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ABSTRACT 

In the present work, a numerical solution is described for turbulent forced convection flow of an absorbing, emitting, 
scattering and gray fluid over a two-dimensional backward facing step in a horizontal duct. The AKN low-Rey- 
nolds-number model is employed to predict turbulent flows with separation and heat transfer, while the radiation part of 
the problem is modeled by the discrete ordinate method (DOM). Discretized forms of the governing equations for fluid 
flow are obtained by finite volume approach and solved using SIMPLE algorithm. Results are presented for the distri- 
butions of Nusselt numbers as a function of the controlling parameters like radiation-conduction parameter (RC) and 
optical thickness. 
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Method 

1. Introduction 

Flow in ducts with combined convection, conduction, 
and radiation in participating media occurs in many en- 
gineering applications, such as solar collectors, combus- 
tion chambers, industrial furnaces, gas turbine blades and 
so on. An extensively known geometry is the backward 
facing step (BFS) flow that has the most features of 
separated flows. Although the geometry of BFS flow is 
very simple, many aspects of the heat transfer and fluid 
flow structure remain incompletely explained. 

Several investigations like [1,2] have been done over 
BFS convection flow in a duct, both about laminar and 
turbulent regimes. Some important measurements in tur- 
bulent convection flow downstream of a BFS were done 
by Adams et al. [3] and Vogel and Eaton [4]. Abe et al. 
[5,6] found a quite successfully numerical turbulent 
model, and tested their codes with these experimental 
results. The present research work was carried out to add 
radiation effect to this problem with considering a par- 
ticipating media. Similar research studies have been done 
for fluid flows with simple geometries, such as pipe flow 
and flow between parallel plates [7,8]. To the best of 
author’s knowledge, the forced convection turbulent flow 
over BFS has not been studied using AKN low Reynolds 
turbulent model in flow calculation with DOM in solving 

radiation problem. 

2. Problem Statement 

Two-dimensional turbulent forced convection flow in a 
rectangular duct with a BFS is numerically simulated. A 
schematic of the computational domain is shown in Fig- 
ure 1. The channel height, H, is 0.19 m, and the step 
height, h, is 0.038 m, which is considered as the charac- 
teristic length in the computation. The upstream and 
downstream lengths of the step are 0.076 and 0.760 m, 
respectively, which is corresponds to 2 2x h   0 , in 
the computational domain (Figure 1). 
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Figure 1. Sketch of problem geometry. 
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In the test case related to numerical validation, the 
fluid physical properties are treated as constants and 
evaluated for air at the inlet temperature of T0 = 20˚C (i.e. 
density (ρ) is 31.205 kg m , molecular dynamic viscos- 
ity (µ) is 51.782 10 kg ms , specific heat (Cp) is 1005 
J/(kg˚C) and Prandtl number (Pr) is 0.71). The channel 
expansion ratio is 1.25, with a Reynolds number of 
28,000 based on the centerline velocity at the inlet sec- 
tion (u0 = 10.86 m/s) and step height. 

2.1. Basic Equations 

For predicting turbulent flow and heat transfer in sepa- 
rating and reattaching flows, quite successfully AKN 
model that introduced by Abe et al. [5,6], was selected 
for this study. 

The governing equations for BFS flow, which are con- 
sidered to be 2-D, steady, incompressible and turbulent 
are the equation of continuity, the Reynolds averaged 
Navier-Stokes equation, the equations of the turbulent 
kinetic energy k for the velocity field and its dissipation 
rate ε, the energy equation, and the equations of the tur- 
bulent kinetic energy t2 for the thermal field and its dis- 
sipation rate εt that can be written as follows: 
Continuity: 
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Two-equation model for thermal field (note that molecu- 
lar viscosity is negligible): 
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In the above equations, i ju u   is the Reynolds stress 
component and ju t  is the turbulent heat flux. Also, the 
constants parameters in the governing equations are 
given in Table 1. 

At the inlet duct section, the fluid flow consists a uni- 
form temperature profile (T0 = 600 K). Also, the walls 
considered isotherm with temperature of 750 K.  
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nts appearing in the governing equations. 
 

Table 1. Model consta

C  k    mC
 1C  2C  

C  1DC
 2DC

 h    1PC
 2PC

 1DA
 2DA

 

0.09 1.4 1.4 0.5 1.5 1.9 0.1 2 0.9 1.6 1.6 1.9 0.6 1 5.7   

 
.2. Gas Radiation Modeling 
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besides the convective and conductive terms in the en- 
ergy equation, the radiative term rq  is also exist that 
can be calculated as [9]: 
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For example, non-dimensional form of Equation (6) is:  
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diation tensity  ,I r s . To obtain the radiation inten- 
sity field and then the term rq , we should solve the 
radiative transfer equation (R firstly, that for an ab- 
sorbing, emitting and scattering gray medium can be 
written as: 
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phand  , s s  is the scattering ase function which is 

equa ty for isotropic scattering media. The nu- 
merical procedure in solving RTE (that is the DOM) was 
given in detail by the second author in his previous work 
[10]. By this method, heat flux may also be determined 
from surface energy balance, as: 

l to 
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The boundary conditions for the radiative problem are 
treated as diffusely walls with constant emissivity of 

0.8w  . In addition, the inlet and outlet sections are 
d as pseudo-black walls at their temperatures 

equal to fluid temperature in inlet and outlet sections, 
respectively [11].  

The local total N

considere

usselt number along the duct walls is 
defined as  t t w bNu q h T T   where tq  represents 
the sum of c e heat flu s such that onvective and radiativ xe
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and local radiative Nusselt number, Nur. 
Nu  is the sum of local conve

2.3. Non-Dimensional Forms of the Governing  

In t ution of governing equations, the 
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the non-dimensional forms of the equations: 
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Two physical quantities of interest in heat transfer 
study are the mean bulk temperature and the convective 
and radiative Nusselt numbers which are defined by: 
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3. Numerical Procedure 

lved numerically by the 
velocity and temperature 

s of 430(x) × 
28

The governing equations are so
CFD techniques to obtain the 
fields. Discrete procedure utilizes the method of line-by- 
line in conjunction with finite volumes that coded into a 
computer program in FORTRAN and solved by SIMPLE 
algorithm of Patankar and Spalding [12]. 

Based on the grid-independent study, several grid dis- 
tributions were performed and the grid

0(y) downstream of the step were selected for the nu- 
merical analysis, while using denser mesh of 470(x) × 
330(y) resulted in less than 2% difference in the value of 
maximum total Nusselt number on the bottom wall (Ta- 
ble 2). Non-uniformly structured with highly concen- 
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trated close to the wall surfaces and near the step corners 
and the reattachment zone, were used in order to ensure 
the accuracy of numerical solution.  

Since, in the DOM, different numbers of discrete direc- 
tions can be chosen during SN approximation, the results 
ob

 accuracy of convective heat 
benchmark problem was selec- 

tained by the S4, S8 and S12 approximations were com- 
pared and there was a small difference, less than 2% error, 
between S8 and S12 approximations. Therefore, S8 appro- 
ximation has been used in subsequent calculations. 

4. Code Validation 

In order to validate the
transfer computations, a 
ted. It deals to a turbulent convection flow over a BFS in 
a duct in which the bottom wall downstream of the step is 
supplied with a uniform heat flux  2270 W mwq  , 
while other walls are treated as adiabatic surface. So pre- 
dicted Stanton number profile on th - 
tained by two-equation turbulence model compared with 
experimental data [4] and a numerical data [13] with as- 
sumption of constant turbulent Prandtl number, where 
exhibited in Figure 2. It can be seen that the two-equa- 
tion turbulence model prediction is in better agreement 
with experiment. 

It should be noted that as the radiating effect of the gas 
flow is neglected i

e bottom wall ob

n that test case, the gas flow is consid- 
er

  = 0.5,  = 15. 

ed non-participating media in the computation of Fig- 
ure 2, where the validation of combined conductive- 
radiative heat transfer results was given by the second 
author in his previous work [10]. 
 
Table 2. Grid independence study, RC = 25,

Grid size 390 × 230 430 × 280 470 × 330 

maxtNu  71.98 77.51 78.87 

 

 

5. Results and Discussions 

Figure 2. Comparison of the Stanton number with the ex- 
perimental and theoretical results. 

The numerical results are presented for a turbulent sepa- 
low of a radiating gas rated and reattached convection f

over a 2-D BFS in a horizontal duct. The results repre- 
sent how well the energy transfer from the wall to the gas 
as the fluid flow passes through the channel. 

In order to show the variations of Nusselt numbers 
(Nuc,r,t) along the bottom wall, Figure 3 is plotted with 
considering the effect of RC parameter, which shows the 
relative importance of the radiation mechanism com- 
pared with its conduction counterpart. Figure 3(a) illus- 
trates the distribution of Nur along the bottom wall. It is 
seen that as the distance increases from the step corner,  
 

 
(a) 

 
(b) 

Figure 3. Effect of RC on the Nu distribution along the bot
tom wall,  = 15,  = 0.5: (a)  number; (b
Convective and total Nusselt ers. 

- 
)  Radiative Nusselt

 numb
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the value of radiative heat flux and consequently radia- 
tive Nusselt number increases sharply to its maximum 
value, which is due to a decreases in bottom wall incident 
radiative heat flux incoming from the stepped surface. 
After the maximum point, Nur decreases and approaches 
to a constant value as the distance continues to increase 
in the stream wise direction. Besides, Figure 3(a) shows 
that the Nur increases by increasing in RC, which is due 
to the increases in bottom wall’s outgoing radiative heat 
flux.  

The distributions of both conductive and total Nusselt 
numbers along the bottom wall are presented in Figure 
3(b) at different values of the RC parameter. The varia- 
tion of Nuc shows an increasing trend in the recirculation 
zone after the step corner, such that the maximum value 
of Nuc occurs at the reattachment point, after which the 
Nuc approaches to a constant value far from the step lo- 
cation. Also, it is seen from Figure 3(b) that the Nuc de- 
creases by increasing in RC. This is due to this fact that 
under the effective presence of radiation heat transfer at 
high value of RC, the temperature field inside the flow 
domain becomes more uniform. Consequently, the value 
of temperature gradient inside the flow domain decreases 
that causes a decrease in the value of convection coeffi- 
cient on the bottom wall. The distribution of total Nusselt 
number is also shown in Figure 3(b). It is seen that Nut 
and Nuc have similar trend but Figure 3(b) illustrates that 
Nut increases with increasing in RC. One can easily ana- 
lyze this trend by considering the definition of Nut, and 
its relation with Nuc and Nur. 

The effect of optical thickness on Nuc and Nut are 
shown in Figure 4. It is seen from Figure 4(a) that the 
effect of   on Nu  is similac r to that of RC parameter 
(Figure 3). But if one focuses on Figure 4(b) in which 
the effect of   on Nut is presented, it can be found that 
by increasing in   from 0.1 to 0.5 (optically thin me- 
dia), Nut has increasing trend. But with more increase in 
  from 0.5 to higher values, the trend has been reversed. 
This is the reason why the curve for 1   lies between 
the curves for 0.1   and 0.5  . It should be noted 
that similar results have been reported by Tsai and ozisic 
[14]. 

6. Conclusion 

Numerical simulation of 2-D turbulent forced convection 
S has been studied, including thermal in a duct with a BF

radiation. The effects of RC parameter and optical thick- 
ness on the Nusselt numbers distribution along with the 
bottom wall downstream of the channel step were pre- 
sented. Numerical results show that by increasing in RC 
parameter, the Nuc decreases whereas the Nut increases 
along the bottom wall. Also, numerical results revealed 
that by increasing the optical thickness, the Nuc decreases  

 
(a) 

 
(b) 

Figure 4. Effect of optical thickness on the Nusselt number 
distribution along the bottom wall, RC = 25,  = 0.5: (a) 
Convective Nusselt number; Total Nusselt number. 

 op- 
cal thickness from τ  to greater values, the Nu  has a 
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“Experimental tigation of Back-
ward-Facing S  Fluid Mechanics, 

 (b) 
 
monotonically, but the Nut increases to a critical value 
for the optical thickness. Such that by increasing the
ti critical t
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Nomenclature 

ER: expansion ratio, H/(H-h) 
I: radiation intensity  
Ib: black body radiation intensity  
k: turbulent kinetic energy, 2i iu u    
p: pressure  
Pe: Peclet number,  Re Pr
Pr, Prt: molecular and turbulent Prandtl number 

r

Re: Reynolds number, 
q : radiative heat flux vector  

0u h   
RC: radiation-conduction parameter, 3

wT h   

St: Stanton number, 
 0 0

w

p w

q

C u T T 
 

T,t: mean temperature and temperature fluctuation  
t̂ : time  
ui: general notation for mean velocity components 

  1 2,u u u v 
u : velocity fluctuation  

ix : general notation for coordinate directions 
 1 2,x x x y   

ny : normal distance to the wall surface 

Greek Symbols 

, t  : molecular and eddy diffusivity  
 : extinction coefficient  

ij : Kronecker delta 
 : dissipation rate of turbulent kinetic energy, 

  i j i ju x u x       

t : dissipation rate of 2 2t ,   j jt x t x      

w : wall emissivity 
 : thermal conductivity  
 : solid angle 

, t  : molecular kinematic and eddy viscosities  
 : Stefan Boltsman’s constant, 5.67 ×10-8 W/m2K4 

s : scattering coefficient  

a : absorption coefficient  
 : albedo coefficient, 1 a     
 : optical thickness, h  

1 2,  : dimensionless temperature parameters 
  1 0 0 2 0,w wT T T T T     

Subscripts 

b: bulk 
c: convective 
r: radiative 
w: wall 

Superscript 

*: dimensionless symbol 
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