
Journal of Software Engineering and Applications, 2011, 1, 9-17
doi:10.4236/jsea.2011.41002 Published Online January 2011 (http://www.scirp.org/journal/jsea)

Copyright © 2011 SciRes. JSEA

An Extension to Pi-Calculus for Performance
Evaluation

Shahram Rahimi, Elham S. Khorasani, Yung-Chuan Lee, Bidyut Gupta

Department of Computer Science, Southern Illinois University, Illinois, USA.
Email: {rahimi, elhams, yclee, bidyut}@siu.edu

Received October 12th, 2010; revised November 25th, 2010; accepted November 30th, 2010.

ABSTRACT

Pi-Calculus is a formal method for describing and analyzing the behavior of large distributed and concurrent systems.
Pi-calculus offers a conceptual framework for describing and analyzing the concurrent systems whose configuration
may change during the computation. With all the advantages that pi-calculus offers, it does not provide any methods for
performance evaluation of the systems described by it; nevertheless performance is a crucial factor that needs to be
considered in designing of a multi-process system. Currently, the available tools for pi-calculus are high level language
tools that provide facilities for describing and analyzing systems but there is no practical tool on hand for pi-calculus
based performance evaluation. In this paper, the performance evaluation is incorporated with pi-calculus by adding
performance primitives and associating performance parameters with each action that takes place internally in a sys-
tem. By using such parameters, the designers can benchmark multi-process systems and compare the performance of
different architectures against one another.

Keywords: Pi-calculus, Performance Evaluation, Multi-Agent Systems, System Modeling

1. Introduction

Pi-calculus, introduced by Robin Milner [1-5], stands out
as one of the most powerful modeling tools for modeling
and analyzing the behavior of concurrent computational
systems such as: multi agent systems, grid computing sy-
stems, and so forth. Pi-calculus defines the syntax of pro-
cesses and actions and provides transition rules for ana-
lyzing and validating system functionalities. Mobility in
pi-calculus is achieved by sending and receiving channel
names through which the recipient can communicate with
the sender or even with other processes, provided the
channel is a free name. With the interaction between the
processes changing, the configuration of the whole sys-
tem is also changed and mobility is attained. In the high-
er-order pi-calculus [5], computational entities (such as
objects, process, or a code segment) can be transferred as
well as the values and channel names. Because of its
strong support for mobility, higher order pi-calculus is
very flexible and powerful in modeling mobile agent sys-
tems. As mentioned before, however, pi-calculus by it-
self does not provide any method for performance evalu-
ation of systems described by it; nevertheless, perfor-
mance is an important factor that needs to be considered
in designing of a multi-process system. The traditional

software development methods delay the performance
test until after the implementation is completed. This
approach has its obvious drawback as if the system is
found not satisfying the desired performance require-
ments, then most of the implementation has to be redone.
So evaluating the performance at the design stage has
significant importance and can save much of the devel-
opers’ time, energy and cost.

The previous works for integrating the process algebra
with performance measures have either extended the syn-
tax and semantics of the pi-calculus to account for per-
formance, or derived quantitative performance measures
from the system transitions.

In the former approach, a family of stochastic process
algebra [6-14] has been introduced that extends the stan-
dard process algebra with timing or probability informa-
tion. In this algebra, every action has an associated dura-
tion which is assumed to be a random variable with an
exponential distribution. A prefix then is in the form of
(a,r).P, where a represents an action with a duration that
is exponentially distributed with parameter r, known as
the action rate. The memory-less property of the expo-
nential distribution conforms to the Markov property thus
Markov chains [15-16] are applied to compute the prob-
ability of reaching each state. Consequently, the final

An Extension to Pi-Calculus for Performance Evaluation

Copyright © 2011 SciRes. JSEA

10

performance of the system can be calculated given the
reward model. One potential problem with providing
explicit action rates is that when the action rates are not
known in advance, a different symbol is used for each
action rate which leads to a heavy computational over-
head in performance calculation.

In the latter approach [17-18], labels of the transition
systems are enhanced to carry additional information
about the inference rule which was applied to the transi-
tion. So instead of giving an explicit action rate for each
action, the probabilistic distributions are computed from
the transition labels by associating a cost function to each
transition. Then Markov chain is applied as before to cal-
culate the final performance.

In this paper we follow the latter approach, in that we
leave the syntax of the pi-calculus intact and associate
performance parameters with each inference rule. How-
ever, our approach differs from the previous works in
two aspects: first, the cost functions proposed in the pre-
vious works are too abstract to be directly applied to real
cases. Thus, in this paper a cost function is replaced by a
concrete transition rate function that estimates the dura-
tion time for each transition rule. Second, our transition
rates account for process mobility such as transferring
objects or codes from one environment to another, con-
sidering the fact that the process mobility (such as mobile
agents) is different from simple name exchange in its
complexity and additional overhead [19].

The rest of the paper is organized as follows: we start
with some background knowledge on pi-calculus syntax
and its transition rules. Then we review the continuous
time Markov chains, their steady state analysis and re-
ward models. Finally, we introduce the transition rate
function and establish our performance evaluation me-
thodology based on it. A conclusion section summaries
the paper at the end and gives a prospective for future
work in this area.

2. Pi-Calculus

Pi-calculus, an extension of the process algebra CCS, was
introduced by Robin Milner in the late 80 s [1]. It provides
a formal theory for modeling mobile systems and reason-
ing about their behaviors. In pi-calculus, two entities are
specified, “names” and “processes” (or “agents”). “Name”
is defined as a channel or a value that is transferred via a
channel. We follow the naming conventions and the syn-
tax of [1] in which u, v, w, x, y, z range over names and A,
B, C,  range over process (agent) identifiers.

The syntax of an agent (or a process) in pi-calculus is
defined as follows:

 
     

1 2

1 2 1

:: 0 . (). . .

, , !

i ii I

n

P P yx P y x P y x P P P P

P P x P x y P A y y P

 




 




 0 is a null process and means that agent P does not
do anything.

 .i ii I
P

 : Agent P will behave as either one of

.i iP where i I , but not more than one, and the-
behaves like iP . If I   , then P behaves like 0.

 Here i denotes any actions that could take place
in P (such as , ()y x , and so on).

 Here i denotes any actions that could take place
in P (such as , ()y x , and so on).

 .yx P : Agent P sends the free name x out along
channel y and then behaves like P.

 Name x is said to be free if it is not bound to agent P.
In the same way, if x is bound to P (also say private
to P), that means x can only be used inside by P.

  .y x P : Agent P sends bound name x out along
channel y and then behaves like P.

  .y x P : Agent P receives name x along channel y
and then behaves like P.

 .P : Agent P performs the silent action  and
then behaves like P.

 1 2P P : Agent P has 1P and 2P executing in paral-
lel. 1P and 2P may behave independently or they
may interact with each other. E.g. if 1 1 1.P P and

2 2 2.P P , then 1P and 2P will behave indepen-
dently. But, if 1 1().P y x P and  2 2.P y x P then

1P sends name x to 2P via channel y.
 The sum 1 2P P means either 1P or 2P is ex-

ecuted, but not both.
  x P : is called restriction and means that agent P

does not change except for that x in P becomes pri-
vate to P. That means any outside communication
through channel x is prohibited.

 A match operator [x = y] P means that if x = y, then
the agent behaves like P, otherwise it behaves like 0.

  1, , nA y y is an agent identifier where

1, , ny y are free names occurring in P.
 !P is called replication and can be thought of as an

infinite composition P P P .

The semantics of the calculus is defined by a set of
transition rules which establish the system evolution. A
transition rule is in the form of 'P P , which
means that process P evolves to 'P after performing ac-
tion  . Action  can be one of the following prefix-
es:

   :: yx y x y x 

Pi-calculus transition rules are listed in Table 1. The
TAU-ACT, INPUT-ACT, OUTPUT-ACT, SUM and
MATCH rules correspond directly to the definition of the
silent, input, and output actions and the sum and match
operators. The side condition   w fn z P in the
INPUT-ACT rule ensures that a free occurrence of w

An Extension to Pi-Calculus for Performance Evaluation

Copyright © 2011 SciRes. JSEA

11

Table 1. Pi-calculus transition rules [1].

TAU-ACT:
.P P




OUTPUT-ACT:
. xyxy P P




INPUT-ACT:
()

().
x w

x z P P
   w fn z P

SUM:
'

'

P P

P Q P






 

MATCH:
 

'

'

P P

x x P P






 

IDE:
'{ / }

'()

P y x P

A y P








 


 ()

def

A x P

PAR:
'

'

P P

P Q P Q








    bn fn Q 

COM:
 ' ' '

' '' | | { }

x zxyP P P P Q Q

P Q P Q y zP Q P Q





  


RES:
   

'

'

P P

y P y P








  y n 

CLOSE:
   

 
' '

' '()

x w x wP P Q Q

P Q w P Q

 


OPEN:
 

'

'() { }

xy

x w

P P

y P P w y




   '

y x

w fn y P




does not become bounded by the substitution{w/z}. The
PAR rule states that the parallel composition does not
inhibit computation; the side condition    bn fn Q 
 guarantees that a free name in Q does not turn into

a bound name by the application of PAR. The COM rule
shows the synchronous communication between two
processes. The RES rule states that the process P can
resume its computation under restriction. The side condi-
tion  y n  assures that no conflict will occur be-

tween the restricted name y and the names in P. In the
CLOSE rule, P sends a bound name w to Q hence it ex-
tends the scope of w and makes it available to both P and
Q. the Open rule transforms a free output action xy to a

bound output  x w and eliminates the restriction (y).

The side condition of the open rule certifies that the

bound name w may not occur free in 'P .
The higher-order pi-calculus is different from the

first-order pi-calculus in its ability to model sending and
receiving processes as well as the values and channel
names. In higher-order pi-calculus,  x K means send-
ing a name or a process K via channel x, and  x U
means receiving a name or a process via channel x. Be-
cause of its support for process mobility, we chose higher
order pi-calculus as our target modeling language. The
transition rules of the higher order pi-calculus are listed

Table 2. Higher-order pi-calculus labeled transition system [5].

TAU:
.P P




 SUM:
'

'

P P

P Q P






 

PAR:
'

'

P P

P Q P Q








MATCH:
 

'

'

P P

x x P P






 

IDE:
 
{ } '

'
U

P K U P

A K P


 


, if  

def

A U P

RES:
     '

'

u

u

P P
x n u

x P x P






COM-NAME:
 ' '

'' { }

x zxyP P Q Q

P Q P Q y z

 




 

y is not a process list.

COM-PROCESS:
  ' '

() (' ')

y x K x KP P Q Q

P Q y P Q

 


 



K is a process vector.

CLOSE-NAME:
   

   
' '

''

x w x wP P Q Q

P Q w P Q



 



 

 w fn Q w is not a process

OPEN:
 

     ,

'
,

'

y z K

x y z K

P P
x z x fn K y

x P P


 






 

in Table 2. These rules are basically the same as the
transition rules of the first order pi-calculus with an addi-
tional rule for process communication (COM-PROCESS).

3. Continuous Time Markov Chains

Markov chains are the most commonly used mathemati-
cal tools for performance and reliability evaluation of
dynamic systems. A Markov chain models a dynamic
system with a set of states and a set of labeled transitions
between the states. Each label shows the probability of a
transitions (in case of the discrete-time Markov chain), or
it shows the rate of a transitions (in case of the conti-
nuous Markov chain). In this section, we review some
basic definitions and theorems from [16] of the stochastic
processes and the continuous time Markov chain.

Definition 3.1 (Stochastic Process): A stochastic
process is defined as a family of random variables X 
 :tX t T where each random variable tX is indexed
by parameter t T , which is usually called the time pa-
rameter if  0, .T R   The set of all possible val-
ues of tX (for each t T) is known as the state space
of the stochastic process. tX is the state of a process at
time t. If the index set T is a countable set, then X is a
discrete-time stochastic process, otherwise it is a conti-
nuous-time process.

Definition 3.2 (Continuous Time Markov Chain

An Extension to Pi-Calculus for Performance Evaluation

Copyright © 2011 SciRes. JSEA

12

(CTMC)): A stochastic process  :tX t T constitutes a
CTMC if it satisfies the Markov property, namely that,
given the present state, the future and the past states are
independent. Formally, for an arbitrary 0Rit

 with

0 1 10 ,n nt t t t n N       and 0s S    , the
following relation holds for the conditional probability
mass function (pmf):

 
 

1 1 0

1

1 1 0

1

, , ,
n n n

n n

t n t n t n t

t n t n

P X s X s X s X s

P X s X s









    

 



where  1 1n nt n t nP X s X s
   is the transition proba-

bility to travel from state nS to state 1nS  during the

period of time  1,n nt t  .

Definition 3.3 (Time-homogenous CTMC): A
CTMC is called time-homogenous if the transition prob-

abilities  1 1n nt n t nP X s X s
   depend only on the

time difference tn+1-tn, and not on the actual values of tn+1
and tn.

Definition 3.4 (State Sojourn Time): The sojourn
time of a state is the time spent in that state before mov-
ing to another state. The sojourn time of time-homo-
genous CTMC exhibits the memory less property. Since
the exponential distribution is the only continuous distri-
bution with this property, the random variables denoting
the sojourn times, or holding times, must be exponen-
tially distributed.

Definition 3.5 (Irreducible CTMC): A CTMC is
called irreducible if every state iS is reachable from
every other state iS , that is:

 ,, , , 0 : 0i j i j i jS S S S t p t    

Definition 3.6 (Instantaneous Transition Rates of
CTMC): A transition rate  tijq , measures how quickly
a process travels from state i to state j at time t. The tran-
sition rates are related to the conditional transition prob-
abilities as follows:

 ,

0

,
,

0

,
lim ,

()
(,) 1

lim ,

i j

t

i j
i j

ij
t i j

p t t t
i j

t
q t

p t t t
q i j

t

 

  

 


      


 (3.1)

The instantaneous transition rates form the infinitesimal

generator matrix ijQ q   

A CTMC can be mapped in to a directed graph, where
the nodes represent states and the arcs represent transi-
tions between the states labeled by their transition rates.

Definition 3.7 (The State Probability Vector): The
state probability vector is a probability vector

 1 2
, ,t t t

s s    , where
i

t
s is the probability that the

process is in state iS at time t. Given the initial state

probability,  1 2

0 0, ,s s   , the state probability vector at

time t is calculated as:

 0 0, 0t P t t   (3.2)

Because of the continuity of time, Equation (3.2) cannot
be easily solved; instead the following differential equa-
tion is used [16] to calculate the state probability vector
from the transition rates:

     ij i

t
t t t

dt
j

i S

d
q






  (3.3)

3.1. The Steady State Analysis

For evaluating the performance of a dynamic system, it is
usually desired to analyze the behavior of the system in a
long period of execution. The long run dynamics of
Markov chains can be studied by finding a steady state
probability vector.

Definition 3.8 (The Steady State Probability Vector):
The state probability vector  is steady if it does not
change over time. This means that further transitions do
not affect the steady state probabilities, and :

 
lim 0t

d t

dt


  , where  t is the steady state prob-

ability vector. Hence from Equation (3.3):

    0ij i
i S

q t t j S


   , or in vector matrix form:

0Q  (3.4)

Thus the steady state probability vector, if existing, can
be uniquely determined by the solution of Equation (3.4),

and the condition 1i
i S




 .

The following theorem states the sufficient conditions
for the existence of a unique steady-state probability
vector.

Theorem 3.1: a time-homegenous CTMC has a unique
steady-state probability vector if it is irreducible and finite.

A CTMC for which a unique steady state probability
vector exists is called an ergodic CTMC. In an ergodic
CTMC, each state is reachable from any other states
through one or more steps. The steady-state probability
vector  for an ergodic CTMC can be found directly
by solving Equation (3.4) as illustrated by the following
example:

Figure 1 shows an ergodic CTMC containing five
states: 1 2 3 4 5, , , ,S S S S S when each state is reachable
from other states. The value associated with each arc is
the instantaneous transition rate between the states. The

An Extension to Pi-Calculus for Performance Evaluation

Copyright © 2011 SciRes. JSEA

13

Figure 1. A simple ergodic CTMC.

infinitesimal generator matrix Q for this case would be:

4 4 0 0 0

3 7 2 2 0

Q 0 1 2 1 0

0 3 3 8 2

0 0 0 7 7

 
  
  
 

 
  

Assuming that  1 2 3 4 5, , , ,x x x x x  , from Equation (3.4)

we have:

1 2

1 2 3 4

2 3 4

2 3 4 5

4 5

4 3 0

4 7 3 0

2 2 3 0

2 8 7 0

2 7 0

x x

x x x x

x x x

x x x x

x x

    
             
       

   

In addition, the summation of all  1 5ix i  equals to

1, i.e.,

1 2 3 4 5 1x x x x x    

Solving the above liner system for 1 5, ,x x , the final

value of  is:

 = [7/43, 28/129, 56/129, 56/387, 16/387]

Notice that each value in the vector  is greater than
zero which verifies the irreducible property of the CTMC,
however if the some values of  are equal to 0, two pos-
sibilities exist: some states are not reachable or there are
some absorbing states.

An absorbing state is a state in which no events can
occur. Once a system reaches to an absorbing state, it
cannot move to any other states. In other words, for an
absorbing state, there are only incoming flows. Therefore,
there are no outward transitions from this state. Generally,
all absorbing states are failed states. A CTMC containing
one or more absorbing states is called absorbing CTMC.
Usually, if a system has more than one absorbing states,
then all of the absorbing states can be merged into a sin-
gle state.

The steady-state probability vector  for an absorb-

ing CTMC is:

0, if is not an absorbing state

1, otherwise
i

i

S



 


 (3.5)

(For an absorbing CTMC, It is usually interesting to find
the time to absorption. In other words, we usually want
to know how long it takes for the system to step into a
final absorbing state (i.e., the system fails to work) from
its starting state. From [16], the mean time to absorption
(MTTA) is defined as:

 MTTA i
i N

L


  (3.6)

where  iL t denotes the expected total time spent in

state iS during the interval [0, t)

   0N N NL Q    (3.7)

NQ is a N*N size matrix by restricting the infinitesimal

generator matrix Q into non-absorbing states. As an ex-
ample, assume the CTMC in Figure 2 with an absorbing
state S5.

Here the state space  is partitioned into the set of
absorbing states  5A S and non-absorbing states N 

 1 2 3 4, , , .S S S S Thus the infinitesimal generator matrix

Q for the non-absorbing states is reduced to:

4 4 0 0

3 7 2 2

0 1 2 1

0 3 3 8

NQ

 
  
 
 

 

Suppose    0 1,0,0,0N  , which means the system

starts at state 1S . Form Equation (3.7):

   

4 4 0 0

3 7 2 2
0

0 1 2 1

0 3 3 8

N NL 

 
     
 
 

 

Assuming    1 2 3 4, , ,NL l l l l  , then:

Figure 2. An absorbing CTMC.

An Extension to Pi-Calculus for Performance Evaluation

Copyright © 2011 SciRes. JSEA

14

1 2

1 2 3 4

2 3 4

2 3 4

4 3 1

4 7 3 0

2 2 3 0

2 8 0

l l

l l l l

l l l

l l l

   
    
   
   

Solving the above linear system,

   1.0625, 1.08, 1.83, 0.5NL   and

 MTTA 17 /16 13 /12 11/ 6 1/ 2 4.4725.i
i N

L


      

3.2. Markov Reward Models

Markov reward models provide a framework to integrate
the performance measures with Markov chains. Compu-
ting the steady-state probability vector is not sufficient
for the performance evaluation of a Markov model. A
weight needs to be assigned to each state or system tran-
sition to calculate the final performance. These weights,
also known as rewards, are defined according to specific
system requirements and could be time cost, system
availability, reliability, fault tolerance, and so forth.

Let the reward rate ir be assigned to state iS , then a re-
ward ir t is accrued during a sojourn time t in state iS .
Before proceeding, some definitions are presented from [16]:

Definition 3.9 Instantaneous Reward Rate
Let   , 0X t t  denote a homogeneous finite-state
CTMC with state space  . The instantaneous reward
rate of CTMC at time t is defined as:

   XZ t r t (3.8)

Based on this definition the accumulated reward in the
finite time period [0, t] is:

     
0 0

t t

XY t Z x dx r x dx   (3.9)

Furthermore, the expected instantaneous reward rate and
the expected accumulated reward are as follow:

     X i i
i

E Z t E r t r t


         (3.10)

     
0

t

X i i
i

E Y t E r x dx r L t


 
     

 
 (3.11)

where  t is the probability vector at time t, and
 iL t denotes the expected total time spent in state iS

during the interval [0, t). When t  we have:

     X i i
i

E Z E r r r


            (3.12)

     
0

X i i
i

E Y E r x dx r L




 
       

 
 (3.13)

Especially, when the unique steady-state probability
vector  of the CTMC exists, the expected instantane-

ous reward rate is the summation of each state reward
multiplying its according steady-state probability, i.e.:

     X i i i i
i i

E Z E r r r  
 

             (3.14)

For an absorbing CTMC the whole system will even-
tually enter to an absorbing state. So for an absorbing
CTMC, it is logical to compute the expected accumulated
reward until absorption as follows:

     
0

X x i i
i N

E Y E r x d r L




 
       

 
 (3.15)

where N is the set of non-absorbing states.

4. Performance Evaluation of Systems
Modeled in Pi-Calculus

As mentioned before, the most common way to evaluate
the performance of a system modeled in pi-calculus is to
transfer the model to a CTMC and run the steady state
analysis followed by a reward model to calculate the ac-
cumulated reward and hence the performance of the sys-
tem. The major task in this regard is to assign appropriate
transition rates to the Markov model. Previous literature
suggests two different approaches. In the first approach,
the transition rates are given explicitly for each action.
This approach modifies the syntax of the pi-calculus and
extends it to a stochastic pi-calculus [6-14]. The second
approach [17-18] leaves the syntax of the calculus un-
changed and calculates the transition rates based on an
abstract cost function assigned to each action. Both of
these approaches have their downsides, as previously
stated in section1. In this paper, instead of a cost function,
we introduce a more concrete transition rate function
which estimates the transition rate for each reduction rule
in pi-calculus.

4.1. Transition Rate Functions

In order to calculate the transition rates (qij) of a CTMC
derived from a pi-calculus model, we define a transition
rate function, TR, for each transition rule in higher order
pi-calculus, listed in Table 2.

Definition 4.1 (Transition Rate Function): Let 
be the set of transition rules from Table 2. The transition
rate function is defined as : ,TR R  where ()iTR  
1 / it and it is the duration of the transition initiated by
the reduction rule 1 .

In what follows the transition rate functions are de-
fined for the higher order pi-calculus reduction rules.

 TAU:
.P P




TR
1

=
. i

ii P P 



An Extension to Pi-Calculus for Performance Evaluation

Copyright © 2011 SciRes. JSEA

15

Here i is an internal action. Different internal actions
may have different execution times, so i represents
the execution time for action i .

 SUM:
'

'

P P

P Q P






 

Similar to TAU,
'

'

P P
TR

P Q P





 
 

  

  1
'i

i

TR P P


  

 PAR:
'

'

P P

P Q P Q








 ' 1
'

'
i

i

P P
TR TR P P

P Q P Q




 
 

     

 MATCH:
 

'

'

P P

x x P P






 

 
'

'

i

i

P P
TR

x x P P





 
    

  'iTR x x P P  = 1/(time( x x) + time

   
1

'i

i

P P
size x




 



The time needed for the matching operation, depends on
the size of the data to be compared, size(x).

 COM-NAME:
 

 

' '

' ' /

x zxyP P Q Q

P Q P Q y z

 




 

Assuming that the network connection is perfect and no
errors occur during sending and receiving messages, we
have:

 

 

' '

' ' /

x zxyP P Q Q
TR

P Q P Q y z

   
  



 

 
   

1

* 1 *startup h

size y
t k t k

bw x


  



where  bw x is the bandwidth of channel x, i.e., the total
amount of information that can be transmitted over
channel x in a given time. When a large number of
communication channels are using the same network,
they have to share the available bandwidth. startupt is the

startup time, the time required to handle a message at the
sending node. This includes the time to prepare the
message (adding header, trailer, and error correction

information), the time to execute the routing algorithm,
and the time to establish an interface between the local
node and the router. This delay is incurred only once for
a single message transfer [20]. k is the total hops that a
message traverses (not counting the sender and the re-
ceiver nodes). ht , called Per-hop time, is the time cost
at each network node. After a message leaves a node, it
takes a finite amount of time to reach the next node in its
path. The time taken by the header of a message to travel
between two directly-connected nodes in the network is
called the per-hop time. It is also known as node latency.
The per-hop time is directly related to the latency within
the routing switch for determining which output buffer
or channel the message should be forwarded to  size y
represents the size of the message y . In current parallel
computers, the per-hop time, ht

, is quite small. For

most parallel algorithms, it is less than    size y bw x
even for small values of m and thus it can be ignored.

As an example, suppose the sender begin to send 200K
  size y message to the recipient in Figure 3. The

bandwidth of the network is 100 K/second and the sender
startup time is 1.5 second. At each hop, the latency  ht

is 1 second. So the total transfer time t is calculated as:

 
   * 2 * 1.5startup h

size y
t t k t k

bw x
     



   200 100 3 1 1 3 12.5 second    

And its corresponding transition rate is 1/t = 1/14.5 =
0.08
- CLOSE-NAME:

   

   
' '

' '

x w x wP P Q Q

P Q w P Q

 



 

   

  
' '

' '

x w x wP P Q Q
TR

P Q w P Q

   
  

 

   
   

1

* 1 *startup h

size y
t Check w k t k

bw x


   




 Check w is the time needed to perform a name check
to verify that w~ does not occur free in Q.  Check w
is in the order of the number of free names in Q.
- COM-PROCESS:

 

 
' '

' '

vy x K x K
P P Q Q

P Q vy P Q

 


 



 

 
' '

' '

vy x K x K
P P Q Q

TR
P Q vy P Q

   
  

 



An Extension to Pi-Calculus for Performance Evaluation

Copyright © 2011 SciRes. JSEA

16

1

()
() *(1) * ()

()startup h

size Kcode Kdata Kstate
Marshalling K t k t k Unmarsh K

bw x


 

    
   

When a process is moved to a remote computer, its

code, data, and, sometimes, its state of execution are
transferred so that it can resume its execution after mi-
gration [21]. ,Kcode ,Kdata Kstate are the code,
data and the state of process ,K respectively.

 Marshalling K is the time needed to convert K into
a standard format (byte-stream) before it is transmitted
over the network.  Unmarshalling K is the reverse
process of converting the byte-stream to process K ,
after migration.

With the transition rate functions defined above, a sys-
tem modeled in pi-calculus can be transformed into a
CTMC and hence its performance measures are computed
by following the standard numerical methods of CTMC,
discussed in Section 3. Generally, the steps needed to be
taken for CTMC-based performance evaluation of a sys-
tem described in pi-calculus or its extensions are summa-
rized as follow:

1) Forming the state diagram of the system. To do so,
we consider the initial pi-calculus specification to
represent the initial state of the system. From there every
reduction applied to the specification would produce a
next possible state. Similarly the state transition diagram
is generated by applying all possible reductions.

2) Using the state transition rate functions to calculate
the transition rates for each pair of states. We define the
transition rate, qij, between state Si and Sj, based on the
transition rate function:

  , if is derived inmediately from

by applying the reduction rule

,

 0, otherwise

j

i

ij
ij

j

TR S

S

q
q i j

 


 






 (4.1)

3) By associating each rate with its appropriate transi-
tion in the state diagram, the CTMC diagram would

Figure 3. Message sending and receiving across the network
[20].

be formed and the infinitesimal matrix is generated. Note
that the transition rates are independent of the time (It
only depends on the transition rule); hence the corres-
ponding CTMC is time-homogenous. To ensure that the
resulting transition system conforms to the memory-less
property, we assume that the sojourn time of a state is

exponentially distributed with parameter 1 ij
j

q [16].

That is:

   1 it
iprob sojourn S t e   (4.2)

where 1i ij
j

q  

4) If the resulting CTMC is an ergodic Markov Chain,
then a unique steady state probability vector exists and is
found by solving Equation (3.4). If a state based Markov
reward model is used, then the final performance value

of the system would be equal to:
1

n

i i
i

r

 , where ir and

i are the reward rate and the steady probability for
state iS , respectively.

5. Conclusion and Future Work

Although the pi-calculus family of formal languages is
vastly utilized, it does not provide any native theoretical
mechanisms for performance evaluation of different de-
sign approaches for a particular system. This article pre-
sented a Markov-based performance evaluation metho-
dology for systems specified in pi-calculus. Such me-
thodology can be applied at the design stage to assess the
performance of a system prior to its implementation and
introduce a benchmark to compare different design sche-
mes against one another.

The previous works [22-24] on integrating perfor-
mance measures with process algebra have either intro-
duced additional computational overhead by extending
the calculus to stochastic pi-calculus or proposed cost
functions that are too abstract. We defined concrete tran-
sition rate functions with necessary features for real
world applications. Bearing in mind that the performance
of a multi-process system mainly relies on the network
communication cost, our transition rate functions mostly
revolves around the time performance measures for sen-
ding and receiving processes. In addition, we also ac-
counted for the overhead of process mobility in our tran-
sition functions.

An Extension to Pi-Calculus for Performance Evaluation

Copyright © 2011 SciRes. JSEA

17

The future studies should mainly focus on the scalability
of the methodology to large complex systems with huge
number of states and transition rates. Many approaches are
proposed in literature to address the problem of state ex-
plosion in Markov chains [25-27].The incorporation of
these approaches with the performance evaluation of pi-
calculus models remains as a future work.

REFERENCES

[1] R. Milner, J. Parrow and D. Walker, “A Calculus of Mo-
bile Processes—Part I and II,” LFCS Report 89-85, Uni-
versity of Edinburgh, Edinburgh, 1989.

[2] R. Milner, “Communicating and Mobile Systems: The
 -Calculus,” Cambridge University Press, Cambridge,
1999.

[3] R. Milner, “The Polyadic Pi-Calculus: A Tutorial,” Tech-
nical Report ECSLFCS -91-180, Computer Science De-
partment, University of Edinburgh, Edinburgh, 1991.

[4] D. Sangiorgi, “The  -Calculus: A Theory of Mobile
Processes,” Cambridge University Press, Cambridge, 2001.

[5] D. Sangiorgi: “Expressing Mobility in Process Algebras:
First-Order and Higher-Order Paradigms,” Ph.D. Thesis,
University of Edinburgh, Edinburgh, 1993.

[6] C. Priami, “Stochastic -Calculus,” Computer Journal,
Vol. 38, 1995, pp. 578-589. doi:10.1093/comjnl/38.7.578

[7] N. G tz, U. Herzog and M. Rettelbach, “TIPP-A Lan-
guage for Timed Processes and Performance Evaluation,”
Technical Report 4/92. IMMD VII, University of Erlan-
gen-Nurnberg, Erlangen, 1992.

[8] J. Hillston, “A Compositional Approach to Performance
Modelling,” Ph.D. Thesis, University of Edinburgh,
Edinburgh, 1994.

[9] M. Bernardo, L. Donatiello and R. Gorrieri, “MPA: A
Stochastic Process Algebra,” Technial Report UBLCS-
94-10, University of Bologna, Bologna, 1994.

[10] P. Buchholz, “On a Markovian Process Algebra,” Tech-
inal Report Informatik IV, University of Dortmund, Dort-
mund 1994.

[11] L. de Alfaro, “Stochastic Transition Systems,” Proceed-
ings of Ninth International Conference on Concurrency
Theory (CONCUR’98), Vol. 1477, 1998, pp. 423-438.
doi:10.1007/BFb0055639

[12] J. Markovski and E. P. de Vink, “Performance Evaluation
of Distributed Systems Based on a Discrete Real- and
Stochastic-Time Process Algebra,” Fundamenta Informa-
ticae, Vol. 95, No. 1, October 2009, pp. 157-186.

[13] A. Clark, S. Gilmore, J. Hillston and M. Tribastone,
“Stochastic Process Algebras,” SFM’07 Proceedings of
the 7th International Conference on Formal Methods for
Performance Evaluation, 2007, pp 132-179.

[14] P. R. D’Argenio and J. Katoen, “A Theory of Stochastic

Systems. Part II: Process Algebra,” Information and
Computation, Vol. 203, No. 1, November 2005, pp. 39-74.
doi:10.1016/j.ic.2005.07.002

[15] S. M. Ross, “Stochastic Processes,” 2nd Edition, Wiley,
New York, 1996.

[16] G. Bolch, S. Greiner, H. De Meer and K. S. Trivedi,
“Queuing Networks and Markov Chains: Modelling and
Performance Evaluation with Computer Science Applica-
tions,” Wiley, New York, 1998

[17] C. Nottegar, C. Priami and P. Degano, “Performance
Evaluation of Mobile Processes Via Abstract Machines,”
IEEE Transactions on Software Engineering, Vol. 27, No.
10, 2001, pp. 867-889. doi:10.1109/32.962559

[18] F. Logozzo, “Pi-Calculus as a Rapid Prototype Language
For Performance Evaluation,” Proceedings of the ICLP
2001 Workshop on Specification, Analysis and Validation
for Emerging Technologies in Computational Logic
(SAVE 2001), 2001.

[19] S. Rahimi, M. Cobb, D. Ali, M. Paprzycki and F. Petry,
“A Knowledge-Based Multi-Agent System for Geospatial
Data Conflation,” Journal of Geographic Information and
Decision Analysis, Vol. 6, No. 2, 2002, pp. 67-81.

[20] A. Grama, G. Karypis, V. Kumar and A Gupta, “An In-
troduction to Parallel Computing: Design and Analysis of
Algorithms,” 2nd Edition, Addison Wesley, Reading,
2003.

[21] W. R. Cockayne and M. Zyda, “Mobile Agents,” Man-
ning Publications Company, Greenwich, 1998.

[22] H. Samet, “The Design and Analysis of Spatial Data
Structures,” Addison-Wesley, Reading, 1989.

[23] S. Rahimi, “Using Api-Calculus for Formal Modeling of
SDIAgent: A Multi-Agent Distributed Geospatial Data
Integration,” Journal of Geographic Information and De-
cision Analysis, Vol. 7, No. 2, 2003, pp. 132-149.

[24] S. Rahimi, J. Bjursell, M. Paprzycki, M. Cobb and D. Ali,
“Performance Evaluation of SDIAGENT, a Multi-Agent
System for Distributed Fuzzy Geospatial Data Confla-
tion,” Information Sciences, Vol. 176, No. 9, 2006.
doi:10.1016/j.ins.2005.07.009

[25] S. Derisavi, P. Kemper and W. H. Sanders, “Symbolic
State-Space Exploration and Numerical Analysis of
State-Sharing Composed Models,” Linear Algebra and Its
Applications, Vol. 386, July 2004, pp. 137-166. doi:10.
1016/j.laa.2004.01.006

[26] S. Derisavi, H. Hermanns and W. H. Sanders, “Optimal
State-Space Lumping in Markov Chains,” Information
Processing Letters, Vol. 87, No. 6, 2003, pp. 309-315.
doi:10.1016/S0020-0190(03)00343-0

[27] P. Buchholz, “Efficient Computation of Equivalent and
Reduced Representations for Stochastic Automata,” In-
ternational Journal of Computer Systems Science & En-
gineering, Vol. 15, No. 2, March 2000, pp. 93-103.

