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ABSTRACT 

Accuracy of hydrodynamic and water quality numerical models developed for a specific site is dependent on multiple 
model parameters and variables whose values are attained via calibration processes and/or expert knowledge. Real time 
variations in the actual aquatic system at a site necessitate continuous monitoring of the system so that model parame-
ters and variables are regularly updated to reflect accurate conditions. Multiple sources of observations can help adjust 
the model better by providing benefits of individual monitoring technology within the model updating process. For ex-
ample, remote sensing data provide a spatially dense dataset of model variables at the surface of a water body, while 
in-situ monitoring technologies can provide data at multiple depths and at more frequent time intervals than remote 
sensing technologies. This research aims to present an overview of an integrated modeling and data assimilation frame- 
work that combines three-dimensional numerical model with multiple sources of observations to simulate water column 
temperature in a eutrophic reservoir in central Indiana. A variational data assimilation approach is investigated for in- 
corporating spatially continuous remote sensing temperature observations and spatially discrete in-situ observations to 
change initial conditions of the numerical model. The results demonstrate the challenges in improving the model per- 
formance by incorporating water temperature from multi-spectral remote sensing analysis versus in-situ measurements. 
For example, at a eutrophic reservoir in Central Indiana where four images of multi-spectral remote sensing data were 
assimilated in the numerical model, the overall error for the four images reduced from 20.9% (before assimilation) to 
15.9% (best alternative after the assimilation). Additionally, best improvements in errors were observed on days closer 
to the starting time of model’s assimilation time window. However, when the original and updated model results for the 
water column temperature were compared to the in-situ measurements during the data assimilation period, the error was 
found to have actually increased from 1.8˚C (before assimilation) to 2.7˚C (after assimilation). Sampling depth differ- 
ences between remote sensing observations and in-situ measurements, and spatial and temporal sampling of remote 
sensing observations are considered as possible reasons for this contrary behavior in model performance. The authors 
recommend that additional research is needed to further examine this behavior. 
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1. Introduction 

In recent years, deterioration of water quality in reser- 
voirs that serve as drinking water sources has become 
one of the major sources of human health risks. Numeri- 
cal models have been successfully used to simulate the 
physical, chemical and biological processes within res- 
ervoir systems, and predict the risks of contamination 
[1-3]. Among all the contributing factors that influence  

the water quality condition in a reservoir system, water 
column temperature has significant impacts on the dis- 
tribution, transportation, and interaction of multiple con- 
taminants such as nutrients, micro-algae, etc. Hence, ac- 
curate prediction of water contaminants by numerical 
water quality models is highly dependent on predictions 
of water temperature.  

Errors in the prediction of temperature can, however, 
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arise from multiple sources, including inaccurate input, 
inaccurate model parameters, numerical errors during the 
computation processes, and real-time variations in the 
system that are not incorporated in the original calibrated 
model. A data assimilation procedure provides means for 
integrating real-time observed data from a variety of mo- 
nitoring sources to improve a model’s prediction accu-
racy. This improvement is achieved by changing state 
variables, model inputs, parameter updates, and/or bias 
correction [4]. In-situ data have been commonly used in 
the past for assimilation of surface water quality data, in- 
cluding temperature, in numerical models (e.g., [5], etc.). 
While in-situ monitoring is useful for obtaining multiple 
temporal observations for multiple depths at a specific 
X-Y location in the water body, remotely sensed data 
obtained from satellites provide larger spatial coverage of 
surface observations than in-situ observations. Hence, a 
number of data assimilation approaches have been de-
veloped to incorporate remote sensing observations for 
model updates. Data assimilation using remotely-sensed 
data has been investigated by numerous fields (for exam-
ple, studies investigating improvements in predictions of 
soil moisture [6-8], predictions of subsurface soil tem-
perature [9], prediction of snow cover [10] via land sur-
face models, and prediction of hydrodynamic and water 
quality variables [11-16]. Assimilation of temperature 
observations has also received considerable interest by 
numerous researchers (for example, [17-19], etc.). How-
ever none of these studies have discussed or investigated 
how data assimilation using remotely sensed temperature 
observations affect model accuracy with respect to in-situ 
temperature observations. This is an important issue for 
data assimilation procedures since it is very common that 
information about the errors on the data obtained from a 
specific data source is unavailable. Additionally in-situ 
observations may be taken on days and times different 
from the remote sensed observations, or in-situ observa-
tions might not be available at all for the period of inter-
est. This can make it difficult to perform quality control 
for identifying reliable data, and estimate the error co-
variance matrix of observation variables. Finally, use of 
observations with unknown uncertainty may mislead the 
data assimilation algorithms, as the algorithm tries to 
“correct” the system state based on these potentially in- 
accurate observations. It is not known how much of a dif- 
ference in the model errors would arise when remote- 
sensing data are used to update computationally-expen- 
sive numerical models of smaller inland-water bodies. 

The specific goals of this study are: 
(1) To develop a calibrated 3-Dimensional finite dif-

ference numerical model for simulating hydrodynamic 
processes and temperature in small, inland Eagle Creek 
Reservoir (ECR) in Central Indiana. 

(2) To assimilate water surface temperature retrieved 

from multi-spectral Landsat-5 TM band 6 images into the 
hydrodynamic model and adjust the model’s initial con-
ditions via a variational data assimilation approach. 

(3) To validate the remote-sensing data-based data as-
similation by comparing the updated model results with 
in-situ observations. 

2. Methodology 

2.1. Study Area and Data Collection 

Eagle Creek Reservoir (ECR) is located about 16 km (10 
miles) northwest of Indianapolis, Indiana (Figure 1). It 
was constructed in 1967 by the city of Indianapolis and 
was initially used for flood mitigation. A water treatment 
plant was later constructed and put into service in 1976. 
The treatment plant takes water directly from the reser- 
voir (approximately 10 million gallons per day) and ser- 
ves primarily as a source of drinking water supply. ECR 
is a small and shallow reservoir with normal pool surface 
area 5.1 km2 and mean depth 5.7 m. It can be separated 
into three functional areas: the quarry, the northern basin, 
and the southern basin. The reservoir’s northern and sou- 
thern basins are separated by a land bridge causeway 
under 56th street, which allows limited water exchange 
through an approximately 50 meter opening. The quarry 
doesn’t have a direct connection with the other two ba-
sins in ECR and is considered as an isolate feature. Flow 
in ECR is supplied by tributaries from the upstream Ea-
gle Creek watershed (426 km2). Four main streams 
flowing into the reservoir are Eagle Creek, Bush Creek, 
Fishback Creek and School Branch, with Eagle Creek 
(mean discharge 4.2m3/s) being the major contributor of 
the flow. 

Seasonal and short-term temperature changes lead to 
the thermal stratification of the reservoir water. Distinct  
 

 

Figure 1. Eagle Creek Reservoir morphological conditions 
(left) and final grid system with 2008 sampling locations 
(right).  
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thermoclines that separate the reservoir into warm and 
cold water zones can prevent the water from mixing. In 
this case, contaminants tend to accumulate instead of 
circulating. For example, chlorine can accumulate at the 
bottom of warm water thermoclines [20]. Also, a lack of 
rainfall with inadequate mixing of fresh and stagnant 
water, increased algae growth, deterioration of organic 
matter as the water warms up, and low wind conditions, 
have contributed to depletion of DO levels in the reser-
voir. If a reservoir becomes stratified as a function of 
temperature, the bottom layer becomes deficient in dis-
solved oxygen [21]. 

Bathymetry data for ECR have been measured by Cen- 
ter for Earth and Environmental Sciences (CEES), Indi- 
ana University Purdue University Indianapolis (IUPUI). 
The bottom elevation varies from 223.8 m to 240.5 m 
above the sea level. Since no existing flow monitoring 
stations exist on the major tributaries just upstream of the 
reservoir, inflow discharges into the reservoir from the 
watershed were obtained from a watershed model—Soil 
and Water Assessment Tool (SWAT [22])—in this study. 
The outflow measurements from the dam were obtained 
from a United States Geological Survey (USGS) gauge 
Station #03353460 at Clermont (1 km downstream from 
reservoir). Hourly atmospheric data was obtained from 
National Climatic Data Center (http://www.ncdc.noaa.gov/). 
Observations from Eagle Creek Airpark/Airport (53842) 
station were used for this reservoir region. Hourly solar 
radiation for 2008 was obtained from Indiana State Cli- 
mate Office (http://climate.agry.purdue.edu/climate/). The 
closest station-Throckmorton-Purdue Agricultural Center 
(TPAC)-located in Lafayette, Tippecanoe County, IN, 63 
miles Northwest from Indianapolis, was used to obtain 
solar radiation data. The evaporation in ECR was not 
known. Hence evaporation rates were based on the meas- 
urements of a local water utility company that measured 
daily evaporation at Carmel, 27 km (17 miles) east of 
ECR. Data collected by the company indicated an aver-
age evaporation value of approximately 5.50 mm/day 
from June to October, and an average of 4.01 mm/day 
from November to May. Daily pool elevation data for 
2008 was obtained from USGS gauge Station #03353450 
in the ECR, just east of the dam.  

2.2. Simulation Model  

Environmental Fluid Dynamics Code (EFDC) [23,24], a 
public domain, open source, surface water numerical 
modeling system for simulating hydrodynamics, and wa-
ter quality in open-surface water bodies, was used to de-
velop a prediction model for the reservoir. EFDC has 
been applied to over 100 water bodies to support envi-
ronmental assessment and management, and regulatory 
requirements. The EFDC model solves the three-dimen- 
sional, vertically hydrostatic, free surface, turbulent av-

eraged equations of fluid with variable density. The mo- 
del uses a stretched or sigma vertical coordinate and Car- 
tesian or curvilinear, orthogonal horizontal coordinates. 
The hydrodynamic model also solves dynamically cou- 
pled transport equations for turbulent kinetic energy, tur- 
bulent length scale, salinity, and temperature.  

The 3-D stretched sigma grids implemented with the 
EFDC use the following transforming function to calcu- 
late an adjusted vertical coordinate, Z, from the bottom 
elevation and water surface elevation: 

   *  Z Z h h                 (1) 

In Equation (1), Z* = original physical vertical coordi-
nate, h = bottom elevation and ζ = water surface eleva-
tion. After the physical vertical coordinate system is 
stretched, the total depth is evenly distributed into equal 
depths of individual layers, for all the X-Y grid locations 
within the research domain. 

The continuity equation used in EFDC is given by 
Equation (2), in which H = water depth, u and v = hori-
zontal velocity components in x and y direction respec-
tively, w = vertical velocity component in z direction; QH 
= the volumetric source and sink term concerning rainfall, 
evaporation and infiltration. The conservation of mo-
mentum equations are given in Equations (3) and (4), in 
which f = Coriolis factor, p = the water column hydro-
static pressure; patm = the kinematic atmospheric pressure; 
Av = vertical turbulent momentum diffusion coefficients, 
and Qu and Qv = momentum source-sink terms. 
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In the transport equations for salinity and temperature 
(Equations (5) and (6)) the source and sink terms are 
given by QS and QT, which consist of sub-grid scale 
horizontal diffusion and thermal sources and sinks, and 
Aw is the vertical turbulent diffusivity.   
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The water surface and bed boundary conditions for 
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heat transport are given by Equations 7 and 8. For water 
surface: 

   
 b c ew

z
pw

J J JA
T

H C
 

             (7) 
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Short wave solar radiation at the bed is defined as: 

 1 ?f sH Hb

S

I
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I
               (9) 

where Jb = net long-wave back radiation; Jc = convective 
heat transfer; Je = evaporation heat transfer; Cpw = spe-
cific heat of water; Hb = active thermal thickness of the 
bed; Tb = bed temperature; Ib = short-wave solar radiation 
at the bed; ρb = bed density; Cpb = specific heat of the 
water-solid bed mixture; Chb = dimensionless convective 
heat exchange coefficient; Tbl = bottom layer water tem-
perature; Is = solar radiation at the water surface, r = dis-
tribution factor; βf and βs = fast and slow-scale attenua-
tion coefficients (Caliskan, 2008). 

Eight Equations (2)-(9) provide a closed system for the 
variables u, v, w, p, , , S, and T. The vertical turbulent 
viscosity and diffusivity and the source and sink terms 
are also specified [23]. EFDC uses mode-splitting [25] 
for separating the vertically integrated equations (exter-
nal free surface gravity wave or barotropic mode) from 
the vertical structure equations (internal shear or baro-
clinic mode). It calculates free surface elevation by solv-
ing the velocity transport separately from the 3D calcula-
tion of velocity and thermodynamic properties. 

2.2.1. EFDC Grid Generation 
Multiple grid sizes and time steps for representing the 
physical system were explored in the study to assure the 
accuracy of model results as well as the efficiency of the 
model. The Courant-Friedrichs-levy condition (CFL con- 
dition), a necessary condition for convergence while sol- 
ving certain partial differential equations (usually hyper- 
bolic PDEs) using a two-time-level numerical scheme, 
was used to test the suitability of grid sizes and time steps. 
CFL condition is expressed as Equation (10): 

t
U

x
 



                  (10) 

where U = velocity, ∆t = time step, ∆x = cell size. The 
necessary restriction for grid size and time step to ensure 
numerical convergence and stability is γ < 1. 

The final grid setup (Figure 1) for the numerical 
model consisted of expanding grids with minimum grid 
size 40 m to maximum 60 m. The expanding factor of 

1.005 was chosen to expand grid sizes from the focal 
point, which was the water intake. This location was cho- 
sen to accurately simulate the most complex flow condi- 
tion happening close to the causeway under the 56th 
Street land bridge, and the drinking water intake. A total 
of 2401 grid cells were developed to represent the physi- 
cal domain in the modeling domain. This grid best rep- 
resented the shape of the reservoir shoreline compared to 
other grids. Since EFDC only recognizes flow through 
cell faces, cells connecting with each other by corners do 
not exchange any mass or momentum across the corners. 
For this grid system, the time step of the finite difference 
model was set up to be two seconds considering the mo- 
del stability and the computational burden.  

2.2.2. Initial/Boundary Conditions 
The depth of water through the reservoir was measured 
by CEES (Center for Earth and Environmental Science, 
IUPUI) with sonar equipments. Bottom elevation was 
based on the bathymetry data, and the initial water sur- 
face elevation (or pool elevation (PE)) for the model was 
chosen to be 240.56 m according to USGS (station near 
the dam) measurement on January 1st, 2008. A uniform 
initial water temperature of 3.4˚C throughout the reser- 
voir was assumed for the model, based on the measure- 
ments at Mill Creek USGS gauge station near Manhattan, 
IN on the same day.  

Hydrodynamic boundary conditions of ECR included 
1) time-series inflow discharge from twelve tributaries of 
Eagle Creek simulated by the Soil and Water Assessment 
Tool - based watershed model (Figure 2), 2) outflow 
discharge through the water intake and ECR dam, 3) 
wind speed and direction, and 4) atmospheric data in- 
cluding precipitation and evaporation. The climatic data 
for 2008 was obtained from National Climate Data Cen- 
ter (NCDC) and Indiana State Climate Office. Eagle 
 

 

Figure 2. Eagle creek watershed tributaries that interface 
with the numerical modeling grid of ECR. 
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Creek Airpark station (station ID 53842) was used to 
obtain data on wet/dry air bulb temperature, precipitation, 
relative humidity, air pressure, wind speed and direction, 
and cloud cover. All data were appropriately formatted 
and imported into the EFDC modeling system. Figure 2 
also shows the boundary where the watershed tributaries 
join the EFDC modeling grid for ECR. 

2.3. Remote Sensing Observations 

One of the primary objectives of this study was to exam-
ine the advantages of using remote sensing observations 
for updating the hydrodynamic numerical model of in- 
land freshwater water body, hence, multispectral data 
were obtained from the Landsat 5 satellite. Landsat 5 
Thematic Mapper (TM) has been previously used to de-
rive water temperature with measurable success. For 
example, Lathrop and Lillesand [26] analyzed the utility 
of Landsat-5 TM thermal IR (band 6) for measuring and 
mapping water temperature of the Great Lakes, and con-
cluded that the TM derived water surface temperature 
has a root mean square error of less than 1˚C. Wout-
huyzen et al. [27] used 13 dates of Landsat-5 TM thermal 
images to investigate the seasonal variation of tempera-
ture in the Omura Bay in western Kyushu Island of Japan, 
and the results from this study indicates that water sur-
face temperature could be estimated at an accuracy of 
0.551˚C, 0.371˚C, 0.351˚C, and 0.331˚C for spring, sum- 
mer, autumn, and winter, respectively. Schneider and 
Mauser [28] found that lake surface temperature could be 
estimated at an accuracy of 0.55˚K. Schneider et al. [29] 
have used Landsat TM thermal band to estimate water 
surface temperature of Lake Constance and achieved an 
accuracy of 0.53˚K. 

In this research, the spatial resolution for TM band 6 
images was re-sampled from 120 m to 30 m spatial reso-
lution. Four of the TM band 6 thermal images obtained 
from the satellite (on dates Aug 7, Aug 23, Sept. 24, and 
Oct. 10 2008, and at local times 16:09, 16:08, 16:07, and 
16:07 hours, respectively) were used to convert spectral 
radiance to water surface temperature based on the Plan- 
ck’s law (Equation (11)). In Planck’s law, the long wave 
radiation emitted from the land surface was in proportion 
to its temperature as: 

 

 

2

1ln 1

K
T

K

L






 

  
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            (11) 

where  is the wave length; K1 and K2 are the calibration 
constants as 607.76 Watts/(m2·ster·μm) and 1260.56 
Kelvin respectively [21,30]; L is the spectral radiance in 
watts/(m2·ster·μm). These pre-launch calibration con-
stants from the empirical models are used under the as-
sumption that the down-welling radiance and atmos-

pheric transmissivity are constant in space throughout the 
study area, and thus are applied to calculate surface tem-
perature for each image pixel [31]. Studies using this 
method found the root mean square error (RMSE) in wa-
ter surface temperature to be less than 1K of retrieving 
land surface temperature [32]. This error is even smaller 
for surface water systems because of their better homo-
geneity in surface temperature. 

2.4. Data Assimilation Algorithms 

Existing methods of data assimilation are based on two 
types of approaches for finding the best estimates of state 
variables, input variables and boundary conditions from 
(noisy) observations given a (noisy) model [33]. The first 
approach uses a “direct observer” and provides a four- 
dimensional data assimilation scheme, whereas the sec-
ond approach uses a “dynamic observer” and provides a 
sequential data assimilation scheme. The commonly used 
direct observer data assimilation approaches include Di-
rect Insertion [34,35], Statistical Correction [34], Nudg-
ing [34,36], and Kalman Filter related methods. These 
“direct observer” methods adjust the model by continu-
ous update according to the observation in the previous 
time step. The “dynamic observer” data assimilation ap-
proaches adjust the state variables at the beginning of 
each assimilation window so that model predictions over 
that time period correspond with the observations. “Dy-
namic observer” techniques are especially useful for pro- 
blems that are driven by accuracy of initial conditions. 
“Dynamic observer” techniques can be posed as optimi- 
zation problems with strong constraints (variational me- 
thods) or weak constraints (dual variational or represent- 
er methods). Dente et al. [37] successfully used a varia- 
tional method to assimilate ASAR and MERIS satellite 
data into a wheat model and improved the wheat yield 
mapping. They employed a cost function to measure the 
error between model outputs and observations. In order 
to search for the optimal configuration of the model’s 
initial conditions, they minimized the cost function in an 
optimization method by varying the initial conditions. 
The optimization method constrained the variability of 
initial conditions to lie between expected values of initial 
conditions. The model was reinitialized within this range 
of initial conditions and the optimum model simulation 
of wheat yield was obtained. In the research done by Ines 
et al. [38], remote sensing data from two Landsat-7 En- 
hanced Thermatic Mapper Plus (ETM+) band 6 images 
were assimilated into a soil-water-atmosphere-plant model 
using variational data assimilation method. A genetic 
algorithm (GA) was used in data assimilation to modify 
model initial conditions and for optimization of water 
management strategies. A variational data assimilation 
method has also been used to assimilate a sequence of 
satellite images into a simple transport-diffusion model 
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to simulate the ocean surface current [39]. Although data 
assimilation algorithms have been widely applied in en- 
vironmental studies, few studies related to surface water 
systems [14,39] have used “dynamic observer” data as- 
similation approaches into the hydrodynamic models.  

The main objective of data assimilation approach in 
this study was to change the values of initial conditions 
of temperature in the reservoir at the beginning of the si- 
mulation, so that the cumulative error between model pre- 
dictions of temperature and observations at a future time 
was minimized. A cost function that estimates the error 
between predictions and observations in the surface layer, 
at specific time periods and at specific locations, was 
constructed and used to assist the optimization algorithm 
(based on a genetic algorithm) in modifying the assumed 
initial conditions of temperature in the various layers of 
the reservoir. The optimization algorithm was run for mul- 
tiple iterations to improve the initial conditions.  

To assimilate data obtained from the Landsat-5 TM+ 
images, 300 random locations were identified in the res-
ervoir (Figure 3), where the model results and optical 
observations were used to evaluate the model perform- 
ance. The finite difference model computed and gener- 
ated results in 2401 cells distributed over five vertical 
layers within ECR. Since the remotely sensed observa- 
tions are most applicable to the water surface conditions, 
the very top layer of the finite difference grids was cho- 
sen for comparing model predictions to the correspond- 
ing satellite-derived temperature observations. 

A variational data assimilation algorithm (Figure 4) 
was used in this study to incorporate the remote sensing 
observations within the simulation model. The data as- 
similation window was defined as the time period from 
the initial condition to the last observation time (Figure 4). 
The cost function was estimated using the relative root 
mean square error (RRMSE) calculated from both remote 
sensing outputs and model outputs in the topmost layer 
of all 300 random locations (Equation (12)). RRMSE 
calculated for each of the four observation days was then  
 

 

Figure 3. Random locations identified in the reservoir with 
TM image on Aug 7, 2008. 

Observation 
2 

Time

Model results
Assimilated results 
Observations 
Model propagation

 

St
at

e 
va

lu
e 

Observation 
1 

Initial 
Conditions 

Assimilation  Window 

Observation 
3 

Observation 
4 

 

Figure 4. Variational data assimilation of temperature ob-
servations. 
 
equally weighted and summed to obtain an overall 
RRMSE for the cost function (Equation (13)). 
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where Xo,i,j is value of the field observed model 
parameter at the ith location and jth day; Xm,i,j is the model 
output at the ith location and jth day; n is the number of 
observations at the the various locations (i.e. 300 in this 
case study); , joX  is the mean value of all the spatial 
observations; j is the number of days when remote sens- 
ing observations were acquired. 

An evolutionary optimization scheme based on the 
single objective genetic algorithm (GA [40]) was used in 
this study for minimizing the cost function (Equation 
(12)). The five decision variables were defined as the 
percentage change in the initial conditions of temperature 
for each of the five vertical layers. Nine uniformly dis-
tributed values of percent change were chosen between 
the range of minimum and maximum values of percent 
change. The first remote sensing image was available on 
the 219th day (August 7th) of 2008. Hence, the data as-
similation window was started from 213th (August 1st) 
day to allow a warm-up period for EFDC. Since the hy-
drodynamic numerical model is computationally time- 
consuming, use of evolutionary optimization-based data 
assimilation methods can pose additional computational 
challenges in effectively searching for alternatives. 
Hence, we limited the GA population size to a small 
value of 16, and set the maximum number of generations 
to 10. However, small population size and generation 
size can further limit the search efficiency. Hence, we 
conducted the optimization scheme over multiple step- 
by-step experiments. In the first GA experiment, the ini-
tial range of percentage change in water temperature for 
all the five vertical layers was allowed to vary from 
−20% (minimum percent change) to 20% (maximum 
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Table 1. Decision variables ranges (in %) for the five verti- 
cal layers in the five GA experiments (“Exp.”). Choice of 
ranges for 2nd, 3rd, and later experiments is dependent and 
based on the initial condition of best alternative found in 
the previous experiment. 

percent change) of the default initial temperature on 
213th day. In the following experiments, this range was 
individually modified for each vertical layer to allow 
search for better values of percent change for each of the 
layers near the values of the best alternative found in the 
previous experiment. In total five experiments were im-
plemented to the GA algorithm (Table 1). The crossover 
and mutation rate were set to 0.90 and 0.05, respectively. 

 Layer1 Layer2 Layer3 Layer4 Layer5

Exp. 1 (−20,20) (−20,20) (−20,20) (−20,20) (−20,20)

Exp. 2 (−15,5) (−20,0) (−20,0) (−20,0) (−15,5)

Exp. 3 (−20,0) (−25,0) (−25,0) (−25,0) (−20,0)

Exp. 4 (−30, −15) (−30, −15) (−35, −20) (−35, −20) (−30, −15)

Exp. 5 (−55, −25) (−60, −30) (−60, −30) (−60, −30) (−55, −25)

3. Results and Discussion 

3.1. Hydrodynamic Model Calibration 

3.1.1. Water Surface Elevation and Mass Balance 
The period January 1st, 2008 to July 31st, 2008 were 
used for the calibration process, just before the first set of 
remote sensing observations was available. The initial 
root mean square error (RMSE) for the calculated pool 
elevation was estimated to be 1.036 meters. These dis- 
crepancies arose due to errors in the estimated tributaries 
inflows (obtained from SWAT hydrologic model), which 
indicated need for further adjustment of inflows in order 
to better match the observed pool elevation. Also, since 
such large discrepancies in water surface elevation could 
lead to significant mismatches in water column tempera- 
ture vertical profiles, a further adjustment in SWAT mo- 
del outputs of flow discharges was made. The first step in 
adjusting the SWAT inflows used for the EFDC model 
included calculation of daily net storage in the reservoir 
from the inflow and outflows based on the following mass 
balance Equation (14): 

 
Once the daily net storage was estimated, it was added 

to the volume of the water in the reservoir to estimate the 
volume of the reservoir at the beginning of the next day 
(Equation (15)): 

Volume in reservoir on day i+1

 = Volume in reservoir on day i 

+ Daily net storage in reservoir at the end of the day i

 

(15) 
A rating curve was then developed using the bathym- 

etry data, to estimate relationships between reservoir 
volume and pool elevation. This rating curve provided 
means to estimate the reservoir volume at any day based 
on the pool elevation measured on that day. The differ- 
ence between the calculated and measured water volume 
in the reservoir was weighted according to the tributary 
discharge for that day, and was subtracted from the daily 
tributary inflows (Equation (16)). 

Daily net storage in reservoir at the end of the day i 

Total daily inflows from the tributaries on day i 

–  daily outflow in the water intake on day i 

–  daily outflow in the dam on day i


(14) 

After tributary inflows were adjusted, the new net stor- 
 

 

Adjusted discharge for tributary k on day i

= Original discharge for tributary k 

calculated water volume on day i - measured water volume on day i

discharge weight for tributary k





        (16) 

 
age of water within the reservoir and the corrected total 
volume on day i were calculated. At the beginning of day 
i + 1, the initial volume was the summation of corrected 
water volume in the day i and the net storage from inflow 
and outflow. The total difference between measured and 
calculated water volume was again used in the correction 
step, generating the corresponding tributary flows for day 
i + 1. This adjustment was applied to all daily inflows 
until the end of the model simulation period. The sche- 
matic procedure of computation is shown in Figure 5. 
Though this adjustment produced the water surface pool 

elevation identical to the measured data, it also resulted 
in some negative values in the adjusted tributary flows. 
In order to correct the negative tributary flows, all the ne- 
gative flows were replaced by a very small positive dis- 
charge of 0.00001m3/s. This resulted in a small discrep- 
ancy (RMSE of 0.07m) in pool elevation estimated from 
the rating curve. This error after flow correction was with- 
in the reasonable range in scale. 

The adjusted and corrected SWAT tributary inflows 
were then used as inputs into the reservoir model (EFDC). 
Figure 6 compares the EFDC simulated water surface 
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elevation with the measured pool elevation. Since EFDC 
simulates at much smaller time step than the daily time- 
step of the SWAT model, the EFDC output at the end of 
each day was taken as the corresponding simulated value 
for the water surface elevation on that day in Figure 6. 
Comparison of the modeled results and the field meas- 
urements during the first seven months in 2008 produced 
a root mean square error (RMSE) of 0.029 meter, which 
was 0.171 meter below the 0.200 meter instrumental ac- 
curacy of the Acoustic Doppler Current Profiler used to 
measure the bathymetry (Lobligeois, 2009). 

3.1.2. Water Column Temperature 
Other than water surface elevation, water column tem- 
perature was calibrated in full hydrodynamics. The in- 
situ measurements of 2008 were collected at 54 different 
(X, Y) locations throughout the reservoir, and with mul-
tiple measurements at several depths in each location. 
The YSI probes that were used to measure the water 
column temperature at these sampling locations had an  

 

 

Figure 5. Water surface elevation as a result of flow ad-
justment (The bottom figure is an enlarged sub-section of 
the top figure). 

instrumental error of ±0.15˚C (YSI, 2011). These meas-
urements were used for model calibration and validation. 
During the model calibration period, a series of calibra-
tion parameters were adjusted using EFDC to achieve the 
best agreement with the in-situ measurements of water 
column temperature (Table 2). In this research, water 
temperature calibration used 23 sampling events between 
May 22, 2008 and July 30, 2008.  

The temperature calibration results for 16 measure- 
ment events are shown in Figure 7. The densely dashed 
horizontal lines show the water surface elevation of each 
corresponding water column; the solid greenish-brown 
colored horizontal lines represent the bottom elevation. It 
indicates very good correlation between the measured 
(blue curves with square markers) and the modeled 
(brown smoothed curves with no markers) for water 
column temperature. Statistical analysis shows an overall 
RMSE of 1.279˚C, which is within the satisfaction range 
for water temperature simulation using EFDC. From the 
statistical view, the water temperature simulation has the 
most significant percentage error at monitoring Station 
ECRAT_A4. This phenomenon can be explained because 
this station is located at the upstream riverine area of 
ECR, and at the downstream of the confluence of an un- 
named tributary with the reservoir. In summer, it is as- 
sumed that water around this shallow region of the res- 
ervoir has higher temperature than nearby tributary flows 
from the watershed. The tributary flows bring cooler wa-  
 

Table 2. Water temperature calibration parameters. 

Model Parameter 
Calibrated 

Value 

Clear water light extinction coefficient (1/m) 7 

Solar radiation input/internally computed False 

Heat transfer coefficient between bed and water column 0.0000005

Evaporation transfer coefficient 0 

Min fraction of solar radiation absorbed in the top layer 1 

Initial bed temperature (˚C) 10 
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Figure 6. Comparison between measured pool elevation (PE), EFDC simulated pool elevation, and pool elevation calculated 
from daily mass balance based on SWAT daily flows and rating curves. 
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Figure 7. Calibrated temperature vertical profiles for ECR. 
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ter from the watershed into this area, where more stable 

 was to in-

surface layer water temperature at 300 random locations 
 the value retrieved from 

fo

 

and warmer water conditions have been created. How- 
ever, due to the lack of data from the watershed model, 
the reservoir boundary condition for water temperature 
was determined based on the USGS gauge station 
#03354000 at White River near Centerton, IN (approxi- 
mately 25 miles south from ECR). Therefore, the mod- 
eled temperature has high deviation from measured tem- 
perature at this station. With the calibrated water column 
temperature provided by EFDC calibrated water column 
temperature, a remote sensing data assimilation approach 
was then implemented during the simulation time period 
from August 1st to October 10th, 2008. 

3.2. Remote Sensing Data Assimilation 

Since one of the main objectives of this study
vestigate how a model updated via assimilation of re-
motely sensed observations of temperature would per-
form with respect to in-situ observations of temperature, 
the optimization algorithm calculated the error cost func-
tion (Equation (13)) based on four remote sensing images 
during 2008 (August 7th, August 23rd, September 24th, 
October 10th). At this point, it is important to note that 
the in-situ observations were not available on the days 
the remote sensing observations were available, which is 
a practical monitoring scenario that can arise. Hence er-
rors were calculated for different set of days for the two 
types of observations. 

During the remote sensing data assimilation processes, 
EFDC was set up in a restart mode with the restarting 
time at August 1st, which was the 213th day of the simu-
lation time period. The EFDC model was reinitialized 
with the water temperature initial condition adjusted at 
213rd day of 2008. During this process of reducing the 
variational range of the decision variables, it was discov-
ered that the decreasing water temperature values in ini-
tial condition provide better results, which were closer to 
the remote sensing observations. The results in assimi- 
lating water temperature data from the TM images suc- 
cessfully reduced the overall error fitness function (Equa- 
tion (13)) from 20.9% (before assimilation) to 15.9% (best 
alternative after the assimilation). The best alternative 
had decision variable values that indicated −55%, −41.25%, 
−60%, −60%, and −51.25% reductions in the initial tem- 
peratures of layers 1 (deepest), 2, 3, 4, and 5 (surface 
layer). Also, the improvements in model performance 
reduced rapidly with the progression of time, within the 
assimilation window. For example, for 7th Aug 2008, the 
best model’s relative RMSE improved from 22.0% to 
12.1% (i.e. 9.9% relative RME reduction), whereas for 
10th Oct 2008 the best model’s relative RMSE improved 
from 17.3% to only 14.8% (i.e., 2.5% relative RMSE 
reduction).  

Figure 8 shows comparison between the best modeled 

in the reservoir (circles) and
Landsat TM images, on the four observation days in 2008. 
The temperature outputs after data assimilation applica- 
tion showed better consistency with remote sensed ob- 
servations. These results also indicate a reasonably fair 
performance of the genetic algorithm optimization sche- 
me in the variational data assimilation process, in spite of 
the use of smaller population sizes and fewer generations 
because of computational burden of the numerical model.  

The errors were next calculated between modeled and 
in-situ measurements for the model before data assimila-
tion and for the best model after data assimilation, and 

r the time period covering the data assimilation win-
dow. Table 3 lists these comparisons of at various in-situ 
stations for the entire water column. For 15 out of 23 
X-Y locations (i.e., 65% of the station locations), the 
water column error unexpectedly increased after the data 
assimilation. The overall average RMSE of calibrated 
EFDC model (i.e., the model before data assimilation) in 
comparison with the in-situ observations, for the water 
column and during the data assimilation window, was 
estimated to be 1.8˚C. After data assimilation, this over-
all average RMSE of the best updated EFDC model in-
creased to 2.7˚C. This indicated that even though the data 
assimilation improved the model predictions of surface 
layer temperatures with respect to the remote sensing 
temperature observations, the updated model’s perform-
ance with respect to the in-situ observations in the water 
column actually worsened by 0.9˚C. This conflicting 
change in errors indicates that data assimilation based on 
the remote sensing derived water surface temperature can 
 

 

Figure 8. Water temperature data assimilation results: Cir-
cles-EFDC generated temp at 300 points without DA adjust; 
triangles-DA adjusted tempt at 300 points. 
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Table 3. Statistical summary of remote sensing data assimi-
lation (RSDA) on water column temperature. 

RMSE (˚C) 
Station Date/Time # Pairs 

Before RSDA After RSDA

ECRAT-G1 14-Aug-08 11 0.9 3.4 

ECRAT-G2 14-Aug-08 8 1.1 3 

ECRAT-G3 14-Aug-08 6 1.1 0.8 

ECRAT-H1 20-Aug-08 12 2.4 4.6 

ECRAT-H2 20-Aug-08 7 2.3 3.9 

ECRAT-H3 20-Aug-08 6 2.5 3.3 

ECRAT-H4 20-Aug-08 4 2 2.6 

ECRAT-I1 27-Aug-08 14 2 3.8 

ECRAT-I2 27-Aug-08 8 1.8 2.9 

2.2 

ECRAT-J2 3-Sep-08 8 1. 8 

E  

ECRAT-K1 16-Sep-08 13 1.6 2.6 

ECRAT-K2 16-Sep-08 7 0.4 1 

ECRAT-K3 16-Sep-08 6 0.1 0.4 

ECRAT-K4 16-Sep-08 4 1.1 0.9 

ECRAT-L1 30-Sep-08 11 1.7 2.5 

ECRAT-L2 30-Sep-08 8 0.6 1 

ECRAT-L3 30-Sep-08 6 1.1 1 

ECRAT-L4 30-Sep-08 4 2.6 2.6 

Composite statistics 185 (sum) 1.8 (mean) 2.7 (mean)

ECRAT-I3 27-Aug-08 7 1.5 1.5 

ECRAT-I4 27-Aug-08 5 4.3 3.9 

ECRAT-J1 3-Sep-08 7 2.2 

5 1.

CRAT-J3 27-Aug-08 7 2.2 1.6 

ECRAT-J4 3-Sep-08 16 2.5 4 
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the shallowest depth (0.25 meters) of a specific (x, y
tion was used to represent the in-situ

temperature observation of the relevant region. Similarly, 
the four temporal remotely-sensed observations in the 
respective regions were also used to estimate the relevant 
remote sensing derived water surface temperature (i.e., 
skin temperature representative of depth less than 0.05 
meter) for the various regions over the four days moni-
tored. This was done by taking the average of all remote 
sensing derived temperature observations at the (x, y) 
locations of the in-situ observations in the relevant region. 
Region A and B were located in the northern basin of the 
reservoir, and Region C and D were located in the south-
ern basin (Figure 9). Figures 10 (a)-(d) compare the 
available observations of four remote sensing derived  
 

Region A

Region B

Region C

Region D

 

Figure 9. Four geographical sampling regions in ECR. 
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Figure 10. (a)-(d) Comparison between CEES measure-
ments and remotely derived temperature. 
 
temperature with the in-situ temperature observations for 
the four regions. The instrument error of ±1˚C interval 
for remote sensing data and ±0.15˚C interval for in-situ 
measurements are also included as lower and upper bars 
in these figures. It can be seen that in-situ observations 
are generally higher than remote sensing derived obser
vations for all the four regions, thereby, showing a bias 
in the remote-sensing observations which are generally 
cooler than in-situ measurements. Statistical results indi-
cated an average RMSE of 3.33˚C between in-situ ob-
servations and remote-sensing observations, with in-situ 
observations having higher temperatures. Since syn-
chronous measurements from the satellite and in-situ 
sensors are not available, we compared the water tem-

perature measurements with the dry bulb temperature of 
air. Figure 10(a) compares these water temperatures in 
region A with the air temperature. From this comparison 
it can be assessed that all four remote sensing observa-
tions were taken on days with air temperature mostly 
cooler than air temperatures during the neighboring days 
when in-situ observations were taken. The same can be 
stated about regions B, C, and D, indicating that since all 
four days when remote sensing data was available, the ai
temperature was also cooler. The lack of enough remote 
sensing data during the warmer days could have biased 
the data assimilation towards cooler temperatures, and 
hence increasing the errors with respect to warmer in-situ 
temperatures. 

4. Conclusions 

This research explored the limitations in using remote 
sensing data for data assimilation in a finite differenc

tional data assi- 

e from the TM image. Thus assimilating 
corresponding remote sensed water temperature into the 

introduce errors during the horizontal 

-

r 

e 
hydrodynamic model of a small, inland freshwater res- 
ervoir. A genetic algorithm-based varia
milation approach successfully generated model initial 
conditions which reduced the difference between the mo- 
del outputs and the remote sensing observations. How- 
ever, the adjusted/updated model produced predicttions 
of temperature that had higher errors with respect to the 
in-situ measurements. Therefore, the assumption that the 
data assimilation with remote sensing temperature ob- 
servations will also always improve model performance 
with respect to field measurements was rejected. Follow- 
ing are the challenges that could potentially be the cause 
behind the observed discrepancies: 

1) The data assimilation algorithm was performed 
based on model outputs and remote sensed TM images. 
Horizontally, it was assumed that each random location 
was fully representative of the area round within one 30 
m remote sensing pixel and model grid. Since the spatial 
resolution is smaller for TM images than the model grid 
system, the unit pixel for each data set would be mis- 
matched in spatial scale. For example, when two data sets 
were overlapped with each other, there would be more 
than one pixel lain over the single model grid. When the 
random locations were picked up by points, the corre- 
sponding value extracted from the TM images would not 
necessarily be the dominant pixel value located within its 
model grid size. Similarly, when identifying the in-situ 
measurement locations, the corresponding values would 
not necessarily be dominant pixel value located within its 
model grid siz

model grids would 
integrating process.   

2) When comparing the remote sensing data with in- 
situ measurements, it was assumed that the measure- 
ments at 0.25 meter depth would be comparable to re- 
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mote sensed water surface temperature. However, as the 
remote sensing technology can only represent the top 
surface of the water column, the difference between the 
water temperature on the skin and that at 0.25 meter depth 
was assumed to be insignificant. However, based on our 
results, this difference warrants additional research and 
should be examined in relation to the temperature gradi- 
ent at the time of in-situ measurements to avoid the in- 
fluence cause by water depth. 

3) We also observed that the four remote sensing ob- 
servations were generally taken on cooler days, in com- 
parison to the in-situ observations on neighboring days. 
The effect of lack of additional remote sensing data dur- 
ing the warmer days needs to be also investigated in fu- 
ture research. 

We propose that since currently there is no method for 
accurately measuring the systematic and random human 
errors in either remote sensing or in-situ measurements, 
both remote sensing and in-situ measurements need to be 
assimilated at the same time during the data assimilation 
period. Future studies are also needed to investigate (a) 
how a multi-objective type approach can be applied for 
variational data assimilation of data from multiple sour- 
ces, and (b) how discrepancies in spatial and temporal 
scales of remote-sensing observation, in-situ observations, 
and model discretization needs to be resolved when they 
are used in combination in data assimilation approaches. 
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