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ABSTRACT 

The effect of radiation on the flow over a stretching plate of an optically thin gray, viscous and incompressible fluid is 
studied. The fluid viscosity is assumed to vary as an inverse linear function of the temperature. The partial differential 
equations (PDEs) and their boundary conditions, describing the problem under consideration, are dimensionalized and 
the numerical solution is obtained by using the finite volume discretization methodology which is suitable for fluid me- 
chanics applications. The numerical results for the velocity and temperature profiles are shown for different dimen- 
sionless parameters entering the problem under consideration, such as the temperature parameter, θr, the radiation pa- 
rameter, S, and the Prandtl number, Pr. The numerical results indicate a strong influence of these parameters on the 
non-dimensional velocity and temperature profiles in the boundary layer. 
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1. Introduction 

At high temperature, radiation has significant effects on 
the flow field. These effects have substantial applications 
in many industrial areas, such as electrical power genera- 
tion, solar power technology, and aerospace engineering. 

There has been extensive research on the effects of ra- 
diation on fluid flow. The free convection flow in the pre- 
sence of radiation has been previously studied by Ali et al. 
[1], Seddeek and Abdelmeguid [2], Raptis and Toki [3], 
and Malekzadeh et al. [4]. The magnetohydrodynamic 
(MHD) flow in the presence of radiation has been inves- 
tigated by Chamkha et al. [5], Raptis et al. [6], Duwairi [7], 
Ouaf [8], Abd-El Aziz [9], Pal and Mondal [10] and Shit 
and Haldar [11]. The flow through a porous medium in the 
presence of radiation has been studied by Murthy et al. 
[12], Al-Harbi [13], Al-Odat et al. [14], Raptis and Per- 
dikis [15], Duwairi [16] and Badruddin et al. [17], and 
Awad et al. [18]. Raptis [19], Datti et al. [20], Abel et al. 
[21], Siddheshwar and Mahabaleswar [22] and Khan [23] 
have investigated the effects of radiation on the viscoe- 
lastic flow. The above studies, however, are under the as- 
sumption that the fluid is considered to be a thick gray 
fluid. 

Bestman and Adiepong [24] studied the unsteady hy- 
dromagnetic free-convection flow with radiative heat 

transfer in a rotating thin gray fluid. The unsteady flow 
under the radiation effect of a thin gray fluid over a mov- 
ing vertical plate was studied by Raptis and Perdikis [25]. 
Rajesh [26] studied the radiation effects of a thin gray 
fluid on MHD free convective flow near a vertical plate 
with ramped wall temperature under small magnetic Rey- 
nolds number. Rajput and Kumar [27] investigated the ro- 
tation and radiation effects on MHD flow of a thin gray 
fluid past an impulsively started vertical plate with vari- 
able temperature. Raptis [28] studied the free convective 
oscillatory flow and mass transfer past a porous plate in 
the presence of radiation of an optically thin fluid.  

In the present study, we determine the effect of radia- 
tion on the flow field over a stretching plate of an optically 
thin gray fluid. We consider the fluid as viscous and in- 
compressible, with temperature dependent viscosity. 

The presented results are obtained after dimensionali- 
zation of the PDEs using a numerical approach. This ap- 
proach is based on the finite volume (FV) discretization 
scheme. The discretization was performed with the use of 
a specialized symbolic package created in Mathematics. 

2. Governing Equations 

We consider the flow of a viscous and incompressible 
fluid due to an isothermal stretching flat surface. The fluid 
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properties are assumed to be isotropic and constant, ex- 
cept for the fluid dynamic viscosity. The x-axis is taken 
along the plate and the y-axis normal to it, as depicted in 
Figure 1. The radiation heat flux in the x-direction is con- 
sidered negligible in comparison to that in the y-direction. 

The equations governing the problem are given by: 
Continuity equation 
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where ,u   are the components of the velocity in the x 
and y directions respectively,   is the fluid density,   
is the dynamic viscosity, T is the fluid temperature, k is 
the thermal conductivity, pc  is the specific heat of the 
fluid under constant pressure and  is the radiative heat 
flux. 

rq

The dynamic viscosity is assumed to be an inverse lin- 
ear function of temperature [29]. 
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  is a constant,   is the dynamic viscosity at infinity, 
  is the kinematic viscosity at infinity, rT  is a refer- 
ence temperature, T  is the temperature at infinity,   
is a constant which in general is positive for liquids and 
 

 

Figure 1. Physical model and co-ordinate system of the pro- 
blem. 

negative for gases. 
The boundary conditions are defined as follows: 
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where  is a constant and w  is the temperature of the 
stretching flat surface. In the case of an optically thin 
gray fluid the local radiant absorption is expressed as [8, 
25,28], 
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where a  is the absorption coefficient and    is the 
Stefan-Boltzman constant. We assume that the tempera- 
ture differences within the flow are sufficiently small 
such that  may be expressed as a linear function of 
the temperature. This is accomplished by expanding  
in a Taylor series about 

4T
4T

T  and neglecting higher-order 
terms, thus 
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Equation (8) through (9) takes the form: 
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Introducing the following transformations 
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where a prime denotes differentiation with respect to  . 
In view of (10) and (11), Equation (1) is satisfied identi- 
cally and Equations (2) and (3) reduce to 
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The boundary conditions (7) are transformed to 
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3. Numerical Solution 

The non-linear system of coupled differential Equations 
(12) and (13) subject to the boundary conditions (14) has 
been solved following a symbolic approach. For this pur- 
pose we have used the Computer Algebra System (CAS) 
Mathematica [30]. 

The analysis begins by obtaining the discretized form 
of the system of equations by using a symbolic package 
developed for that purpose [31]. To discretize the coupl- 
ed set of ordinary differential equations the finite volume 
method on a collocated grid is used [32]. Having obtain- 
ed the discretized system, we construct the system of al- 
gebraic equations. Then the system is solved algebraical- 
ly by Mathematica’s function Solve in respect to the grid 
values of the functions f  ,  . More details about the 
numerical approach can be found elsewhere [31]. Grid 
independence studies were performed to establish that 
the results are not grid dependent. 

4. Results and Discussion 

In the present study we numerically investigate the effect 
of radiation on the flow field over a stretching plate of an 
optically thin gray fluid, Figure 1. The fluid was consid- 
ered viscous and incompressible. The viscosity was tem- 
perature dependent as shown in Equation (4). The results 
are presented in figures for the non-dimensional veloc- 
ity, f  , and non-dimensional temperature,   in respect 
to the temperature parameter, r , radiation parameter, 

, and the Prantdl number, . S Pr
In Figure 2, the effect of the temperature parameter 

r   on the non-dimensional velocity,  : 10, 1, 0.1r    
f  , when  and 0.5Pr  5S   is presented. Velocity 

decreases with the increase of the temperature parameter. 
Especially for 0.1r   , the velocity is substantially 
reduced leading to a thinner boundary layer (Figure 2, 
line 3). 
 

 

Figure 2. Velocity profiles for different values of the tempe- 
rature parameter θr and for Pr = 0.5, S = 5. 

The effect of the radiation parameter S (S: 0.1, 1, 7) on 
the non-dimensional velocity f   is shown in Figure 3, 
when Pr = 0.5 and 1r   . The velocity increases with 
the increase of the radiation parameter. This effect is 
more pronounced when the radiation parameter has lar- 
ger values, as depicted in Figure 3. 

The effect of the radiation parameter S (S: 0.1, 1, 7) on 
the non-dimensional temperature   is shown in Figure 
4, when Pr = 0.5 and 1r   . When the radiation pa- 
rameter increases the temperature decreases, and this ef- 
fect is more pronounced as the radiation parameter in- 
creases. 

The effect of the Prandtl number, Pr, on the non-di- 
mensional temperature   is presented in Figure 5 for 
three different values of Prandtl (Pr: 0.5, 0.7, 1), when 

1r    and S = 1. The increase of Prandtl number leads 
to a decrease of the temperature in the boundary layer. 

Finally, Figures 6 and 7 show the effect of the tem- 
perature parameter r  on the non-dimensional velocity 
f   and temperature   when Pr = 0.7, S = 1 and for 

 

 

Figure 3. Velocity profiles for different values of the radia- 
tion parameter S and for Pr = 0.5, θr = −1. 
 

 

Figure 4. Temperature profiles for different values of the 
radiation parameter S and for Pr = 0.5, θr = −1. 
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Figure 5. Temperature profiles for different values of the 
Prandtl number Pr and for θr = −1 and S = 1. 
 

 

Figure 6. Velocity profiles for different values of the tem- 
perature parameter θr and for Pr = 0.7, S = 1. 
 

 

Figure 7. Temperature profiles for different values of the 
temperature parameter θr and for Pr = 0.7, S = 1. 
 
three different values of the temperature parameter. Tem- 
perature increases with the increase of the temperature 
parameter, r  ( r : –2, –0.05, –0.01). However, the ef- 
fect of the temperature parameter is more pronounced on 
the non-dimensional velocity f   and it decreases as the 

parameter r  increases, Figure 6. 
The numerical results of this study could bring new 

insight on the effect of thermal radiation on the flow past 
a stretching plate with temperature dependent viscosity. 
These results could be utilized in many industrial and 
practical areas, including glass and semiconductor proc- 
essing, atmospheric flows with application to global cli- 
mate change, electrical power generation, solar power 
technology, and aerospace engineering. 

5. Conclusion 

The effects of thermal radiation on the flow and tempe- 
rature fields over a stretching plate of an optically thin 
gray fluid were numerical investigated. The fluid was 
considered incompressible with temperature dependent 
viscosity. The main findings of this study could be sum- 
marized in the following: (1) Increase of the radiation pa- 
rameter increases the velocity profile but decreases the 
temperature profiles. (2) On the other hand, increase of 
the temperature parameter decreases the velocity profile 
and increases the temperature profile in the boundary la- 
yer. (3) Increase of Prandtl number decreases the tempe- 
rature profile in the boundary layer. 
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