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ABSTRACT 

The n-ary subdivision schemes contrast favorably with their binary analogues because they are capable to produce limit 
functions with the same (or higher) smoothness but smaller support. We present an algorithm to generate the 4-point 
n-ary non-stationary scheme for trigonometric, hyperbolic and polynomial case with the parameter for describing curves. 
The performance, analysis and comparison of the 4-point ternary scheme are also presented. 
 
Keywords: Interpolation; Non-Stationary; Univariate Ternary Refinement; Continuity; Conic Section 

1. Introduction 

Subdivision is a method for making smooth curves/sur- 
faces, which first emerged an addition of splines to arbi- 
trary topological control nets. Effectiveness of subdivi- 
sion algorithms, their flexibility and ease make them ap- 
propriate for many relative computer graphics applica- 
tions. The schemes generating curves are considered to 
be the basic tools for the design of schemes generating 
surfaces. 

A general form of univariate n-ary subdivision scheme  

S which maps a control polygon  k k
i i

f f





 to a re- 

fined polygon  1 1k k
i i

f f 





 is defined by 

1 , 0,1, 2, ,k k
ni s nj s i jj

f a f S
  
    1,n   

where the set  ia a i   of coefficients is called 
mask of the subdivision scheme. The set of coefficients 

 :k k
ia a i 

k
ka

 determines the subdivision rule at level 
 and is termed as the mask at -th level. If the mask 
 is independent of , namely if , the 

subdivision scheme is called stationary otherwise it is 
called non-stationary. Sometimes, in computer graphics 
and geometric modeling, it is required to have schemes 
to construct circular parts or parts of conics. It seems that 
(linear) stationary schemes cannot generate conics and 
non-stationary schemes have such a capability to gener- 
ate trigonometric polynomials, trigonometric splines and, 
in particular, circles, ellipses and so on. Such schemes  

k
k ,ka a k 

are useful in computer graphics and geometric modeling. 
Successful efforts have been made to establish approxi- 
mating and interpolating non-stationary schemes which 
can provide smooth curves and reproduce circle or some 
trigonometric curves. 

The theoretical bases regarding non-stationary schemes 
are derived from the analysis of stationary schemes. Jena 
et al. [1] worked on 4-point binary non-stationary subdi- 
vision scheme for curve interpolation. Yoon [2] pre- 
sented the analysis of binary non-stationary interpolating 
scheme based on exponential polynomials. Beccari et al. 
[3] worked on 4-point binary non-stationary uniform ten- 
sion controlled interpolating scheme reproducing conics. 
Daniel and Shunmugaraj [4] presented 4-point ternary 
non-stationary interpolating subdivision scheme. In this 
paper, we present an algorithm to construct 4-point n-ary 
scheme. For simplicity, we have discussed and analyzed 
4-point ternary scheme. 

This paper is organized as follows. Section 2 presents 
the construction of 4-point n-ary non-stationary interpo- 
lating subdivision schemes. As an example, 4-point ter- 
nary scheme is presented in this section. Section 3 pro- 
vides the smoothness of proposed schemes. In the last 
section conclusion and visual performance of proposed 
schemes are presented. 

2. Construction of 4-Point n-Ary Scheme 

Here we suggest the following algorithm to construct the 
non-stationary n-ary 4-point  2,3,4, ,n    interpo- 
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lating schemes for trigonometric, hyperbolic and poly- 
nomial cases. 
 Choose interpolating function  

  0 1 2 3cos sin ,f x a a x a x a x   
  0 1 2 3cosh sinh

 or  
,f x a a x a x a   


x  or  

 2 3
0 1 2 3 .f x a a x a x a x     

 Then define the points  k
ip i  at level k  and 

get system of linear equations by interpolating. 
 The data k

i hp   corresponding to the abscissas  

, 1,0,1,
k

ht
x h

n
   2.  

 Solve the system of linear equations by any well 
known method to get the values of unknowns. 

 Evaluate the interpolating function  f x  at the grid  

points 
 

1

1
: 2,3, , .  

k

r t
r n

n 


 

 Define the new points 1 .  k k
ni ip p 

 Define the new points  

 1
1

1
, 1, 2,3, ,k

ni j k

r t
p f j r r

n

 

 
    

 
 ,n  as a lin- 

ear combination of four consecutive points 1
k
ip  , , 

 and  

k
ip

1
k
ip  2 .k

ip 

Ternary 4-Point Interpolating Scheme 

Given a set of control points  at level , using 
above algorithm, we define a unified ternary 4-point in- 
terpolating scheme that makes a new set of control points 

 by the rule: 

kP k

1kp 

1
3

1
3 1 1 1 2 3 1 4 2

1
3 2 4 1 3 2 1 1 2

,

,

,

k k
i i

k k k k k k k k k
i i i i i

k k k k k k k k k
i i i i

p p

p p p p p

p p p p p

   

   




  


  

 
    
    

where 

  1 12 4 1 ,k k
k 5      

  3
2 1 14 1 ( 16 1)k k

k k 5 ,        
 

  4 3
3 1 1 14 8 8 2 1 ,k k

k k k 5         
 

  4 14 1k k
k 5 ,      

with 

  22
5 1 16 4 1 2 1 ,k

k k       

where the parameter 1k   can easily be updated at each 
subdivision step through following equation 

1 0

1
, 0,1, 2, , 1,

2
k

k k


 

 .       (2.2) 

Therefore, given parameter ,k  the subdivision rules 
are achieved by first computing 1k   using Equation 
(2.2) and then by substituting 1k   into (2.1). As a result, 
depending on the choice of the parameter, we get differ- 
ent schemes. For   1 1

1 cos h 3k kt  

i





3 ,costk  and 1 
in (2.1), we can generate following schemes exact for tri- 
gonometric (2.3), hyperbolic (2.4) and polynomial (2.5) 
respectively. 

1
3

1
3 1 1 1 2 3 1 4 2

1
3 2 4 1 3 2 1 1 2

,

,

,

k k
i i

k k k k k k k k k
i i i i i

k k k k k k k k k
i i i i

p p

p p p p p

p p p p p

   

   




  


  

 

    

    

  (2.3) 

where 

i





   (2.1) 

    1
1 2sin 3 3sin 2 3 ,k k kt t k      

 

        1 1
2 2sin 2 3 sin 3 6sin 2 3 3sin 3 ,k k k k kt t t t k       

        1 1
3 3sin 2 3 sin 2 3 2sin 3 6sin 3 ,k k k k kt t t t k       

 

    1
4 sin 3 3sin 3 ,k k kt t k     

    6sin 3 cos 3 1k k kt t   . 

1
3

1
3 1 1 1 2 3 1 4 2

1
3 2 4 1 3 2 1 1 2

,

,

,

k k
i i

k k k k k k k k k
i i i i i

k k k k k k k k k
i i i i

p p

p p p p p

p p p p p

   

   




  


  

 

    

    

k k

i





    (2.4) 

where 1 1 ,   2 2 ,k k   3 3 ,k k   4 4 ,kk   after 
replacing sin and cos functions by sinh and cosh func- 
tions in 1 2, ,k

3 4, .k k k     

1
3

1
3 1 1 1 2

1
3 2 1 1 2

,

5 60 30 4
,

81 81 81 81

4 30 60 5
,

81 81 81 81

k k
i i

k k k k
i i i i

k k k k
i i i i

p p

p p p p p

p p p p




  


  


 

     


     

k
i

k
ip





   (2.5) 

Remark 2.1. The scheme (2.3) and (2.4) can be consid- 
ered as a non-stationary counterpart of the DD stationary 
scheme [5] i.e. scheme (2.5) because, the masks of the 
schemes (2.3) and (2.4) converge to the mask of scheme 
(2.5): 
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1 1 2 2 3 3

4 4

5 60
, ,

81 81 81

4
, .s

81
a

k k k k k k

k k k

     

 

      

   

30
,

 

3. Smoothness Analysis 

The subdivision scheme given in the previous subsection,  

the coefficients  
1,2,3,4

k
i i



 in (2.1) may vary from one  

refinement level to another. Hence the scheme is non- 
stationary and its smoothness properties can be derived 
by asymptotical equivalence [6] with the corresponding 
stationary scheme. Two subdivision schemes  and 

 are said asymptotically equivalent if  
ka

S

aS

.k ak a
S S

     In particular, our analysis is based  

on the generalization of Theorem 8 in [6] to ternary sub-
division. 

Since our schemes (2.3) and (2.4) are non-stationary 
then we can use the theory of asymptotic equivalence and 
generating function formalism [7] to investigate the 
smoothness of the schemes. First, we need some esti-
mates of k

i  and  which are specified 
in subsequent lemmas. 

, 1,2,3,4,k
i i 

Lemma 3.1. 
The mask of scheme (2.3) satisfies following inequali-

ties for sufficiently large . k

1) 1

1 2
,

3 3
k    

2) 2

4
1,

3
k    

3) 3

10 4
,

27 3
k    

4) 4

1 1
.

6 3
k    

Proof. We make use the inequalities 
sin

sin

a a

b b
  for 

0
2

a b


   ,  csc csct t   f o r  0
2

t 
    and 

sin
cos

x
x

x
  (or  

1
csc x

cosx x
 )  for 0

2
x


   to  

prove the above inequalities: 
Since 

     
   
 

   
   
   

1 1

1 2

1

2 2

2sin 3 6sin 3 cos 3

12sin 3 sin 2 3

sin 3 sin 3 cos 3
.

6sin 3 sin 2 3 2sin 3 sin 2 3

k k k

k

k k

k k

k k k k

t t t

t t

t t

t t t t


 








 
 

kt
 

Then for  k 

 
 

 1 1

1 2

1 3cos 3 1 3cos 3 1

6 36sin 2 3

k k

k

k

t t

t


  
  




 
and also for , we get k 

     
   
  
 

1

1 2

2 1

2

2sin 3 6sin 3 cos 3

12sin 3 sin 2 3

2 2 6sin 2 3 2
.

312sin 2 3

k k

k

k k

k

k

t t t

t t

t

t






 


 

 
 

 

k

 

This proves 1). The proofs of 2), 3) and 4) are similar. 
Lemma 3.2. 
The coefficients in the scheme (2.4) satisfy following 

inequalities when subdivision level . k 

1) 1

1
0,

3
k  

 

2) 2

7 7
,

6 6
k  

 

3) 3

4 4
,

3 3
k  

 

4) 4

1
0.

6
k  

 
Proof. We make use of following inequality of [8] 

21 1 cos
cos , , .

cosh 2 2 2 2

x x
x

x

           
     

This claim holds true if the function  f x  is non- 
negative on  0, 2 . 

Some other inequalities for 0
2

x


   are 

1

2
sinh sinh ,sinh 0,

3 3k k

x x
x

       
   

 

1 1
, 0

cosh sinh 1 cosh

x

x x x
. 


 

Since 

   
    

 
    

1

1

2sinh 3 3sinh 2 3

6sinh 3 cosh 3 1

2sinh 3
.

6sinh 3 cosh 3 1

k k

k

k k

k

k k

t t

t t

t

t t


 








 

Then for  k 

  
 
  

 
  

1

2

1 cos 31

33 cosh 3 1 3 1 cos 3

1 cos 3 1
,

33 2sin 2 3

k

k

k k

k

k

t

t t

t

t




   
 


   


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and similarly for  k 

   
    

 
    

1

1

2sinh 3 3sinh 2 3

6sinh 3 cosh 3 1

3sinh 3
0.

6sinh 3 cosh 3 1

k k

k

k k

k

k k

t t

t t

t

t t


 









 

This proves 1). The proofs of 2), 3) and 4) are similar. 
The following two Lemmas are the consequence of 

previous Lemmas. 
Lemma 3.3. 

1) 1

5 59
,

81 81
k    

   

2) 2

60 21
,

81 81
k  

 

3) 3

30 78
,

81 81
k  

 

4) 4

4 31
.

81 81
k    

   

Proof. Since 1

5

81
k    as  and by 1) of  k 

Lemma 3.1, we have 1). Similarly, we get 2), 3) and 4). 
Lemma 3.4. 

1) 1

5 5
,

81 81
k     

   

2) 2

60 23
,

81 54
k  

 

3) 3

30 78
,

81 81
k  

 

4) 4

4 4
.

81 81
k    

   

Proof. Since 1

5

81
k    as  and by 1) of  k 

Lemma 3.2, we have 1). Similarly, we get 2), 3) and 4). 
Lemma 3.5. 
The Laurent polynomial  k z  of the  level of 

the scheme 

thk
kS


 defined by (2.1) can be written as  

   
21

3
k kz z 

z a z
 

  
 

 2

1

 where 

    
   

 

5 4 3
4 1 4 1 3 4

1 2 3 4 3 4

1 2 3
1 1 4 4

3 3 3 3

3 3

3 3 3 .

k k k k k k k

k k k k k k

k k k k

a z z z z z

z

z z z

     

     

     

     

     

   
 

Proof. By (2.1), we have 

  5 4 2 1
4 1 3 2 2

2 4 5
3 1 4

1

.

k k k k k k

k k k

z z z z z z

z z z

     
  



  

     

  
 

It can be easily verified that  

   
21

.
3

k kz z
z a

  
  
 

z  

Lemma 3.6. 
The stationary scheme  aS  defined by (2.5) associ- 

ated with the symbol 

  


5 4 2 1

2 4 5

1
4 5 30 60 81 60

81

30 5 4

a z z z z z z

z z z

1

  

      

  
 

is  
1.C

Proof. To prove that  aS  is  consider 1,C

   
 

 

22

3 2 1 2 3

3

1

1
4 3 6 17 6 3 4 .

27

a z
b z

z z

z z z z z z  


 

       
 

Since 

 3 3 1 3max , ,

25 9 9
max , , 1

27 27 27

b j jj j j
S b b     



   
 

     2jb

 
then by [[7], corollary 4.11] the scheme  aS  is  1.C

Lemma 3.7. 
The scheme kS


 defined by (2.1) is  

1.C
Proof. Since  aS  is  by Lemma 3.6, in view of 

[[6], Theorem 8(a)], it is sufficient to show that 

1C

0

3 k
k

a
k

S S






  
 

where 

3 3 3 1 3 1 3 2 3 2

1 4 3 4

1 4 1 2 3 4

max , ,

5 4 26
max 3 3 3 3 ,

27 27 27

1 2
2 3 3 3 3 3 3 .

27 27

k a

k k k
j j j j j j

j j j

k k k k

k k k k k k

S S

a a a



  

   
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Figure 1. Dotted lines indicate the initial closed and open 
polygons. Solid continuous curves are generated by pro- 
posed ternary interpolating scheme for trigonometric case. 
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