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ABSTRACT 

Pi-Calculus is a formal method for describing and analyzing the behavior of large distributed and concurrent systems. 
Pi-calculus offers a conceptual framework for describing and analyzing the concurrent systems whose configuration 
may change during the computation. With all the advantages that pi-calculus offers, it does not provide any methods for 
performance evaluation of the systems described by it; nevertheless performance is a crucial factor that needs to be 
considered in designing of a multi-process system. Currently, the available tools for pi-calculus are high level language 
tools that provide facilities for describing and analyzing systems but there is no practical tool on hand for pi-calculus 
based performance evaluation. In this paper, the performance evaluation is incorporated with pi-calculus by adding 
performance primitives and associating performance parameters with each action that takes place internally in a sys-
tem. By using such parameters, the designers can benchmark multi-process systems and compare the performance of 
different architectures against one another.  
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1. Introduction 

Pi-calculus, introduced by Robin Milner [1-5], stands out 
as one of the most powerful modeling tools for modeling 
and analyzing the behavior of concurrent computational 
systems such as: multi agent systems, grid computing sy- 
stems, and so forth. Pi-calculus defines the syntax of pro- 
cesses and actions and provides transition rules for ana-
lyzing and validating system functionalities. Mobility in 
pi-calculus is achieved by sending and receiving channel 
names through which the recipient can communicate with 
the sender or even with other processes, provided the 
channel is a free name. With the interaction between the 
processes changing, the configuration of the whole sys-
tem is also changed and mobility is attained. In the high-
er-order pi-calculus [5], computational entities (such as 
objects, process, or a code segment) can be transferred as 
well as the values and channel names. Because of its 
strong support for mobility, higher order pi-calculus is 
very flexible and powerful in modeling mobile agent sys- 
tems. As mentioned before, however, pi-calculus by it-
self does not provide any method for performance evalu-
ation of systems described by it; nevertheless, perfor-
mance is an important factor that needs to be considered 
in designing of a multi-process system. The traditional 

software development methods delay the performance 
test until after the implementation is completed. This 
approach has its obvious drawback as if the system is 
found not satisfying the desired performance require-
ments, then most of the implementation has to be redone. 
So evaluating the performance at the design stage has 
significant importance and can save much of the devel-
opers’ time, energy and cost. 

The previous works for integrating the process algebra 
with performance measures have either extended the syn- 
tax and semantics of the pi-calculus to account for per-
formance, or derived quantitative performance measures 
from the system transitions. 

In the former approach, a family of stochastic process 
algebra [6-14] has been introduced that extends the stan-
dard process algebra with timing or probability informa-
tion. In this algebra, every action has an associated dura-
tion which is assumed to be a random variable with an 
exponential distribution. A prefix then is in the form of 
(a,r).P, where a represents an action with a duration that 
is exponentially distributed with parameter r, known as 
the action rate. The memory-less property of the expo-
nential distribution conforms to the Markov property thus 
Markov chains [15-16] are applied to compute the prob-
ability of reaching each state. Consequently, the final 
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performance of the system can be calculated given the 
reward model. One potential problem with providing 
explicit action rates is that when the action rates are not 
known in advance, a different symbol is used for each 
action rate which leads to a heavy computational over- 
head in performance calculation. 

In the latter approach [17-18], labels of the transition 
systems are enhanced to carry additional information 
about the inference rule which was applied to the transi-
tion. So instead of giving an explicit action rate for each 
action, the probabilistic distributions are computed from 
the transition labels by associating a cost function to each 
transition. Then Markov chain is applied as before to cal- 
culate the final performance. 

In this paper we follow the latter approach, in that we 
leave the syntax of the pi-calculus intact and associate 
performance parameters with each inference rule. How-
ever, our approach differs from the previous works in 
two aspects: first, the cost functions proposed in the pre-
vious works are too abstract to be directly applied to real 
cases. Thus, in this paper a cost function is replaced by a 
concrete transition rate function that estimates the dura-
tion time for each transition rule. Second, our transition 
rates account for process mobility such as transferring 
objects or codes from one environment to another, con-
sidering the fact that the process mobility (such as mobile 
agents) is different from simple name exchange in its 
complexity and additional overhead [19].  

The rest of the paper is organized as follows: we start 
with some background knowledge on pi-calculus syntax 
and its transition rules. Then we review the continuous 
time Markov chains, their steady state analysis and re-
ward models. Finally, we introduce the transition rate 
function and establish our performance evaluation me-
thodology based on it. A conclusion section summaries 
the paper at the end and gives a prospective for future 
work in this area. 

2. Pi-Calculus 

Pi-calculus, an extension of the process algebra CCS, was 
introduced by Robin Milner in the late 80 s [1]. It provides 
a formal theory for modeling mobile systems and reason-
ing about their behaviors. In pi-calculus, two entities are 
specified, “names” and “processes” (or “agents”). “Name” 
is defined as a channel or a value that is transferred via a 
channel. We follow the naming conventions and the syn-
tax of [1] in which u, v, w, x, y, z range over names and A, 
B, C,   range over process (agent) identifiers. 

The syntax of an agent (or a process) in pi-calculus is 
defined as follows: 

 
     

1 2

1 2 1

:: 0 . ( ). . .

, , !

i ii I

n

P P yx P y x P y x P P P P

P P x P x y P A y y P

 




 




 

 0 is a null process and means that agent P does not 
do anything. 

 .i ii I
P

 : Agent P will behave as either one of 

.i iP  where i I , but not more than one, and the-
behaves like iP . If I   , then P behaves like 0. 

 Here i  denotes any actions that could take place 
in P (such as , ( )y x , and so on). 

 Here i  denotes any actions that could take place 
in P (such as , ( )y x , and so on). 

 .yx P : Agent P sends the free name x out along 
channel y and then behaves like P. 

 Name x is said to be free if it is not bound to agent P. 
In the same way, if x is bound to P (also say private 
to P), that means x can only be used inside by P.  

  .y x P : Agent P sends bound name x out along 
channel y and then behaves like P. 

  .y x P : Agent P receives name x along channel y 
and then behaves like P. 

 .P : Agent P performs the silent action   and 
then behaves like P. 

 1 2P P : Agent P has 1P  and 2P  executing in paral-
lel. 1P  and 2P  may behave independently or they 
may interact with each other. E.g. if 1 1 1.P P  and 

2 2 2.P P , then 1P  and 2P  will behave indepen-
dently. But, if 1 1( ).P y x P  and  2 2.P y x P  then 

1P  sends name x to 2P via channel y.  
 The sum 1 2P P  means either 1P  or 2P  is ex-

ecuted, but not both.  
  x P : is called restriction and means that agent P  

does not change except for that x in P becomes pri-
vate to P. That means any outside communication 
through channel x is prohibited.  

 A match operator [x = y] P means that if x = y, then 
the agent behaves like P, otherwise it behaves like 0. 

  1, , nA y y  is an agent identifier where 

1, , ny y  are free names occurring in P. 
 !P  is called replication and can be thought of as an 

infinite composition P P P . 

The semantics of the calculus is defined by a set of 
transition rules which establish the system evolution. A 
transition rule is in the form of 'P P , which 
means that process P evolves to 'P after performing ac-
tion  . Action   can be one of the following prefix-
es: 

   :: yx y x y x   

Pi-calculus transition rules are listed in Table 1. The 
TAU-ACT, INPUT-ACT, OUTPUT-ACT, SUM and 
MATCH rules correspond directly to the definition of the 
silent, input, and output actions and the sum and match 
operators. The side condition   w fn z P  in the 
INPUT-ACT rule ensures that a free occurrence of w 
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Table 1. Pi-calculus transition rules [1]. 

TAU-ACT:    
.P P




                    

OUTPUT-ACT: 
. xyxy P P




 

INPUT-ACT: 
( )

( ).
x w

x z P P
       w fn z P  

SUM: 
'

'

P P

P Q P






 
                         

MATCH: 
 

'

'

P P

x x P P






 

 

IDE: 
'{ / }

'( )

P y x P

A y P








 


   ( )

def

A x P  

PAR: 
'

'

P P

P Q P Q








       bn fn Q   

COM: 
 ' ' '

' '' | | { }

x zxyP P P P Q Q

P Q P Q y zP Q P Q





  


    

RES: 
   

'

'

P P

y P y P








   y n   

CLOSE: 
   

 
' '

' '( )

x w x wP P Q Q

P Q w P Q

 


 

OPEN: 
 

'

'( ) { }

xy

x w

P P

y P P w y




   '

y x

w fn y P




 

 
does not become bounded by the substitution{w/z}. The 
PAR rule states that the parallel composition does not 
inhibit computation; the side condition    bn fn Q   
  guarantees that a free name in Q does not turn into 

a bound name by the application of PAR. The COM rule 
shows the synchronous communication between two 
processes. The RES rule states that the process P can 
resume its computation under restriction. The side condi-
tion  y n   assures that no conflict will occur be-

tween the restricted name y and the names in P. In the 
CLOSE rule, P sends a bound name w to Q hence it ex-
tends the scope of w and makes it available to both P and 
Q. the Open rule transforms a free output action xy  to a 

bound output  x w  and eliminates the restriction (y). 

The side condition of the open rule certifies that the 

bound name w may not occur free in 'P . 
The higher-order pi-calculus is different from the 

first-order pi-calculus in its ability to model sending and 
receiving processes as well as the values and channel 
names. In higher-order pi-calculus,  x K  means send-
ing a name or a process K via channel x, and  x U  
means receiving a name or a process via channel x. Be- 
cause of its support for process mobility, we chose higher 
order pi-calculus as our target modeling language. The 
transition rules of the higher order pi-calculus are listed 

Table 2. Higher-order pi-calculus labeled transition system [5]. 

TAU:    
.P P




 SUM: 
'

'

P P

P Q P






 

     

PAR: 
'

'

P P

P Q P Q








 

MATCH: 
 

'

'

P P

x x P P






 

    

IDE: 
 
{ } '

'
U

P K U P

A K P


 


, if  

def

A U P                   

RES: 
     '

'

u

u

P P
x n u

x P x P





 

COM-NAME: 
 ' '

'' { }

x zxyP P Q Q

P Q P Q y z

 




 
  

y  is not a process list. 

COM-PROCESS:   
  ' '

( ) ( ' ')

y x K x KP P Q Q

P Q y P Q

 


 

  

K is a process vector. 

CLOSE-NAME: 
   

   
' '

''

x w x wP P Q Q

P Q w P Q



 



 

  

 w fn Q w is not a process 

OPEN: 
 

     ,

'
,   

'

y z K

x y z K

P P
x z x fn K y

x P P


 






 

 
 

in Table 2. These rules are basically the same as the 
transition rules of the first order pi-calculus with an addi-
tional rule for process communication (COM-PROCESS). 

3. Continuous Time Markov Chains 

Markov chains are the most commonly used mathemati-
cal tools for performance and reliability evaluation of 
dynamic systems. A Markov chain models a dynamic 
system with a set of states and a set of labeled transitions 
between the states. Each label shows the probability of a 
transitions (in case of the discrete-time Markov chain), or 
it shows the rate of a transitions (in case of the conti-
nuous Markov chain). In this section, we review some 
basic definitions and theorems from [16] of the stochastic 
processes and the continuous time Markov chain.  

Definition 3.1 (Stochastic Process): A stochastic 
process is defined as a family of random variables X   
 :tX t T  where each random variable tX  is indexed 
by parameter t T , which is usually called the time pa- 
rameter if  0, .T R    The set of all possible val-
ues of tX  (for each t T ) is known as the state space 
of the stochastic process. tX  is the state of a process at 
time t. If the index set T is a countable set, then X is a 
discrete-time stochastic process, otherwise it is a conti-
nuous-time process. 

Definition 3.2 (Continuous Time Markov Chain 
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(CTMC)): A stochastic process  :tX t T constitutes a 
CTMC if it satisfies the Markov property, namely that, 
given the present state, the future and the past states are 
independent. Formally, for an arbitrary 0Rit

  with 

0 1 10 ,n nt t t t n N        and 0s S    , the 
following relation holds  for the conditional probability 
mass function (pmf): 

 
 

1  1 0

1

1  1 0

1

, , ,
n n n

n n

t n t n t n t

t n t n

P X s X s X s X s

P X s X s









    

 


 

where  1 1n nt n t nP X s X s
    is the transition proba-

bility to travel from state nS to state 1nS   during the 

period of time  1,n nt t  . 

Definition 3.3 (Time-homogenous CTMC): A 
CTMC is called time-homogenous if the transition prob-

abilities  1 1n nt n t nP X s X s
    depend only on the  

time difference tn+1-tn, and not on the actual values of tn+1 
and tn. 

Definition 3.4 (State Sojourn Time): The sojourn 
time of a state is the time spent in that state before mov-
ing to another state. The sojourn time of time-homo- 
genous CTMC exhibits the memory less property. Since 
the exponential distribution is the only continuous distri- 
bution with this property, the random variables denoting 
the sojourn times, or holding times, must be exponen-
tially distributed.  

Definition 3.5 (Irreducible CTMC): A CTMC is 
called irreducible if every state iS  is reachable from 
every other state iS , that is:  

 ,, , , 0 : 0i j i j i jS S S S t p t      

Definition 3.6 (Instantaneous Transition Rates of 
CTMC): A transition rate  tijq , measures how quickly 
a process travels from state i to state j at time t. The tran-
sition rates are related to the conditional transition prob-
abilities as follows: 

 ,

0

,
,

0

,
lim ,

( )
( , )  1

lim ,

i j

t

i j
i j

ij
t i j

p t t t
i j

t
q t

p t t t
q i j

t

 

  

 


      


  (3.1) 

The instantaneous transition rates form the infinitesimal 

generator matrix ijQ q     

A CTMC can be mapped in to a directed graph, where 
the nodes represent states and the arcs represent transi-
tions between the states labeled by their transition rates. 

Definition 3.7 (The State Probability Vector): The 
state probability vector is a probability vector 

 1 2
, ,t t t

s s    , where 
i

t
s  is the probability that the  

process is in state iS  at time t. Given the initial state  

probability,  1 2

0 0, ,s s   , the state probability vector at 

time t is calculated as:  

 0 0, 0t P t t            (3.2) 

Because of the continuity of time, Equation (3.2) cannot 
be easily solved; instead the following differential equa-
tion is used [16] to calculate the state probability vector 
from the transition rates: 

     ij i

t
t t t

dt
j

i S

d
q






         (3.3) 

3.1. The Steady State Analysis 

For evaluating the performance of a dynamic system, it is 
usually desired to analyze the behavior of the system in a 
long period of execution. The long run dynamics of 
Markov chains can be studied by finding a steady state 
probability vector. 

Definition 3.8 (The Steady State Probability Vector): 
The state probability vector   is steady if it does not 
change over time. This means that further transitions do  
not affect the steady state probabilities, and :  

 
lim 0t

d t

dt


  , where  t is the steady state prob-

ability vector. Hence from Equation (3.3): 

    0ij i
i S

q t t j S


   , or in vector matrix form: 

0Q                  (3.4) 

Thus the steady state probability vector, if existing, can 
be uniquely determined by the solution of Equation (3.4), 

and the condition 1i
i S




 . 

The following theorem states the sufficient conditions 
for the existence of a unique steady-state probability 
vector. 

Theorem 3.1: a time-homegenous CTMC has a unique 
steady-state probability vector if it is irreducible and finite. 

A CTMC for which a unique steady state probability 
vector exists is called an ergodic CTMC. In an ergodic 
CTMC, each state is reachable from any other states 
through one or more steps. The steady-state probability 
vector   for an ergodic CTMC can be found directly 
by solving Equation (3.4) as illustrated by the following 
example: 

Figure 1 shows an ergodic CTMC containing five 
states: 1 2 3 4 5, , , ,S S S S S  when each state is reachable 
from other states. The value associated with each arc is 
the instantaneous transition rate between the states. The 
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Figure 1. A simple ergodic CTMC. 

 
infinitesimal generator matrix Q for this case would be: 

4 4 0 0 0

3 7 2 2 0

Q 0 1 2 1 0

0 3 3 8 2

0 0 0 7 7

 
  
  
 

 
  

 

Assuming that  1 2 3 4 5, , , ,x x x x x  , from Equation (3.4) 

we have: 

1 2

1 2 3 4

2 3 4

2 3 4 5

4 5

4 3 0

4 7 3 0

2 2 3 0

2 8 7 0

2 7 0

x x

x x x x

x x x

x x x x

x x

    
             
       

   

 

In addition, the summation of all  1 5ix i   equals to 

1, i.e., 

1 2 3 4 5 1x x x x x    
 

Solving the above liner system for 1 5, ,x x , the final 

value of   is: 

  = [7/43, 28/129, 56/129, 56/387, 16/387] 

Notice that each value in the vector   is greater than 
zero which verifies the irreducible property of the CTMC, 
however if the some values of  are equal to 0, two pos-
sibilities exist: some states are not reachable or there are 
some absorbing states. 

An absorbing state is a state in which no events can 
occur. Once a system reaches to an absorbing state, it 
cannot move to any other states. In other words, for an 
absorbing state, there are only incoming flows. Therefore, 
there are no outward transitions from this state. Generally, 
all absorbing states are failed states. A CTMC containing 
one or more absorbing states is called absorbing CTMC. 
Usually, if a system has more than one absorbing states, 
then all of the absorbing states can be merged into a sin-
gle state.  

The steady-state probability vector   for an absorb- 

ing CTMC is: 

0, if is not an absorbing state

1, otherwise
i

i

S



 


   (3.5) 

(For an absorbing CTMC, It is usually interesting to find 
the time to absorption. In other words, we usually want 
to know how long it takes for the system to step into a 
final absorbing state (i.e., the system fails to work) from 
its starting state. From [16], the mean time to absorption 
(MTTA) is defined as: 

 MTTA i
i N

L


             (3.6) 

where  iL t denotes the expected total time spent in 

state iS  during the interval [0, t ) 

   0N N NL Q               (3.7) 

NQ  is a N*N size matrix by restricting the infinitesimal  

generator matrix Q into non-absorbing states. As an ex-
ample, assume the CTMC in Figure 2 with an absorbing 
state S5. 

Here the state space   is partitioned into the set of 
absorbing states  5A S and non-absorbing states N   

 1 2 3 4, , , .S S S S  Thus the infinitesimal generator matrix 

Q for the non-absorbing states is reduced to: 

4 4 0 0

3 7 2 2

0 1 2 1

0 3 3 8

NQ

 
  
 
 

 

 

Suppose    0 1,0,0,0N  , which means the system 

starts at state 1S . Form Equation (3.7): 

   

4 4 0 0

3 7 2 2
0

0 1 2 1

0 3 3 8

N NL 

 
     
 
 

 

 

Assuming    1 2 3 4, , ,NL l l l l  , then: 

 
Figure 2. An absorbing CTMC. 



An Extension to Pi-Calculus for Performance Evaluation 

Copyright © 2011 SciRes.                                                                                 JSEA 

14

1 2

1 2 3 4

2 3 4

2 3 4

4 3 1

4 7 3 0

2 2 3 0

2 8 0

l l

l l l l

l l l

l l l

   
    
   
   

 

Solving the above linear system,
 

   1.0625, 1.08, 1.83, 0.5NL    and 

 MTTA 17 /16 13 /12 11/ 6 1/ 2 4.4725.i
i N

L


      
 
3.2. Markov Reward Models 

Markov reward models provide a framework to integrate 
the performance measures with Markov chains. Compu-
ting the steady-state probability vector is not sufficient 
for the performance evaluation of a Markov model. A 
weight needs to be assigned to each state or system tran-
sition to calculate the final performance. These weights, 
also known as rewards, are defined according to specific 
system requirements and could be time cost, system 
availability, reliability, fault tolerance, and so forth.  

Let the reward rate ir  be assigned to state iS , then a re-
ward ir t  is accrued during a sojourn time t in state iS . 
Before proceeding, some definitions are presented from [16]: 

Definition 3.9 Instantaneous Reward Rate  
Let   , 0X t t   denote a homogeneous finite-state 
CTMC with state space  . The instantaneous reward 
rate of CTMC at time t is defined as:  

   XZ t r t                (3.8) 

Based on this definition the accumulated reward in the 
finite time period [0, t] is: 

     
0 0

t t

XY t Z x dx r x dx           (3.9) 

Furthermore, the expected instantaneous reward rate and 
the expected accumulated reward are as follow: 

     X i i
i

E Z t E r t r t


              (3.10) 

     
0

t

X i i
i

E Y t E r x dx r L t


 
     

 
    (3.11) 

where  t  is the probability vector at time t, and 
 iL t denotes the expected total time spent in state iS  

during the interval [0, t ). When t   we have:  

     X i i
i

E Z E r r r


                 (3.12) 

     
0

X i i
i

E Y E r x dx r L




 
       

 
    (3.13) 

Especially, when the unique steady-state probability 
vector   of the CTMC exists, the expected instantane-

ous reward rate is the summation of each state reward 
multiplying its according steady-state probability, i.e.: 

     X i i i i
i i

E Z E r r r  
 

               (3.14) 

For an absorbing CTMC the whole system will even-
tually enter to an absorbing state. So for an absorbing 
CTMC, it is logical to compute the expected accumulated 
reward until absorption as follows: 

     
0

X x i i
i N

E Y E r x d r L




 
       

 
      (3.15) 

where N is the set of non-absorbing states. 

4. Performance Evaluation of Systems 
Modeled in Pi-Calculus 

As mentioned before, the most common way to evaluate 
the performance of a system modeled in pi-calculus is to 
transfer the model to a CTMC and run the steady state 
analysis followed by a reward model to calculate the ac-
cumulated reward and hence the performance of the sys-
tem. The major task in this regard is to assign appropriate 
transition rates to the Markov model. Previous literature 
suggests two different approaches. In the first approach, 
the transition rates are given explicitly for each action. 
This approach modifies the syntax of the pi-calculus and 
extends it to a stochastic pi-calculus [6-14]. The second 
approach [17-18] leaves the syntax of the calculus un- 
changed and calculates the transition rates based on an 
abstract cost function assigned to each action. Both of 
these approaches have their downsides, as previously 
stated in section1. In this paper, instead of a cost function, 
we introduce a more concrete transition rate function 
which estimates the transition rate for each reduction rule 
in pi-calculus. 

4.1. Transition Rate Functions  

In order to calculate the transition rates (qij) of a CTMC 
derived from a pi-calculus model, we define a transition 
rate function, TR, for each transition rule in higher order 
pi-calculus, listed in Table 2.  

Definition 4.1 (Transition Rate Function): Let   
be the set of transition rules from Table 2. The transition 
rate function is defined as : ,TR R  where ( )iTR    
1 / it  and it  is the duration of the transition initiated by 
the reduction rule 1 . 

In what follows the transition rate functions are de-
fined for the higher order pi-calculus reduction rules. 

 TAU:    
.P P




 

TR
1

=
. i

ii P P 


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Here i  is an internal action. Different internal actions 
may have different execution times, so i  represents 
the execution time for action i .  

 SUM: 
'

'

P P

P Q P






 

     

Similar to TAU, 
'

'

P P
TR

P Q P





 
 

  
 

  1
'i

i

TR P P


    

 PAR: 
'

'

P P

P Q P Q








 

 ' 1
'

'
i

i

P P
TR TR P P

P Q P Q




 
 

     
 

 MATCH: 
 

'

'

P P

x x P P






 

 

 
'

'

i

i

P P
TR

x x P P





 
    

 

  'iTR x x P P   = 1/(time(  x x ) + time 

   
1

'i

i

P P
size x




 


 

The time needed for the matching operation, depends on 
the size of the data to be compared, size(x). 

 COM-NAME: 
 

 

' '

' ' /

x zxyP P Q Q

P Q P Q y z

 




 
 

Assuming that the network connection is perfect and no 
errors occur during sending and receiving messages, we 
have: 

 

 

' '

' ' /

x zxyP P Q Q
TR

P Q P Q y z

   
  



 
 

 
   

1

* 1 *startup h

size y
t k t k

bw x


  


 

where  bw x is the bandwidth of channel x, i.e., the total 
amount of information that can be transmitted over 
channel x  in a given time. When a large number of 
communication channels are using the same network, 
they have to share the available bandwidth. startupt  is the 

startup time, the time required to handle a message at the  
sending node. This includes the time to prepare the 
message (adding header, trailer, and error correction 

information), the time to execute the routing algorithm, 
and the time to establish an interface between the local 
node and the router. This delay is incurred only once for 
a single message transfer [20]. k is the total hops that a 
message traverses (not counting the sender and the re-
ceiver nodes). ht , called Per-hop time, is the time cost 
at each network node. After a message leaves a node, it 
takes a finite amount of time to reach the next node in its 
path. The time taken by the header of a message to travel 
between two directly-connected nodes in the network is 
called the per-hop time. It is also known as node latency. 
The per-hop time is directly related to the latency within 
the routing switch for determining which output buffer 
or channel the message should be forwarded to  size y  
represents the size of the message y . In current parallel 
computers, the per-hop time, ht

 
, is quite small. For 

most parallel algorithms, it is less than    size y bw x  
even for small values of m and thus it can be ignored. 

As an example, suppose the sender begin to send 200K 
  size y  message to the recipient in Figure 3. The 

bandwidth of the network is 100 K/second and the sender  
startup time is 1.5 second. At each hop, the latency  ht  

is 1 second. So the total transfer time t is calculated as: 

 
   * 2 * 1.5startup h

size y
t t k t k

bw x
     


 

   200 100 3 1 1 3 12.5 second      

And its corresponding transition rate is 1/t = 1/14.5 = 
0.08 
- CLOSE-NAME: 

   

   
' '

' '

x w x wP P Q Q

P Q w P Q

 



 

 

   

  
' '

' '

x w x wP P Q Q
TR

P Q w P Q

   
  

 

 

   
   

1

* 1 *startup h

size y
t Check w k t k

bw x


   




 

 Check w  is the time needed to perform a name check 
to verify that w~  does not occur free in Q.  Check w  
is in the order of the number of free names in Q. 
- COM-PROCESS: 

 

 
' '

' '

vy x K x K
P P Q Q

P Q vy P Q

 


 


 

 

 
' '

' '

vy x K x K
P P Q Q

TR
P Q vy P Q

   
  

 


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1

( )
( ) *( 1) * ( )

( )startup h

size Kcode Kdata Kstate
Marshalling K t k t k Unmarsh K

bw x


 

    
   

 

 
When a process is moved to a remote computer, its 

code, data, and, sometimes, its state of execution are 
transferred so that it can resume its execution after mi-
gration [21]. ,Kcode  ,Kdata  Kstate  are the code, 
data and the state of process ,K respectively. 

 Marshalling K  is the time needed to convert K  into 
a standard format (byte-stream) before it is transmitted 
over the network.  Unmarshalling K  is the reverse 
process of converting the byte-stream to process K , 
after migration.  

With the transition rate functions defined above, a sys-
tem modeled in pi-calculus can be transformed into a 
CTMC and hence its performance measures are computed 
by following the standard numerical methods of CTMC, 
discussed in Section 3. Generally, the steps needed to be 
taken for CTMC-based performance evaluation of a sys-
tem described in pi-calculus or its extensions are summa-
rized as follow:  

1) Forming the state diagram of the system. To do so, 
we consider the initial pi-calculus specification to 
represent the initial state of the system. From there every 
reduction applied to the specification would produce a 
next possible state. Similarly the state transition diagram 
is generated by applying all possible reductions. 

2) Using the state transition rate functions to calculate 
the transition rates for each pair of states. We define the 
transition rate, qij, between state Si and Sj, based on the 
transition rate function: 

  , if is derived inmediately from

by applying the reduction rule 

,

  0,     otherwise

j

i

ij
ij

j

TR S

S

q
q i j

 


 






 (4.1) 

3) By associating each rate with its appropriate transi-
tion in the state diagram, the CTMC diagram would 

 

 

Figure 3. Message sending and receiving across the network 
[20]. 

be formed and the infinitesimal matrix is generated. Note 
that the transition rates are independent of the time (It 
only depends on the transition rule); hence the corres-
ponding CTMC is time-homogenous. To ensure that the 
resulting transition system conforms to the memory-less 
property, we assume that the sojourn time of a state is 

exponentially distributed with parameter 1 ij
j

q  [16]. 

That is: 

   1 it
iprob sojourn S t e           (4.2) 

where 1i ij
j

q    

4) If the resulting CTMC is an ergodic Markov Chain, 
then a unique steady state probability vector exists and is 
found by solving Equation (3.4). If a state based Markov 
reward model is used, then the final performance value  

of the system would be equal to: 
1

n

i i
i

r

 , where ir  and 

i  are the reward rate and the steady probability for 
state iS , respectively. 

5. Conclusion and Future Work 

Although the pi-calculus family of formal languages is 
vastly utilized, it does not provide any native theoretical 
mechanisms for performance evaluation of different de-
sign approaches for a particular system. This article pre-
sented a Markov-based performance evaluation metho-
dology for systems specified in pi-calculus. Such me-
thodology can be applied at the design stage to assess the 
performance of a system prior to its implementation and 
introduce a benchmark to compare different design sche- 
mes against one another.  

The previous works [22-24] on integrating perfor-
mance measures with process algebra have either intro-
duced additional computational overhead by extending 
the calculus to stochastic pi-calculus or proposed cost 
functions that are too abstract. We defined concrete tran-
sition rate functions with necessary features for real 
world applications. Bearing in mind that the performance 
of a multi-process system mainly relies on the network 
communication cost, our transition rate functions mostly 
revolves around the time performance measures for sen- 
ding and receiving processes. In addition, we also ac-
counted for the overhead of process mobility in our tran-
sition functions.  
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The future studies should mainly focus on the scalability 
of the methodology to large complex systems with huge 
number of states and transition rates. Many approaches are 
proposed in literature to address the problem of state ex-
plosion in Markov chains [25-27].The incorporation of 
these approaches with the performance evaluation of pi- 
calculus models remains as a future work. 
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