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ABSTRACT 

This work deals with the study of the reflection and transmission properties of plane periodic structures composed of N 
periods (1 ≤ N ≤ 3) in the MHz frequency range. The period consists of two bounded plates presenting a high acoustic 
impedance contrast one of which is in aluminum, the other is in polyethylene. The longitudinal and transversal attenua-
tions are considered in polyethylene and neglected in aluminum. We take into account the case of emerging holes in the 
polyethylene layer. Simulations are based on the stiffness matrix method (SMM) developed by Rokhlin. When attenua-
tion is considered in polyethylene, the reflection coefficients are different depending on the insonification side. The 
comparison of results without or with holes configurations are performed and showed that throughout holes allow the 
rapid observation of forbidden bands. The attenuation of the whole multilayer is also determined. 
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Attenuation 

1. Introduction 

Phononic crystals (PC) are n-dimensional periodic struc- 
tures (1  n  3) that are made of at least two materials 
with different mechanical properties. They are widely 
studied because of their very interesting properties such 
as band gaps in their dispersion curves. Many studies on 
perforated plate systems showed that the absorption per- 
formance depends upon the dimensions such as thickness, 
hole diameter and porosity, the depth of airspace and the 
number of the perforated plates [1-3]. Recently, the ab- 
sorption performances of perforated panel systems were 
estimated by analytical approach [4,5], equivalent elec- 
tro-acoustic circuit approach [6,7], and experimental ap- 
proach in the kHz frequency range [8]. The aim of this 
work is to study the emerging holes effect in a layer con- 
stituting a period of a one-dimensional plane periodic 
structure. In previous studies [9-11], the reflection and 
transmission properties of N periods (1 < N < 8) of an 
elementary bilayer stack was studied. Here, the effect of 
the porosity ratio is investigated in a prospective way on 
the transmission, reflection and attenuation spectra in the 
MHz frequency range. The absorption of the system is  

deduced and evaluated. Theoretically, the reflection co- 
efficient is obtained by using the stiffness matrix method 
(SMM) developed by Rokhlin, et al. [12], which is pro- 
ved to be stable numerically, whatever the frequency 
range and the incidence angle. Two cases of insonifica- 
tion have been studied and showed that if we consider 
attenuation in one of the constitutive plates, the refection 
coefficients are different depending on the insonification 
side while the transmission coefficients are identical 
[9,10]. Simulations are performed on porous plates is 
comparison with massive plates. In this view, we con- 
sider drilled holes into the thickness of the plate. In Sec- 
tion 2, the studied configuration is described and the 
theoretical basis is recalled. In Section 3, theoretical 
transmission, reflection, and attenuation spectra of two 
configurations are compared and discussed, without and 
with holes, depending on the insonification side. In the 
final section, the conclusion and perspectives of this 
work are presented. 

2. Periodic Isotropic Porous Structure 

The geometry of the problem (Figure 1(a)) consists in N 
periods of a stack composed of np isotropic plates. In this 
study, a period consists in the bonding, supposed to be  *Corresponding author. 
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perfect, of two plates presenting a high acoustic imped- 
ance contrast. The studied multilayer structure is consti- 
tuted of an elementary stack made of np = 2 isotropic 
plates (bilayer), and the number of periods varies from 1 
to 5. Such a periodic structure based on a bilayer ele- 
mentary stack has been investigated for Bragg backing 
purpose [13]. The acoustic impedance contrast between 
the two layers constituting the elementary stack was 
highlighted as a key parameter for the stopband flatness. 
In order to reach a high acoustic impedance contrast, we 
chose a metal/polymer elementary stack: aluminum and 
polyethylene plates. The acoustic impedance contrast 
was reinforced by considering drilled holes into the 
thickness of the polymer plated (Figure 1(b)). These 
holes allow to lower not only the effective density, but 
also the effective acoustic velocities in the drilled layer. 

2.1. Effect of Porosity on Elastic Isotropic  
Properties 

The effective elastic isotropic properties of composite 
materials, also known as effective medium theory (EMT), 
directly results from those of the constitutive materials 
and their spatial arrangement [14-17]. The effect of po- 
rosity ratio was widely investigated and various models 
were proposed and confronted [18-21]. This section is 
aimed at evaluating the effect of on the effective elastic 
properties. The porosities are considered as induced by 
randomly dispersed drilled holes along the thickness of a 
layer. In a first order approach, we consider the Voigt 
model of a perforated plate having mechanical properties 
X, filled by inclusions having mechanical properties Xi, 
where X stands for the bulk modulus K, shear modulus G 
and density , respectively. The effective mechanical 
properties Xeff = {Keff, Geff, eff}, are related to those of the 
matrix X = {K, G, } and those of the inclusion Xi = {Ki, 
Gi, i}: 

 ,eff f i i
i

X X V X X              (1) 

where Xi and Vf,i are the mechanical property and the 
volume fraction of inclusions, respectively. Considering 
the holes like inclusions, iX X  and Equation (1) 
becomes: 

,1eff f i f
i

1X X V X V
       
 

         (2) 

where Vf = Vholes/Vplate is the volume fraction of inclu- 
sions relatively to the full plate. 

The effective elastic constants Xeff = {Keff, Geff, eff} 
(Equation (2)) can be converted into Yeff = {Eeff, eff, eff} 
(Equation (3)), where Eeff is the effective Young modulus, 
eff is the effective Poisson’s ratio and eff is the effective 
density, respectively: 

 
(a) 

 
(b) 

Figure 1. Multilayer structure constituted of N periods of 
an elementary stack of np = 2 layers (a) without porosities 
and (b) with a controlled porosity ratio Vf. 
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The effective acoustic velocities Ceff = {CLeff, CTeff} are 
then deduced, where CLeff is the effective longitudinal 
phase velocity and CTeff is the effective transverse phase 
velocity. Using the effective elastic properties Yeff = {Eeff, 
eff, eff} obtained in Equation (3), the effective acoustic 
properties of perforated plates are obtained: 
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     (4) 

This approach, based on the Voigt model (Equation (2)) 
is compared to improved homogenization approaches, 
considering various assumptions, such as the homogeni- 
zation model developed by Gaunaurd, et al. [22,23], con- 
sidering the volume fraction Vf of spherical inclusions 
(G-sph). These expressions are very close to the upper 
bounds formulated by Hashin and Shtrikman for the iso- 
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tropic case (HS-iso) in 1963 [24] and for the transverse 
isotropic (orthotropic) case (HS-ort) in 1965 [25], respec- 
tively. In the case of air inclusions, the filling medium 
elastic constant can be neglected relatively to those of the 
matrix dense material (Table 1). These Hashin and Shtri- 
kman homogenization formulas [26] were widely studied 
and discussed for various configurations [27-30]. In a ge- 
neral way, depending on the homogenization model, the 
effective elastic constants of the material can be written 
as: 

 1

1

f

eff
f

V
X X

x V


 

 
             (5) 

where, x = {k, g, r} is either a constant or a function de- 
pending on the homogenization model, associated to the 
elastic properties of the matrix X = {K, G, }. For exam- 
ple, in the case of the Gaunaurd’s homogenization model 
(Table 1), one obtains   3 4k K  G , g = 2/3, and r 
= 0. These homogenization models are compared through 
the plots of the normalized elastic constants Keff/K (Fig- 
ure 2(a)) and Geff/G (Figure 2(b)) as a function of the 
void volume fraction Vf, in the case where the bulk to 
shear modulus ratio K/G = 8/3, corresponding to a Pois- 
son’s ratio  = 1/3. 

2.2. Orthotropic Composite Homogenization 

In this study, the porosity ratio is induced by drilled holes, 
considered as cylindrical inclusions of air. Therefore, the 
orthotropic composite homogenization is the adequate 
formulation in order to evaluate the acoustic properties of 
a perforated plate. As a result of Equations (3)-(5), the 
effective elastic constants Yeff = {Eeff, eff, eff} are, re- 
spectively: 
 
Table 1. Effective elastic properties according to the homo- 
genization models. 
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ρeff/ρ: normalized effective density, Keff/K: normalized effective bulk mo- 
dulus, Geff/G: normalized effective shear modulus, according to homogeni- 
zation models of Voigt; G-sph: Gaunaurd for spherical inclusions[22,23]; 
HS-iso: Hashin and Shtrikman for isotropic inclusions[24]; HS-ort: Hashin 
and Shtrikman for orthotropic inclusions [25]. 

 
(a) 

 
(b) 

Figure 2. Normalized effective elastic properties according 
to the homogenization model (Voigt; G-sph; HS-iso; HS- 
ort), as a function of the volume fraction of porosity Vf: (a) 
normalized effective bulk modulus Keff/K and (b) normal-
ized effective shear modulus Geff/G. 
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The normalized effective elastic constants  

 , ,eff eff eff effY Y E E      

(Equation (6)) are directly related to the bulk to shear 
modulus ratio K/G, which is itself a function of the Pois- 
son’s ratio . These normalized elastic constants Yeff/Y 
are plotted for  = 1/3 (Figure 3(a)), as a function of the 
void volume fraction Vf. This result (Equation (6)) is 
used as input data to deduce the effective acoustic ve- 
locities Ceff = {CLeff, CTeff} (Equation (4)) as a function of 
the volume fraction of vaccum Vf: 
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(a) 

 
(b) 

Figure 3. Effective elastic properties deduced from the HS- 
ort homogenization model: (a) normalized Young modulus, 
Poisson’s ratio and density (Eeff, eff, eff) and (b) normal-
ized effective logitudinal velocities (CLeff, CTeff). 
 

For a material having a Poisson’s ratio for  = 1/3, a 
fitting approach (Figure 3(b)) gives: 
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2.3. Wave Propagation through Multilayer  
Structure 

In this subsection, the theoretical transmission, reflection, 
and attenuation spectra of plane multilayer structures are 
reminded. Without viscoelasticity, there is no attenuation 
and the energy conservation lead to |T|2 + |R|2 = 1. The 
consideration of viscoelasticity in one of the constitutive 
layers conduct to the loss of reciprocity of the reflection 
coefficient from one side to the other. We denote as Rd 
the reflection coefficient when the structure is insonified 
directly (Figure 4(a)) and Rr the reflection coefficient 
when it is insonified reversely (Figure 4(b)). The trans- 
mission coefficient is denoted as T. As illustrated by 
Equation (9) and Figure 4, the completion of the energy 

 

(a) 

 

(b) 

Figure 4. Scheme of the non-reversal properties of a peri- 
odic viscoelastic structure (a) for a direct insonification, re- 
sulting in (Rd, T, Ad) and (b) for a reverse insonification, 
resulting in (Rr, T, Ar). 
 
conservation associated to the either direct (index d) or 
reverse (index r) insonification side results in an attenua-
tion coefficient Ad or Ar: 

22

, 1d r d rA T R   ,



1

          (9) 

stiffness matrix method. 
Those coefficients are obtained using the stiffness ma-

trix method (SMM) developed by Rokhlin, et al. [12]. It 
defines the 4 × 4 compliance matrix for period n: 

  11 12

21 22

n n
n

n n
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S S

 
 
 

          (10) 

where Sij are 2 × 2 submatrices. 
The submatrices Sij for N periods are deduced from the 

ones for (N  1) periods and those of an additional nth 

layer by the following recursive relationships: 
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    (11) 

The transmission coefficient (T) and the direct and re- 
verse reflection coefficients, Rd and Rr, are illustrated in 
Figures 4(a) and (b), respectively. They are expressed as 
functions of the (2, 2) elements of the submatrices Sij ex- 
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tracted from the global compliance matrix SN in the fol- 
lowing relationships: 
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and ρF and CF are the density and wave velocity in the 
surrounding fluid medium, i.e. water. 

3. Results 

In this section, the theoretical reflection and transmission 
spectra (Equation (12)) are plotted depending on the in- 
sonification side of the multilayer structure (Figure 4). 
The characteristics of each layer composing a period and 
those of the surrounding medium are summarized in Ta- 
ble 2. The calculated effective acoustic properties of the 
perforated polyethylene plate are calculated according to 
Equation (7). The considered porosity ratio was evalu- 
ated on the basis of randomly dispersed drilled holes in 
the thickness of the polyethylene plate. The drilling di- 
ameter was considered small compared to the plate 
thickness. The chosen volume fraction is Vf = 20%. 
Hereafter, these constitutive layers are denoted as AL, 
PE and PEp, for aluminum, polyethylene and perforated 
polyethylene, respectively. Hereafter, the transmission, 
reflection or attenuation coefficients exhibits extrema at 
multiples of the first thickness mode defined as 

 2Lf C  d , where fAL  800 kHz, fPE  295 kHz, 
and fPEp  245 kHz, for the AL, PE and PEp plates re- 
spectively. These characteristics are observed and dis- 
cussed (Figures 5-8) in the 0.75 - 3.25 MHz frequency  
 
Table 2. Acoustics properties of each layer composing a 
period [9]. 

Medium Notation ρ (kg/m3) CL (m/s) CT (m/s) Z (MRa) d (mm)

Aluminum AL 2800 6380 3100 17.9 4 

Polyethylene PE 940 2370 1200 2.23 4 

Water - 1000 1480 - 1.48 - 

Effective 
medium 

PEp 750 1960 1030 1.48 4 

ρ: density, CL: longitudinal wave velocity, CT: transverse wave velocity; Z = 
ρ.CL: longitudinal acoustic impedance, d: thickness. 

range. This frequency range corresponds to a 110% rela- 
tive bandwidth of a 2.25 MHz center frequency trans- 
ducer used for experimental purpose in preliminary works 
[9-11]. 

3.1. Viscoelasticity as Limiting Factor of the  
Periodicity Effect 

A calculation without losses would show an identical 
reflection spectrum, whatever the direction: direct or 
reverse due to their complex conjugate numerators [31]. 
In the present case, we take into account the longitudinal 
absorption in polyethylene, by considering the longitu- 
dinal wave velocity as a complex that can be expressed 
as:  0 1L L CC C j     , what is a common assumption 
for solid materials. This implies that attenuation is line- 
arly depending on the frequency as  0 0f f   . 
Thus, losses are identified by successive approximations 
and fitted around δC = 1% in polyethylene. The reflec- 
tion coefficients for the case of direct insonification 
AL/PE and AL/PEp are presented for N = 1, 2, 3 periods, 
in Figures 5(a) and (b), respectively. Lenoir. et al. [9] 
shown that, in the case of AL/PE configuration, the re- 
flection coefficients reach their final spectra since N  2 
periods. It is also the case for the AL/PEp configuration 
for which the reflection spectrum is flattened. Effectively,  
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Figure 5. Reflection spectra |Rd|
2 for a direct insonification, 

for N = 1, 2, 3 periods of (a) AL/PE and (b) AL/PEp peri- 
odic structures, respectively. 
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Figure 6. Reflection spectra |Rr|
2 for a reverse insonification, 

for N = 1, 2, 3 periods of (a) PE/AL and (b) PEp/AL peri-
odic structures, respectively. 
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Figure 7. (a) Transmission spectra |T|2 for AL/PEp or PEp/ 
AL periodic structures and (b) Attenuation spectra Ar for 
PEp/AL periodic structures, both for N = 1, 2, 3 periods. 
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Figure 8. (a) Porosity efficiency on the acoustic impedance 
ratio ηp (Vf) of AL/Pep relatively to AL/PE, and resulting 
values for Vf = 20, 40 and 60% (red crosses) and (b) poros-
ity ratio effect for Vf = 20, 40 and 60% on the reflection 
spectra |Rr|

2, for N = 3 periods on PEp/AL periodic struc-
tures. 
 
the presence of porosities in the polyethylene plates 
makes it behave like a slower propagation medium. 
Moreover, the wavelength in the porous PEp plate is 
smaller than the massive PE plate: L,PEp < L,PE. This 
results in an increase attenuation APEp in the PEp thick-
ness, which is expressed here as: 

  , ,

, ,

log 2C PEp PEp C PEp PEp
PEp

L PEp L PEp

d d
A

C

 



       (13) 

As demonstrated in Section 3, the effective velocity in 
the porous PEp layer decreases as a function of Vf (Equa- 
tions (7) and (8)). This can be summarized by: CL,PEp < 
CL,PE, causes APEp > APE. Moreover, due to porosities, 
losses in the porous PEp plate should also increase dras- 
tically: C,PEp > c,PE, also implying APEp > APE. Neverthe- 
less, losses were considered strictly constant all along the 
study: we chose to fix C,PEp = C,PE = 1%. The case of 
reverse insonification, i.e. PE/AL and PEp/AL structures, 
is illustrated in Figures 6(a) and (b), respectively. In the 
PEp/AL configuration, the undulations practically disap- 
pear and the amplitude of the reflection coefficients 
strongly decreases with frequency, as does the attenua- 
tion APE or APEp (Equation (13)), in the PE or PEp layers, 
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respectively. Moreover, the minimum of the reflection 
coefficients tends towards zero for the case PEp/AL. 
Concerning the transmission coefficient, as observed on 
Figure 7(a), in both direct case AL/PEp or reverse case 
PEp/AL, the forbidden bands gaps appear since N  2 
periods. As a comparison, those reported by Lenoir et al. 
[10] on AL/PE or PE/AL configurations, who observed 
the forbidden bands gaps in the crystal only from N  4 
periods. The attenuation coefficient is also plotted in the 
case of reverse insonification of porous PEp based struc- 
tures PEp/AL (Figure 7(b)). The amplitudes of the peaks 
increase according to the number of periods and fre- 
quency. The maxima are observed at the frequencies 1.6, 
2.4 and 3.2 MHz, in the bandwidth of the transducer. In 
addition, the attenuation coefficient exhibits maxima at 
multiples of the frequency shift  2Lf C  d , where 
fAL  800 kHz and fPEp  245 kHz, for the AL and PEp 
plates respectively. As previously, in the case of PE/AL 
stacks, there were more fluctuations of the attenuation 
coefficient, unlike PEp/AL stacks, where fluctuations 
disappear faster as the number of periods N increases. 

3.2. Acoustic Impedance Contrast 

As mentioned in Section 1, the acoustic impedance con- 
trast can be varied through the porosity ratio of the 
acoustically lighter layer. Thus, porosity efficiency p on 
the acoustic impedance ratio is a figure of merit defined as  

     eff AL PEeff AL PE p fz Z Z Z Z V   : 

  ,

,

9
1

4
1

f
PE L PE

p f
PEp L PEp f

VC
V

C V







 


       (14) 

The porosity efficiency approximated expression p 
(Equation (14) and Figure 8(a)) results form the HS-ort 
homogenization model (Equation (8)). The three volume 
fraction of porosity Vf = 20, 40, and 60%, corresponding 
to p = 1.5, 2.3 and 3.8 respectively (Figure 8(a)) illus- 
trates the effect of the acoustic impedance contrast (Fig- 
ure 8(b)). It can be observed that the minima are peri- 
odically spaced by a frequency shift fPEp  245, 210 and 
190 kHz, corresponding to the effective longitudinal ve- 
locities CL,PEp = 1960, 1720 and 1540 m/s associated to 
the porosity ratio Vf  = 20, 40, and 60%, respectively. 
Moreover, the amplitude of the oscillations of the reflec- 
tion spectra |Rr|

2 due to the PEp effective properties are 
increased, since they are directly related to the acoustic 
impedance contrast. 

4. Conclusion 

In this study, the influence of the defects with emerging 
holes was investigated. The effective properties resulting 
from the induced porosity ratio were deduced from the 

HS-ort homogenization model. The reflection and trans- 
mission properties of ultrasonic waves in the multilayer  
periodic structure, highlighted that the emerging holes 
facilitate the appearance of the forbidden band gaps. 
Moreover, in the AL/PEp configuration, for a minimum 
number of periods (N = 1 or 2), the reflection coefficients 
do not evolve in a considerable way. Finally, with the 
crystal without holes, it takes at least two periods (N = 2) 
to reach the final shape of the reflection spectrum. With 
AL/PEp elementary stack, only one period (N = 1) is 
required to converge. It was showed theoretically that 
throughout holes and related effective properties at cons- 
tant loss had a significant influence, not only in term of 
amplitude, but also in term of existence or position of 
minima of reflection. In the future work, we wish to in- 
vestigate further experiments in order to propose a model 
for one-dimensional periodic structures with drilled cali- 
brated porosity ratio drilled structures, in the perspective 
of ultrasoundproofing applications. 
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