, in a concentration-de- 
pendent manner. Significant inhibitory effect was also 
produced at a concentration as low as 500 ng/mL. DON 
also suppressed LPS-induced iNOS promoter activity 
and the expression of iNOS protein in a similar concen- 
tration range to that of the inhibition effect of NO pro- 
duction [41]. NO production by iNOS contributes to host 
defence and pathophysiological changes in inflammation, 
including sepsis [51]. Low concentrations of NO pro- 
duced by iNOS are beneficial for the antimicrobial activ- 
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ity of macrophages against pathogens [52], and excessive 
production of NO and its derivatives can provoke patho- 
genesis by septic shock and autoimmune disorders [53]. 
Palmitoylation of iNOS is necessary for the intracellular 
transit towards subcellular domains where NO synthesis 
is required [36]. NO production by palmitoyl-specific 
radioprotective domain (P-SRD) has been shown to in- 
hibit the inflammatory responses caused by endotoxin 
[40] and the inhibition was probably due to the competi- 
tion of the P-SRD for LPS binding site on the macro- 
phage cells. Since iNOS is S-acylated with palmitic acid, 
the inhibition of LPS-induced NO production by DON 
has consequentially diminished the utilization of palmitic 
acid that is required for palmitoylation in NO synthesis. 

6. Conclusion 

This study provides a model to explore the involvement 
of the palmitoylation process in the interaction of LPS 
with environmental toxins, such as DON, that can ad- 
versely affect the body. The data provide insights on the 
role of fatty acids in bacterial pathogenesis and some 
understanding of the diversity of bacterial survival 
strategies and the important role that NO plays for host 
protection against invading bacteria. 
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