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ABSTRACT 

Bone morphogenetic proteins (BMPs) are members of 
the TGF-β superfamily and have diverse functions 
during development and organogenesis. BMPs play a 
major role in skeletal development and bone forma- 
tion, and disruptions in BMP signaling cause a vari- 
ety of skeletal and extraskeletal anomalies. Several 
knockout models have provided insight into the mecha- 
nisms responsible for these phenotypes. Proper bone 
formation requires the differentiation of osteoblasts 
from mesenchymal stem cell (MSC) precursors, a 
process mediated in part by BMP signaling. Multiple 
BMPs, including BMP2, BMP6, BMP7 and BMP9, 
promote osteoblastic differentiation of MSCs both in 
vitro and in vivo. BMP9 is one of the most osteogenic 
BMPs, yet it is a poorly characterized member of the 
BMP family. Several studies demonstrate that the 
mechanisms controlling BMP9-mediated osteogenesis 
differ from other osteogenic BMPs, but little is known 
about these specific mechanisms. Several pathways 
critical to BMP9-mediated osteogenesis are also im- 
portant in the differentiation of other cell lineages, in- 
cluding adipocytes and chondrocytes. BMP9 has also 
demonstrated translational promise in spinal fusion 
and bone fracture repair. This review will summarize 
our current knowledge of BMP-mediated osteogenesis, 
with a focus on BMP9, by presenting recently com- 

pleted work which may help us to further elucidate 
these pathways. 
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1. INTRODUCTION 

Bone morphogenetic proteins (BMPs) are members of 
the transforming group factor-beta (TGF-β) superfamily. 
This group of homologous signaling proteins has a di- 
verse number of functions and plays an important role in 
embryogenesis, organogenesis, cell proliferation and stem 
cell differentiation [1-5]. For example, BMP7 is involved 
in proper kidney, eye, and limb development; BMPs 4, 7 
and 15 are important for proper reproductive tissue de- 
velopment; BMPs 2, 3 and 7 contribute to cartilage re- 
generation; and BMPs 12 and 13 are required for normal 
tendon healing [6-12]. BMPs also play a major role in 
skeletal development, bone formation and mesenchymal 
stem cell (MSC) differentiation [13,14]. 

MSCs are adult stem cells found in the bone marrow 
and like all other types of stem cells. They have the unique 
ability to self-renew and to differentiate into various meso- 
dermal cell lineages, osteoblastic, chondrocytic, myocytic 
and adipocytic, as well as non-mesodermal tissues, such 
as cardiac muscle and skin [11,13,15-18] (Figure 1). The 
differentiation of these multipotent stem cells towards an 
osteoblastic fate depends on numerous signaling path- 
ways, including BMP transduction. The osteoinductive  
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Figure 1. Schematic representation of lineage-specific differentiation of mesenchymal stem cells (MSCs). MSCs are pluripotent 
progenitor cells with the ability to differentiate along multiple lineages, including osteogenic, chondrogenic, adipogenic and myo-
genic lineages. Differentiation of MSCs along these unique lineages is an exquisitely coordinated process with critical regulators 
responsible for each lineage. Regulators and indicators of lineage-specific differentiation are depicted. 

 
ability of BMPs was discovered when it was found that 
demineralized bone could induce de novo bone formation 
and that BMPs were responsible for this observed osteo- 
genesis [19,20]. Disruptions in BMP signaling have sub- 
sequently been shown to result in a variety of skeletal 
and extraskeletal anomalies [21,22]. At least 15 different 
BMPs have been identified in humans to date. 

BMP9, also known as growth differentiation factor 2 
or GDF-2, is a relatively poorly characterized member of 
the BMP family first isolated from fetal mouse liver 
cDNA libraries. BMP9 is expressed at high levels within 
the developing mouse liver and acts to stimulate hepato- 
cyte proliferation [23]. It also acts to induce and maintain 
the cholinergic phenotype within basal forebrain neurons, 
inhibit hepatic glucose production, inhibit enzymes of li- 
pid metabolism, maintain metabolic homeostasis of iron 
and synergize in the generation of hematopoietic proge- 
nitor cells [24-26]. 

BMP9 is among the most osteogenic BMPs and pro- 
motes the osteoblastic differentiation of mesenchymal 
stem cells (MSCs) both in vitro and in vivo [11,13,27-30]. 
We have demonstrated that BMP9 regulates a distinct set 
of downstream targets likely playing a role in osteoin- 
duction, and these targets will be discussed later in this 
review [11,27-30]. While BMP9 has been demonstrated 
as one of the most osteogenic BMPs, little is known about 
the detailed mechanisms responsible for its functions. 
This review aims to summarize our current knowledge of 
BMP9-mediated osteogenesis, which may help us to fur- 
ther elucidate these pathways. 

2. AXIAL SKELETAL DEVELOPMENT 
AND MSCS 

Mesenchymal stem cells undergo several stages of matu- 
ration during their proliferation and differentiation along 
the osteoblastic lineage. MSCs initially form preosteoblasts, 
which proliferate near the surface of bone and secrete 
alkaline phosphatase, an early marker of osteogenesis 
[11,31-33]. Preosteoblasts further mature into osteoblasts, 
which are involved in initial extracellular matrix matura- 
tion and mineralization. Osteoblasts ultimately form os- 
teocytes, which are mature, terminally differentiated cells 
embedded in an extracellular matrix responsible for me- 
chanical support and regulating the mineralization of bone 
[34,35]. These stages of osteogenic proliferation and dif- 
ferentiation are characterized by the expression of vari- 
ous markers, including cell-cycle associated genes during 
the proliferative phase, the early osteoblastic marker al- 
kaline phosphatase and late markers osteocalcin and os- 
teopontin [36]. 

From MSCs, bone can form in one of two ways, either 
by endochondral or intramembranous ossification [36]. 
The majority of bones in the human skeleton are formed 
via endochondral ossification, whereby MSCs first diffe- 
rentiate into chondrocytes and secrete a cartilaginous ma- 
trix. This matrix subsequently undergoes osteoblast-fa- 
cilitated ossification to form bone [37-39]. Flat bones, 
which mainly comprise the axial skeleton, are formed by 
intramembranous ossification and do not have a carti- 
laginous precursor scaffold. Instead, MSCs differentiate 
directly into osteoblasts, which secrete an osteoid matrix  
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to form bone [37,38]. The bone formed by both of these 
processes is a highly vascularized tissue which under- 
goes constant remodeling, necessitating a balance between 
hematopoietic-derived osteoclasts, which break down bone, 
and mesenchymal-derived osteoblasts, which rebuild bone 
[36,40,41]. Thus, bone maintenance and remodeling de- 
pends, in part, on the proper formation of osteoblasts from 
MSCs, a highly regulated and complex process in which 
the BMP signaling pathway plays a critical role. 

3. BMP KNOCKOUT PHENOTYPES 

The BMP signaling pathway plays many crucial roles in 
bone formation and is involved in multiple stages of the 
developmental process, including osteoblast differentia- 
tion, mesoderm patterning, bone formation, and cranio- 
facial and limb development. Knockout of specific BMPs 
or mediators of BMP signal transduction often leads to 
phenotypes which demonstrate the critical importance of 
BMP signaling in skeletal development. 

BMP signaling is required for the differentiation of mul- 
tipotent mesenchymal cells into osteochondroprogenitor 
cells, which are capable of forming both chondrocytes 
and osteoblasts. BMP signal transduction is also neces- 
sary for the proper functioning of differentiated osteoblasts, 
enabling them to appropriately secrete the matrix upon 
which bone formation occurs [31]. This is especially im- 
portant during development, when the axial skeleton forms 
from cellular condensations of mesenchymal cells, which 
proceed to form bone via the previously described proc- 
ess of endochondral ossification. The first genetic evi- 
dence that BMPs have a role in bone morphogenesis was 
natural loss-of-function mutations of BMP5, resulting in 
short ear phenotype and brachypodism [22,42]. Subse- 
quent studies have supported the crucial role of BMP sig- 
naling in both cartilage and bone formation during en- 
dochondral ossification [43-46]. 

To investigate the functions of BMP2 and BMP4 in 
the growth plate, chondrocyte-specific BMP2 and BMP4 
conditional knockout mice and BMP2/BMP4 conditional 
double knockout mice were developed [47]. Deletion of 
BMP2 and BMP4 or BMP2 alone resulted in a severe 
chondrodysplastic phenotype, while deletion of BMP4 
alone had minor effects on cartilage development. Dou- 
ble knockout and BMP2 knockouts demonstrated disor- 
ganization of chondrocytes within the growth plate, de- 
creased cell proliferation, poor differentiation and increased 
apoptosis. BMP2 up-regulated protein expression of the 
essential osteogenic regulator Runx2. These findings dem- 
onstrate that BMP2, but not BMP4, is critical in chon- 
drocytic differentiation and hypertrophy within the growth 
plate during endochondral bone formation. 

BMPs have been shown to regulate endochondral os- 
sification by promoting chondrocyte proliferation and in- 

ducing chondrocyte hypertrophy [48-50]. Loss of the in- 
hibitory Smad, Smad6, in mice causes defects in axial 
and appendicular skeletal development [48]. Smad6 dou- 
ble knockouts demonstrate posterior transformation of 
the cervical vertebrae, ossification centers within lumbar 
vertebrae and incomplete sternal band fusion. These mice 
feature delayed hypertrophic differentiation and miner- 
alization during gestation. However, by late gestation, 
the hypertrophic zone within the growth plate demon- 
strated an increased pool of proliferating, hypertrophic 
chondrocytes likely caused by increased BMP respon- 
siveness in the Smad6 knockout mutants. Smad6 thus 
appears to be necessary to limit BMP signaling during 
endochondral bone formation. 

Smad1 is a critical immediate downstream mediator of 
BMP receptor transduction [51,52]. Chondrocyte-specific 
and osteoblast-specific Smad1 conditional knockout mice 
were bred to assess postnatal bone formation [51]. Chon- 
drocyte-specific deletion of the Smad1 gene resulted in 
delayed calvarial bone development. Osteoblast-specific 
deletion resulted in partial inhibition of BMP signaling 
and an osteopenic phenotype, with impaired osteoblastic 
proliferation and differentiation. These findings demon-
strate the critical role of Smad1 and BMP signal trans-
duction in postnatal bone formation. 

Several studies have also investigated mediators and 
inhibitors of BMP signal transduction. Noggin is a well- 
established antagonist of BMPs, and overexpression of 
noggin results in osteopenia [53-56]. Other studies have 
also shown that bone and skeletal development are de-
creased when BMP antagonists are overexpressed in os-
teoblasts [45,57]. While complete inactivation of noggin 
results in death in utero, noggin conditional knockout 
mice demonstrate decreased weight, shortened femoral 
length and osteopenia [53]. Although bone formation 
was found to be increased in 3-month-old mice, adult fe- 
male mice did not exhibit increased bone formation or 
remodeling. Noggin-deficient mice also exhibit enlarged 
growth plates and joint fusions [48,58]. These findings 
indicate that either BMP excess can have a detrimental 
effect on bone or that noggin has BMP-independent roles 
in skeletal homeostasis. 

In mice with conditional knockout of BMP receptor 
type IA (BMPRIA), an unexpected increase in bone mass 
was observed in mouse embryos, neonates and adults 
[59-61]. Adult bone demonstrated severely decreased re- 
sorption due to reduced RANKL-OPG-induced osteocla- 
stogenesis [53]. Expression levels of both bone forma- 
tion and resorption makers were decreased. In another 
study, mice with osteoblasts expressing a dominant- 
negative, non-functional BMP receptor (BMPRIB) ex- 
hibited a decrease in bone mineral density, bone volume, 
and bone formation [62]. Thus, BMP signaling is impor- 
tant both for the initial formation of chondrocytes and  
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cartilage, as well as the subsequent formation of bone. 
These findings demonstrate the importance of BMP sig- 
naling in regulating the balance between bone formation 
and resorption. 

Unlike the axial skeleton, which forms from cellular 
condensations of mesenchymal cells, the craniofacial 
skeleton and its associated cartilaginous elements are 
formed from the neural crest. This group of pluripotent 
cells forms in the dorsal neural tube and subsequently 
migrates to various areas of the developing embryo, in- 
cluding the skull, differentiating into bone, cartilage, and 
connective tissue of the head and neck. BMP signaling 
has been found to play a role in proper neural crest cell 
formation, migration, and differentiation, with BMP2, 4, 
and 7 specifically expressed during craniofacial skeletal 
development [63,64]. The importance of BMP signaling 
in craniofacial development is highlighted by multiple 
studies [65,66]. In one study, when Alk2, a type I BMP 
receptor, was conditionally deleted from a murine neural 
crest population, subsequent craniofacial malformations 
occurred, including cleft palate, hypotrophic mandible, 
and reduced ossification of the frontal bone [67]. 

BMPs are also expressed in the developing limb bud, 
where they play a role in proper limb formation and con- 
tribute to limb patterning along three different axes: an- 
terior-posterior, dorsal-ventral, and proximal-distal. The 
apical ectodermal ridge is a structure located at the distal 
ectodermal tip of the limb bud and is especially impor- 
tant for proximal-distal limb patterning. It has been shown 
that BMP2, 4, and 7 are expressed in the AER, as well as 
in underlying mesenchymal cells, where these signaling 
cascades are likely involved in proper limb development 
[2,22]. Since BMP2 and BMP4 are embryonic lethal, 
conditional knockouts were created to remove BMP2 and 
BMP4 from the limb bud mesenchyme [68]. A threshold 
level of BMP signaling was found to be required for the 
onset of chondrogenesis, and chondrogenic condensations 
were not formed in limbs deficient in both BMP2 and 
BMP4. When condensations did form, however, chon- 
drogenic differentiation proceeded normally in the absence 
of BMP2 and BMP7 or BMP2 and BMP4. Additionally, 
the combined knockdown of BMP2 and BMP4 from the 
limb bud resulted in lack of bone marrow cavity forma- 
tion, as well as inability to form trabecular or cortical 
bone. Decreased expression of osterix, an osteoblast-spe- 
cific gene, was also observed, showing that osteoblast 
differentiation was also decreased in this knockout model 
[68]. These findings demonstrate the importance of BMP2 
and BMP4 in proper limb formation. 

Other BMP knockout models also highlight the im- 
portance of this signaling cascade in proper bone and 
skeletal development. BMP7 mutants have multiple skele- 
tal defects, as well as kidney and eye defects [69,70]. 
However, BMP6 mutations only result in minor sternal  

defects [71]. BMP11 mutations result in defects of ante- 
rior-posterior axial skeletal patterning [72]. Meanwhile, 
BMP3 inactivation results in increased bone density [73]. 
Although BMP2 and -4 mutant embryos die in utero be- 
fore limb phenotypes can be determined, deletion of BMP7 
embryos display polydactyly with incomplete penetrance 
and otherwise normal limbs [5,69,70,74]. These many 
studies highlight the critical importance of BMPs and 
mediators of BMP signal transduction in skeletal devel- 
opment and homeostasis (Table 1). 

4. BMPs AND OSTEOGENESIS 

While the specific molecular mechanisms underlying 
BMP-mediated osteogenesis are not well-characterized, 
studies have demonstrated that BMPs play a critical role 
in osteogenic differentiation; overexpression of osteoge- 
nic BMPs with adenoviral, retroviral and recombinant 
systems have induced bone formation in animal studies 
[75-95] (Table 2). Exposure of MSCs to osteogenic 
BMPs results in increased expression of osteoblast-spe- 
cific markers, including the early osteogenic marker al- 
kaline phosphatase (ALP), the late osteogenic markers 
osteocalcin and osteopontin, connective tissue growth 
factor (CTGF), inhibitor of DNA binding (Id) and Cbfa1/ 
Runx2 [11,18,28-30,96-98]. 

Among the osteogenic BMPs, BMP2 and BMP7 were 
the first to be studied in depth. Adenoviral-mediated de- 
livery of BMP2 to MSCs and other nonosteogenic cells 
increases osteogenic activity in vitro, lending support to 
the role of BMP2 in osteoblastic differentiation [76,86, 
99,100]. C3H10T1/2 cells overexpressing AdBMP2 ex- 
hibited increased ALP activity, mineralization and mRNA 
expression of bone-specific proteins including type I col- 
lagen, osteopontin and osteocalcin [86,99]. AdBMP2- 
transfected bone marrow osteoprogenitor cells formed 
bone when seeded onto biodegradable polymer scaffolds 
as assessed by increased ALP activity, type I collagen 
production and mineralization [100]. BMP7 has also dem- 
onstrated the ability to induce osteogenesis. AdBMP7- 
transduced C2C12 myoblasts and muscle-derived pro-
genitor cells differentiated into osteoblasts as assessed by 
ALP activity and matrix mineralization [81]. Further- 
more, adipose-derived adult stem cells transduced with 
AdBMP7 differentiated into osteoblasts, eventually formed 
bone [101]. 

Both BMP2 and BMP7 have the ability to induce os- 
teogenesis in vivo. Several studies have shown that MSCs 
and other progenitor cell types transduced with BMP2 or 
BMP7 induces bone formation in various animal models 
[75,76,78,79,81,83-86,88,89,91,99-102]. AdBMP2 injected 
directly into the thighs of rats led to bone formation at 
the injection sites as observed with CT, digital radiogra- 
phy and planar radionuclide scintigraphy [102]. When  
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Table 1. Examples of BMP-induced osteogenesis in MSCs. 

Treatment 
Experiment  

setting 
Experiment metric Experimental results Reference 

ALP activity 
BMP2, 6, and 9 induced ALP activity in C3H10T1/2  
pluripotent cells. 

Osteocalcin expression 
BMP2, 4, 6, 7, and 9 led to increased ALP activity in  
C2C12 preosteoblastic cells and TE-85 osteoblastic cells. 

In vitro 

Alizarin Red S 
BMP2, 6, and 9 were able to significantly induce osteocalcin 
expression and mineralization in C3H10T1/2 cells. 

Cheng et al. 2003; 
Kang et al. 2004 

BMP2 to BMP15  
(14 BMPs) 

Mouse Bone formation 

BMP6 and BMP9-transduced C2C12 cells induced the most 
orthotopic bone formation in mice. BMP9-induced  
osteogenesis was not inhibited by BMP3, a negative  
regulator of bone formation. 

Kang et al. 2004 

ALP activity 

Alizarin Red S In vitro 

Northern blot analysis 

Mesenchymal stem cells transduced with AdBMP2 showed 
increased osteoblastic differentiation and were able to form 
bone in vitro, with increased ALP activity, Alizarin Red S 
staining, and expression of bone matrix genes: osteopontin, 
osteocalcin, COL1a1, and bone sialoprotein 

BMP2 

Rabbit Bone formation 
AdBMP2-transduced cells were able to form bone when 
injected into the L5/6 intertransverse spinal space 

Cheng et al. 2001 

ALP activity 

Von Kossa staining In vitro 

mRNA microarray 

AdBMP6-transduced equine mesenchymal stem cells 
showed increased ALP activity and mineralization. 
AdBMP6 also induced increased expression of genes  
associated with osteoblastic differentiation. 

Zachos et al. 2006 

BMP6 

Mouse Bone formation 
AdBMP6 subcutaneously injected into athymic nude was 
able to induce rapid ectopic bone formation. 

Jane et al. 2002 

ALP activity 

In vitro 

Cell morphology 

C2C12 murine myoblast cells transduced with AdBMP7 
differentiated into osteoblasts, displaying increased ALP 
activity and osteoblast-like morphology. These cells did not 
develop a myogenic phenotype. BMP7 

Mouse Bone formation 
Subcutaneous and intramuscular injections of AdBMP7 
induced ectopic bone ossicle formation in mice. 

Francheshi et al. 2000

ALP activity 

Alizarin Red S 

RT-PCR & Western blot

Low concentrations of rhTGF-β1 synergistically increase 
ALP activity, matrix mineralization, gene expression and 
protein expression of osteopontin, osteocalcin and COL1a2 
in C3H10T1/2 cells. TGF-β1 demonstrated biphasic effect 
on BMP-9mediated osteogenic differentiation. 

BMP9 + TGF-β1 In vitro 

Smad pathway activation
TGF-β1 combined with BMP9 exhibits lower BMPR-Smad 
receptor activity than BMP9 alone. 

Li et al. 2012 

ALP activity 
GH potentiates BMP9-induced ALP activity, osteopontin/ 
osteocalcin, expression and calcium deposition in MSCs 

Osteocalcin/Osteopontin 
expression 

JAK/STAT inhibitors blunt BMP9-GH synergy In vitro and  
ex vivo 

Alizarin Red S 
GH enhances BMP9-induced endochondral ossification in 
cultured limb explants 

BMP9 + GH 

Mouse Ectopic bone formation
GH augments BMP9-induced ectopic bone formation with 
more mature bone 

Huang et al. 2012 

 
AdBMP7-transduced human and rat fibroblasts were 
subcutaneously implanted in mice, these normally non- 
osteogenic cells differentiated into osteoblasts and induc- 
ed bone formation [83]. 

Non-adenoviral vectors, including recombinant BMP2 
(rhBMP2) and rhBMP7, also induce bone formation [82, 
95,103-108]. Treatment of C3H10T1/2 cells with rhBMP2 
increased ALP activity [105]. In a canine ulnar segmen- 
tal defect model, rhBMP7 treatment initiated new bone 

formation and led to defect repair and complete bony 
union [103]. rhBMP2 has shown a similar ability to re- 
pair bony defects in animal models [73]. 

The results from these studies demonstrating the oste- 
oinductive properties of BMP2 and BMP7 have increas- 
ed the clinical utilization of recombinant BMPs. In de- 
generative lumbar disc disease patients, use of rhBMP2/ 
collagen within a lumbar spine interbody fusion cage 
achieved better fusion rates than use of autologous bone  
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Table 2. Skeletal phenotypes of several members of the BMP signaling pathway. 

Deleted gene Cells affected Skeletal phenotype Reference 

BMP2;  
BMP2 + 4 

Chondrocytes 
Chondrodysplasia, disorganized chondrocytes in growth plate, defects in  
chondrocyte proliferation, differentiation, increased apoptosis 

Shu et al. 2011 

BMP2 + 4 
Limb bud  

mesenchymal cells 
Failure of chondrogenic condensations to form normally, no formation of bone 
marrow cavity, trabecular or cortical bone 

Bandyopad-hyay et al. 2006

BMP3 All cells Increased bone density Daluiski et al. 2001 

BMP5 All cells Short ear, brachypodism King et al. 1994 

BMP6 All cells Minor sternal defects Solloway et al. 1998 

BMP7 All cells Hindlimb polydactyly, defects in rib cage, skull Luo et al. 1995 

BMP11 All cells Anterior-posterior axial skeletal patterning defects McPherron et al. 1999 

Alk2 Neural crest cells 
Craniofacial malformations, including cleft palate, hypotrophic mandible,  
reduced ossification of frontal bone 

Dudas et al. 2004 

BMPR1A Osteoblasts Increased bone mass, decreased bone resorption, reduced osteoclastogenesis Kamiya et al. 2008 

BMPR1B Osteoblasts Decreased bone mineral density, bone volume, and bone formation Zhao et al. 2002 

Smad6 All cells 
Axial and appendicular skeletal defects, posterior transformation of the cervical 
vertebrae, bilateral ossification centers in lumbar vertebrae, incomplete sternal 
band fusion, 

Estrada et al. 2011 

Smad1 Chondrocytes Delayed calvarial bone development 

Smad1 Osteoblasts Osteopenia, impaired osteoblast proliferation and differentiation 
Wang et al. 2011 

Noggin Osteoblasts Decreased weight, shortened femoral length, osteopenia Canalis et al. 2012 

 
graft [109]. Treatment with rhBMP2 at the fracture site 
improved healing of patients with open tibial fractures 
[110]. rhBMP2 and rhBMP7 have subsequently been 
used to augment bone healing with improved fusion rates 
compared to autografts and fewer associated complica- 
tions [83,91,93,94,99,100,102,104,111-114]. 

While BMP2 and BMP7 were initially identified by 
their ability to promote osteogenesis, it was unknown 
then if they were the most osteogenic BMPs. Subsequent 
studies have shown that osteogenic BMPs include 2, 4, 6, 
7 and 9 [1,3,11,16,18,37,39,115-117]. Previously, the re- 
combinant form of each BMP was unavailable and the 
osteogenic activity of all BMPs could not be analyzed. 
However, using adenoviral-mediated gene delivery into 
MSCs, we conducted a comprehensive analysis of the in 
vitro and in vivo osteogenic activity of 14 BMPs [11,13, 
15-18]. We demonstrated BMP2, BMP6 and BMP9 as 
the most osteogenic BMPs, with BMP9 inducing the 
most potent osteogenic activity both in vitro and in vivo 
[11,13,18]. 

The osteogenic potential of BMP6 has been described 
both in vitro and in vivo [118-128]. AdBMP6-transduced 
equine bone marrow MSCs demonstrated enhanced os- 
teoblastic differentiation with increased ALP activity, ma- 
trix mineralization and expression of osteogenic marker 
genes similar to AdBMP2 [128]. In a rabbit model, autolo- 
gous bone marrow-derived osteoprogenitor cells exposed 
to an rhBMP6-containing extracellular matrix induced 
bone formation and enhanced spinal fusion [125]. In a  

rabbit ulnar osteotomy model, AdBMP6 accelerated bone 
formation and mineralization, leading to orthotopic bone 
formation when injected into the calf muscles of mice 
[118,124]. 

BMP9 has demonstrated potent osteoinduction in many 
studies including our comprehensive analysis of the os-
teogenic capacity of BMPs [13,18], but it remains one of 
the least studied and most poorly characterized BMPs. 
Further investigation may show that BMP9 provides a 
better therapeutic avenue for the augmentation of bone 
regeneration than the BMPs currently used in the clinical 
setting. 

5. BMP9 INDUCES OSTEOGENIC  
DIFFERENTIATION 

Many investigations have described the osteogenic prop- 
erties of BMP9, implicating its role in osteoblastic dif- 
ferentiation and bone regeneration. Adenoviral-mediated 
overexpression of BMP9 in C3H10T1/2 cells increased 
ALP activity and calcium deposition at significantly higher 
levels than BMP2 or BmP7 treatment groups. [11,45,66]. 
BMP3, a known inhibitor of BMP2 and BMP7-mediated 
osteogenesis, did not inhibit BMP9-mediated bone for- 
mation, suggesting that BMP9-mediated osteogenesis may 
occur via a distinct mechanism from other osteogenic 
BMPs [13]. 

Non-adenoviral delivery of BMP9 has also demon- 
strated potent osteoinduction of MSCs [129-131]. Direct 
sonoporation of rhBMP9 into mouse quadriceps muscles  
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caused the formation of ectopic bone [131]. Nucleofec- 
tion of human MSCs (hMSCs) with BMP9 caused bone 
formation at four weeks post-injection in vivo and sig- 
nificantly increased calcium deposition in vitro [129]. 
Treatment of MC3T3-E1 preosteoblastic cells with a pep- 
tide derived from BMP9 (pBMP-9) induced downstream 
phosphorylation of Smad uninhibited by noggin, a known 
extracellular antagonist of BMP2 and caused a dose-de- 
pendent increase in ALP activity, Runx2, Osterix, type 1 
collagen and osteocalcin [132]. 

In vivo studies have confirmed BMP9 as a potent in- 
ducer of bone formation. BMP9-transduced C2C12 cells 
injected into the quadriceps muscles of mice demonstrat- 
ed significant orthotopic bone formation [13,14,115]. 
AdBMP9 directly injected into the quadriceps muscles of 
mice and rats increased osteoid and mature lamellar bone 
formation in BMP9-treated group compared to BMP2- 
and 7-treated groups, demonstrating that that skeletal mus- 
cle may harbor multipotent MSCs or osteoblastic proge- 
nitor cells [79,84,133]. Furthermore, the BMP9-induced 
ectopic bone was histologically determined to be the result 
of normal physiologic endochondral mechanisms. 

BMP9 has demonstrated efficacy in non-union bone 
fracture repair and inducing spinal fusion in animal mod- 
els [134,135]. Percutaneous paraspinal injection of 
AdBMP9-transduced hMSCs resulted in successful spi- 
nal fusion [134]. Non-union fracture was created in the 
radii of mice and filled with a collagen sponge electropo- 
rated with BMP9 plasmid; new bone was formed bridg- 
ing the defect gap [135]. A defect in the radius of rabbits 
filled with an implant consisting of bone cement and 
AdBMP9 demonstrated more rapid callus and more bone 
formation compared to control and BMP2 treatment 
groups [136]. 

BMP9-induced bone formation demonstrates a distinct 
ossification pattern from other BMPs. In mice injected 
with AdBMP2 and 9-transduced C2C12 cells, increased 
bone maturation and marrow elements were seen in the 
BMP9-treated group [13]. When AdBMP9 was injected 
into the quadriceps muscles of mice and rats, primitive 
chondroblasts secreting a loose extracellular matrix was 
seen by six days, chondroblasts by nine days, areas of 
hypertrophic chondrocytes histologically similar to the 
epiphyseal end plate by 12 days, woven bone between 
days 12 and 19 and mature lamellar bone by three months 
[94]. These studies illustrate that the process of BMP9- 
induced osteogenesis resembles the sequential physiol- 
ogic phases of endochondral ossification which occur 
during the repair of bony fractures. While the specific 
mechanisms of BMP9-mediated osteogenesis remain to 
be defined, it appears that the BMP9-mediated osteoge- 
nic pathway is unique from that of other members of the 
BMP family and may provide a more effective, physiol- 
ogic therapy for bone regeneration. 

6. CANONICAL BMP SIGNALING 
PATHWAY 

While the specific mechanisms governing for BMP9- 
me-diated osteogenesis are largely unknown, much work 
has been done to elucidate the signaling pathways of the 
BMP family. And while many characteristics of BMP9 
signaling are similar to other members of the BMP fam- 
ily, identification of the unique aspects of BMP9 signal 
transduction will allow us to better understand and utilize 
is potent osteogenic properties. 

6.1. BMP Ligands, BMP Type I and Type II  
Receptors Are Required for BMP Signaling  

Like other members of the TGF-β superfamily, mature 
BMPs are secreted as a long precursor protein containing 
N-terminal pro-region that is cleaved prior to secretion. 
However, the mature BMP9 protein retains this N-termi- 
nal pro-region, which does not inhibit the function of BMP9 
and may actually stabilize it following secretion [5,21,22, 
137-142]. 

The BMP signaling pathway is initiated upon BMP 
ligand binding to a heterodimeric Type I/Type II BMP 
transmembrane serine/threonine kinase receptor (BMPR1 
and BMPR2); both must be active for signal transduction 
(Figure 2) [143,144]. Type II receptors are constitutively 
active and serve to phosphorylate and activate BMPR1 
upon BMP ligand binding [145]. The phosphorylation 
site on Type I receptors is located near the C-terminal in- 
tracellular domain in a glycine-serine rich region termed 
the GS domain [3,143]. 

While seven different type I receptors have been iden- 
tified, only three type I receptors, ALK1, ALK5 and en- 
doglin, are considered potential BMP9 type I receptors 
[137,146-148]. In fact, BMP9 has a poor affinity for 
BMPR-IA, a receptor that generally transduces BMP sig- 
naling [137]. Dominant negative mutations of the seven 
type I receptors demonstrated that only ALK1 and ALK2 
mutants effectively inhibit BMP9-mediated osteogenic 
differentiation and bone formation [66]. ALK1 and 2 
directly interacted with BMP9, and silencing of ALK1 
and 2 inhibited BMP9-induced osteogenic differentiation 
of MSCs both in vitro and in vivo. These results strongly 
suggest that ALK1 and ALK2 are the type I BMPRs re- 
sponsible for BMP9-mediated osteogenic signaling. 

Type II BMP receptors are thought to be largely re- 
sponsible for the osteogenic activity of BMPs, and four 
have been identified [45]. Dominant negative (DN) mu- 
tations introduced in two of these receptors, BMPRII and 
ActRII, decreased BMP9-induced ALP activity, expres- 
sion of downstream Smad 6 and Smad 7, bone minerali- 
zation in vitro and ectopic bone formation in vivo [45]. 
These results strongly suggest that BMPRII and ActRII 
are the type II BMP receptors responsible for BMP9-  
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Figure 2. Schematic representation of BMP signal transduction. Upon BMP ligand binding to Type II BMP recep-
tors, Type I BMP receptors are cross-phosphorylated, recruiting R-Smads (Smads 1/5/8) to the intracellular domain 
of the Type I receptor and initiating signal transduction via phosphorylation. Activated R-Smads then form a het-
eromeric complex with Co-Smads (Smad 4) before translocating to the nucleus to regulate gene expression. Inhibi-
tory Smads (Smads 6/7) reside in the nucleus, migrate to the cytoplasm and negatively regulate BMP signaling by 
inhibiting signal transduction at several points along the pathway. The Type I and Type II receptors thought to be 
involved in BMP9 signal transduction are highlighted. 

 
directly with activated type I receptors, while Common- 
Smads (co-Smads) form complexes with activated R- 
Smads to then regulate gene expression in the nucleus. 
Inhibitory Smads (I-Smads) negatively regulate BMP sig- 
naling, inhibiting signal transduction at several points in 
the pathway. 

mediated osteogenic signaling. 

6.2. Smad-Dependent Signaling Is Required for 
BMP Osteogenic Signaling 

BMP binding to receptor heterodimers triggers one of 
two signaling pathways: Smad-dependent and Smad- 
independent. For the purpose of understanding the role of 
BMPs in osteogenesis, we will specifically focus on the 
Smad-dependent signaling pathway. There are 3 classes 
of Smads, all of which are important for BMP signal 
transduction [149]. Receptor-Smads (R-Smads) interact  

The R-Smads, Smad1, Smad5 and Smad8, are acti- 
vated upon binding and phosphorylation by the Type I 
receptor at a conserved sequence in the C-terminus termed 
the Ser-Ser-Val/Met-Ser sequence, or SSXS motif. Along 
with this conserved sequence, R-Smads have two addi- 
tional regions of homology at the N and C-terminal ends,  
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the Mad homology (MH) 1 and MH2 domains, both of 
which are crucial for proper signal transduction [3,150]. 
The MH1 domain directly interacts with DNA sequences, 
while the MH2 domain interacts with BMPR1. Additio- 
nally, the MH2 domain can bind to other Smads and has 
a role in transcriptional activation. These domains are 
conserved across co-Smads and I-Smads. Upon activation, 
the phosphorylated R-Smad dissociates from BMPR1 
and forms a complex with Smad 4 [143,151,152]. Smad 4 
is the sole Co-Smad and is common to all BMP signaling 
pathways. In the nucleus, the R-Smad/Co-Smad hetero- 
dimer complexes with various transcription factors, co- 
activators and corepressors to modulate gene expression. 

The BMP signaling pathway is negatively regulated by 
I-Smads, Smad 6 and Smad 7. These Smads typically re- 
side in the nucleus and migrate to the cytoplasm and 
plasma membrane upon BMP activation, acting at vari- 
ous points along the BMP pathway to inhibit signal trans-
duction [1,151,153-157]. Smad7 binds to activated BMPR1, 
preventing R-Smads from becoming activated. Smad7 
also interacts with E3 ubiquitin ligase proteins, Smurf1 
and Smurf2, targeting the BMP receptor for proteasomal 
degradation. Unlike Smad 7, Smad 6 can bind directly to 
R-Smads, thus competing with Smad 4 and ultimately 
preventing proper heterodimer complex formation. 

Activation of Smads was found to be necessary for 
BMP9-mediated osteogenic differentiation of MSCs [158]. 
Phosphorylated Smad 1/5/8 levels were simultaneously 
increased in BMP9-treated MSCs, while knockdown of 
Smad 4 resulted in reduced formation of Smad hetero- 
dimers and nuclear translocation of Smad 1/5/8; knock- 
down of Smad4 also inhibited BMP9-induced ALP acti- 
vity and calcium deposition. The p38 inhibitor SB203580 
decreased BMP9-induced Smad signaling in MSCs, 
while the ERK1/2 inhibitor PD98059 stimulated Smad 
signaling. Together, these findings suggest that activa- 
tion of the Smads pathway is critical in BMP9-induced 
osteogenesis. 

7. MEDIATORS OF BMP9-INDUCED 
OSTEOGENIC SIGNALING 

Recent studies have identified various mediators thought 
to contribute to the potent osteogenic effects of BMP9. 
Among these mediators are Id genes, connective tissue 
growth factor (CTGF) and Hey1. Each of these three 
genes is among the most up-regulated following BMP9 
stimulation of MSCs [24,26,139]. 

Balanced regulation of Id expression is important in 
lineage-specific MSC differentiation: Id genes are inhi- 
bitors of the binding of basic helix-loop-helix (bHLH) 
transcription factors [159-161] and function by dimeriz- 
ing with bHLH proteins; these heterodimers are unable  

to bind DNA and regulate transcription. Id-1, -2 and -3 
are among the most significantly up-regulated genes upon 
BMP9 stimulation [30]. However, both knockdown and 
overexpression of these three Id genes diminished BMP9- 
induced osteogenic differentiation. BMP9-mediated Id 
expression was also shown to be dependent on Smad4 
signaling. 

Balanced regulation of CTGF expression is important 
in BMP9-induced osteogenic differentiation: Connective 
tissue growth factor (CTGF) is a member of the CCN 
(Cyr61, CTGF and Nov) family of secreted cysteine-rich 
multimodular proteins [162-167] and has a major role in 
bone formation and embryogenesis [168]. Upon BMP9- 
stimulation of MSCs, CTGF was among the most up- 
regulated genes, especially during early stages of differ-
entiation [28]. Similar to Id genes, both knockdown and 
overexpression diminished BMP9-mediated osteogenic 
differentiation. 

Hey 1 Expression Enhances BMP9-induced osteogenic 
differentiation via Runx2: Hey 1 (also known as Hesr1, 
HRT1, CHF2 and HERP2) is a nuclear protein of the 
Hairy/Enhancer of split-Related (HERP) family of basic 
helix-loop-helix transcriptional repressors and is a direct 
target of the Notch pathway [14]. Constitutive Hey 1 ex- 
pression synergized with BMP9-induced osteogenic dif- 
ferentiation in vitro and in vivo [169], while Hey 1 si- 
lencing decreased osteogenic differentiation. Hey1 and the 
essential osteogenic transcription factor Runx2 synergized 
in BMP9-induced osteogenic differentiation, whereas 
Hey 1 silencing decreased Runx2 expression. Following 
knockdown of Hey 1, exogenous Runx2 expression res-
cued defective osteogenic signaling, strongly suggesting 
that Runx2 is a downstream mediator of Hey 1 signaling.  

8. MAJOR SIGNALING PATHWAYS 
CROSSTALK WITH BMP9  
SIGNALING 

Several major signaling pathways with wide-ranging func- 
tions participate in BMP9-mediated osteogenesis, and 
many of these pathways are critical in the differentiation 
of other cell lineages. The following section describes re- 
cent studies illustrating the crosstalk between BMP9 sig- 
naling and these other important pathways. A brief de- 
scription of each of these signaling pathways will be fol- 
lowed by a summary of results from recent studies.  

TGF-β1 is one of the most abundant members of the 
TGF-β superfamily, regulating bone formation, osteoblast 
proliferation and mineralization while increasing the 
strength and flexibility of bone [170-173]. TGF-β1 and 
BMPs both regulate the late phases of differentiation and 
mineralization of bone [138,174-176]. 

Growth hormone (GH) plays a critical role in postnatal 
growth [177-184]. GH signaling pathway begins when  
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GH binds GHR, triggering receptor tyrosine kinase acti- 
vity and activation of JAK/STAT and other pathways 
[178,179,184]. IGF-2 is a member of the IGF signaling 
system, playing a critical role in prenatal growth and de- 
velopment [185]. IGF-2 signaling activates the phospha- 
tidylinositol-3-kinase (PI3K)/AKT pathway or the mito- 
gen-activated protein kinase pathway (MAPK) [186]. 

Wnts are a family of secreted proteins critical in oste- 
oblastic differentiation and skeletal development [16, 
116,187-193]. Upon Wnt binding the Frizzled (Frz) and 
LRP-5/6 co-receptors, distinct signaling pathways includ- 
ing the canonical Wnt pathway are activated [194]; mu- 
tations in LRP-5 adversely affect skeletal development 
and bone mass deposition [195]. 

MAPKs are protein kinases critical in regulation of 
gene expression, mitosis, metabolism, motility, survival, 
apoptosis and differentiation [21,158,196-199]. Members 
of the MAPK family become activated by BMPs in re- 
sponse to a variety of extracellular stimuli leading to di- 
verse effects in cellular responses [198-201]. Hypoxia in- 
ducible factor 1 Alpha (HIF1α) is a regulator of angioge- 
nesis during many developmental processes, including 
skeletal development [64,202]. 

Peroxisome proliferator-activated receptor gamma 
(PPAR-γ) is a critical regulator of adipogenesis and os- 
teogenesis [203,204]. PPAR-γ binds fatty acid deriva- 
tives to induce differentiation of preadipocytes into ter- 
minal adipocytes, and PPAR-γ2 is the predominant iso- 
form expressed in adipose tissue [81,159,161]. Retinoic 
acids (RAs) play a crucial role during embryonic devel- 
opment and in the maintenance of vital organs [38,39]. 
RAs are ligands for two families of receptors, the RA re- 
ceptors (RAR) that bind all-trans-RA (ATRA) and the 
Retinoid X Receptors (RXR) that bind 9-cis-RA (9CRA) 
[205,206]. RA binding to RAR/RXR causes heterodimeri- 
zation and eventual transcriptional regulation [206]. 

Effects of Crosstalk Pathways on BMP9-Induced 
Osteogenic Differentiation 

TGF-β1 has a biphasic effect on BMP9-induced osteo- 
genic differentiation of MSCs: In BMP9-transduced MSCs, 
low concentrations of recombinant TGF-β1 (rhTGF-β1) 
synergistically induced expression of ALP and matrix 
mineralization, while high concentrations of TGF-β1 in- 
hibited BMP9-induced osteogenic activity [175]. 

GH synergizes with BMP9 via activation of the JAK/ 
STAT/IGF1 pathway to induce osteogenesis: After over- 
expression of BMP9 in MSCs, GH was one of the most 
up-regulated transcripts [158]. Exogenous GH synergized 
with BMP9 to induce early and late osteogenic markers. 
Co-stimulation of long-bone explants with GH and BMP9 
resulted in significant expansion of the growth plate, and 
co-stimulation of MSCs with BMP9 and GH formed  

mature ectopic bone masses; these synergistic effects of 
BMP9 and GH were inhibited by JAK/STAT inhibitors. 

BMP9 signaling crosstalks with IGF-2 via PI3K/AKT 
signaling: While endogenous IGF-2 levels are relatively 
low in MSCs, exogenous expression of IGF-2 potentiates 
BMP9-induced expression of early and late osteogenic 
markers [207]. Conversely, PI3K inhibition diminished 
IGF-2 potentiation on BMP9-mediated osteogenesis. IGF- 
2 augmented BMP9-induced ectopic bone formation and 
BMP9-mediated endochondral ossification in perinatal 
limb explants. 

The canonical Wnt/β-catenin pathway interacts with 
Runx2 as a critical mediator of BMP9-mediated osteo- 
genic signaling: Wnt3a and BMP9 synergized to induce 
ALP activity in MSCs, while the Wnt antagonist FrzB 
inhibited BMP9-induced ALP activity [194]. BMP9 stimu- 
lation of MSCs recruits β-catenin and Runx2 to the os- 
teocalcin promoter, whereas knockdown of β-catenin de- 
creased expression of early and late osteogenic markers 
[194]. BMP9-induced ectopic bone formation and matrix 
mineralization in vivo were inhibited by FrzB overex- 
pression or β-catenin knockdown [194]. 

p38 and ERK1/2 have opposing regulatory effects in 
BMP9-induced osteogenic differentiation of MSCs via 
Smad signaling: BMP9 simultaneously promotes phos- 
phorylation and thus activation of Smads, p38 and 
ERK1/2 [158]. p38 and ERK1/2 acted in opposition to 
regulate BMP9-mediated osteogenic differentiation via 
interactions with Smads. In vivo, inhibition of p38 sig- 
nificantly decreased BMP9-induced osteogenic differen- 
tiation, while inhibition of ERK1/2 significantly increased 
BMP9-induced osteogenic differentiation [208]. 

HIF1α synergizes with BMP9-induced osteogenic dif- 
ferentiation of MSCs: Exogenous overexpression of HIF1α 
synergistically increased BMP9-induced osteogenic dif- 
ferentiation of MSCs. Conversely, inhibition of HIF1α 
diminished BMP9-induced osteogenic signaling. BMP9 
directly induced HIF1α expression in MSCs via Smad1/ 
5/8 signaling [209]. HIF1α activated both angiogenic and 
osteogenic signaling pathways in MSCs. Osteogenic fac- 
tors, including BMP9, may induce the convergence of 
osteogenic and angiogenic signaling in MSC differentia- 
tion, thereby enhancing the efficiency of bone formation 
and development. 

PPAR-γ is an important regulator of BMP9-mediated 
osteogenesis: Overexpression of PPAR-γ2 in BMP-9- 
stimulated MSCs promoted both osteogenic and adipo- 
genic differentiation, with mutually exclusive commit- 
ment to either lineage [18]. Conversely, knockdown of 
PPAR-γ2 in BMP9-stimulated MSCs showed significant 
decreases in osteogenic differentiation and matrix miner-
alization.  

Retinoic acids synergistically enhance BMP9-mediated 
osteoinduction of MSCs: Both ATRA and 9CRA induced 
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expression of BMP9, activated BMPRSmad transcription 
activity and increased expression of early and late osteo- 
genic markers; these effects were synergistic when com- 
bined with overexpression of BMP9 [210]. RAs com- 
bined with BMP9 promoted expansion of the hypertro- 
phic chondrocyte zone in neonatal mouse limb explants, 
and RARs synergized with BMP9 to induce trabecular 
bone formation and osteoid matrix production in vivo.  

9. OTHER FUNCTIONS OF BMP9 

BMP9 is known to be a potent osteogenic factor, but it 
also influences several other pathways including cancer 
development and angiogenesis. While some studies have 
shown BMP9 to restrict tumor growth through diverse 
mechanisms [211-213], other studies have shown BMP9 
to promote cancer progression [214]. BMP9 inhibited 
cell migration and induce apoptosis of osteosarcoma via 
the PI3K/ALT pathway [212] slowed tumor growth of 
colon adenocarcinoma via inhibitory effects on angioge- 
nesis via the ALK1 receptor and endoglin coreceptor 
[211]. Conversely, BMP9 induced in vivo angiogenesis 
within pancreatic tumors [214]. The effects of BMP9 on 
angiogenesis remain controversial as well, with some 
studies demonstrating a pro-angiogenic effect [215,216] 
and others an anti-angiogenic effect [146,217-219]. It is 
evident that the effects of BMP9 on angiogenesis and 
cancer progression remain to be fully elucidated. 

BMP9 also modulates neurogenesis, hepatocellular re- 
generation, adipogenesis, chondrogenesis and myogene- 
sis. Several studies have demonstrated BMP9 to promote 
the cholinergic phenotype neurologically [220-223]. BMP9 
also acts as a hepatic insulin-sensitizing substance and 
may play a role in hepatocellular regeneration [224,225]. 
BMP9 promotes adipogenesis [18] and also upregulates 
Sox9 expression to induce chondrogenic differentiation 
[226,227]. While BMP9 promotes MSC differentiation 
along osteogenic, adipogenic and chondrogenic lines to 
varying degrees, it inhibits the myogenic phenotype [29]. 
Overall, BMP9 has diverse effects beyond osteogenesis. 

10. CONCLUDING REMARKS AND  
FUTURE DIRECTIONS 

The investigations discussed here demonstrate the criti- 
cal role of BMPs, particularly BMP9, in the osteogenic 
differentiation of MSCs. The findings discussed here 
strongly support the notion that BMP9 may provide a 
more effective clinical strategy for the augmentation of 
bone regeneration and healing than other BMPs. Further- 
more, studies demonstrating that BMP9-mediated osteo- 
genesis resembles the physiologic phases of bone healing 
occurring during fracture repair make the prospect of cli- 
nical translation quite promising. With several diverse 
signaling pathways enhancing BMP9-mediated osteoge- 

nesis, further elucidation of these specific pathways will 
allow for the development of improved therapies. Over 
the last decade, there has been a substantial increase in 
the therapeutic use of recombinant proteins and medica- 
tions targeting small molecules acting in various signaling 
pathways. With this, it is imperative that the mechanisms 
underlying BMP9-mediated osteogenesis become fully 
elucidated to allow for the development of much-needed 
clinical therapies. 
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