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ABSTRACT

In this paper, approximate controllability of fractional order retarded semilinear systems is studied when the nonlinear
term satisfies the newly formulated bounded integral contractor-type conditions. We have shown the existence and
unigqueness of the mild solution for the fractional order retarded semilinear systems using an iterative procedure ap-
proach. Finally, we obtain the approximate controllability results of the system under simple condition.
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1. Introduction
Let X and U be Hilbert spaces with the corresponding
function spaces Z =1L,(0,7:X) and Y =L,(0,7:U)

respectively. Consider the following fractional order se-
milinear system

°Dix(t) = Ax(t)+Bu(t)+ f (t,x),0<t<
x(0)=¢(0), 6<[-h0]

where ©Dfx is the fractional order g™ derivative in

T
L1

1 . P
Caputo’s sense, > < (<1, Ais the infinitesimal genera-

tor of a Co-semigroup T(t) of bounded linear operator on
the Hilbert space X, B is a bounded linear operator from
Y—>2Z , f is a nonlinear function such that
f:[0,7]xC[-h,0: X]—> X , x:[-h,0]—> X is de-
finedas x (0)=x(t+6) for [-h,0] and
¢ €C(~h,0:X). The norm in X shall be denoted by |]|.
The corresponding linear fractional order system is
given by

°Dix(t)= Ax(t)+Bu(t), 0<t<r
x(0)=¢(0), 6<[-h0]

Fractional differential equations are the generalization
of ordinary differential equations of arbitrary non integer
orders. The fractional calculus is widely popular in the

(1.2)
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field of engineering and sciences, Shantanu [1]. Debnath
[2] studied the recent applications of fractional calculus
to dynamical systems in control theory, electrical circuits
with fractance, generalized voltage divider, viscoelastic-
ity etc. Many papers have appeared on the controllability
concepts for fractional order differential systems. For
instance, Wang and Zhou [3] studied complete controlla-
bility of fractional evolution systems. In that paper frac-
tional calculus method and fixed point theorem are used.
The semigroup operator is assumed to be noncompact.
Similarly controllability of fractional order impulsive
neutral functional infinite delay integrodifferential sys-
tems in Banach space is studied by Tai and Wang [4].
Sakthivel et al. [5] discussed the controllability of a class
of control systems governed by the semilinear fractional
equations in Hilbert spaces using fixed point techniques.
Kumar and Sukavanam [6] studied approximate control-
lability of fractional order semilinear systems with
bounded delay. In that paper contraction principle and
Schauder fixed point theorem are used. Zhou and Jiao [7]
and El-Borai [8] studied the existence of mild solutions
for fractional neutral evolution systems.

The notion of integral contractor was first introduced
by Altman [9] and later on it was used by many authors
to study the existence and uniqueness of solution of
nonlinear evolution systems. In [10] George et al. studied
the existence and uniqueness of the solution and the con-
trollability of the nonlinear third order dispersion equa-
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tion without delay using the bounded integral contractor.

In this paper the approximate controllability of a frac-
tional order retarded semilinear system is studied. We
consider the system with the nonlinear term satisfying a
bounded regular integral contractor-type condition. Un-
der this condition we show first the existence and
uniqueness of the mild solution of the system. Then us-
ing some simple condition we obtain the approximate
controllability results.

2. Preliminaries and Basic Assumptions

Some notions of fractional order differential equations are

given as follows.

Definition 2.1:

1) The fractional integral of order « for a function f is
defined as

Olt"f(t):ﬁi(t—s)a1f(s)ds, £>0, a>0

provided that the right hand side is defined pointwise on
[0,00). Here I" is the gamma function. 1 f (t) is called
Reimann Liouvilli integration.

2) Riemann-Liouville derivative order of o for a func-
tion f :[O,oo) — R can be written as

1 dm ! m-a-1
Df(t)=———|(t- f(s)ds, t>0, m-1<
DI F () F(m—a)dtm;[( s) (s)ds, t>0, m a<m

3)Let f eC™[0,%). Then the Caputo derivative of order o for a function f :[0,00) - R can be written as

c 1
D f (t) =
i) r(m-a)y

Define the mild solution of (1.1) as [7]

x(t)=
(1),
where

©

0

s, (t)¢(0)+_j;(t—s)qqu (t-5)(Bu()+ 1 (5.x(s-)))ds, t>0.2 g <1

Of(t—s)m_“_1 fT(s)ds=1""f"(t), t>0,0<m-1<a<m

(2.)
te[—h,O]

S, (1) =[£,(0)T (t%0)do, T, (t) = qTegq (6)T(t%0)d, &, (0) = %e_l_;v_vq [9;1] >0,

loo

T n=1

&, s a probability density function defined on (O,oo),
thatis & (0)=0,0<(0,%) and [& (0)do=1,
0
1 71 1
65, (0)do=|—W, (0)d0=——— 7
.[[é:CI( ) ,([eqwq( ) F(1+q) (See[])
Let M be a constant such that ||T (t)"ﬁ M for all
te[0,7] . Then the following Lemma stated as follows.
Lemma 2.1: [7] Sq(t) and Tq(t) are bounded linear op-
erators and

Mq
r(1+q)
Definition 2.2: The system (1.1) is said to be ap-

proximately controllable over a time interval [0, 7], if for
any given x, € X and a constant &> 0, there exists a

||Sq (t)" <M and||Tq (t)" < forallt[0,7]

max

0<t<r

Copyright © 2013 SciRes.

f [t,w(t)+ y(t)+':[1“(s,w(s)) y(s)dsJ— f(tw(t))-T(t,w(t))y(t)

W, (0)==>(-1)"" 49“”1@% (nnq), 6€(0,)

control u such that the corresponding mild solution x(t)
of (1.1) satisfies |x(z)-x<e.

Let C=C([0,7]:X) denote the Banach space of
continuous functions on J =[0,7] with the standard
norm x|, = max{||x(t)||:0£t£r} for x e C. By con-

sidering the nonlinear initial value problem of the form
X(t)=F(t,x),0<t<ys x(0)=¢ in Banach space X [9]
introduced a bounded integral contractor in the following
definition.

Definition 2.3: [9] A function f is said to have a
bounded integral contractor T" if
I[:JxX —BL(X) is a bounded operator and there
exists a positive number ysuch that forany w,y € C

<7I¥le (22)
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Definition 2.4: [9] A bounded integral contractor T’
is said to be regular if the integral equation

t

z(t)=y(t)+[T(s,w(s))y(s)ds (2.3)

0

has a solution y in C for every w, z € C.

Then we say that f has a bounded integral contractor
'* with respect to the operator Tq(t).

Definition 2.6: A bounded integral contractor T'* is
said to be regular if the integral equation

2(t)= y(t)+j;(t—s)qqu (t=5)r (s.w(s)) y(s)ds

(2.5)

t+6

f (t,w(t)+ y(t)+.:[(t —s)"'T, (t-s)I (s,w(s)) y(s)dsj— f(t,w(t))-T%(t,w(t))y(t)

— J'(t+9—s)q_qu(t+0—s)l"ﬂ(s,ws)ysds, O<t<r

We define a bounded integral contractor operator T
for the fractional order system without delay in a similar
fashion as:

Definition 2.5: Suppose I'":JxX —BL(X) is a
bounded operator and there exists a positive number y
such that for any w, y € Z we have

<yl

has a solution y in Z for every w, z € Z. Let us assume
e (t,w(t))"LB(X) <f Vtel, weZ

Let Z,=L,(-h,z:X) . Now we define a new
bounded integral contractor-type operator I} so as to
make compatible with retarded system as follows.

Definition 2.7: Let T}:JxC, —»>BL(C,,X) be
such that for 6 e[-h,0]

(W)Y (6)=1 9 (2.6)
0, te[-h,0]
If for any w, ye Z,
Hf (tw(t=h)+ y(t=h)+ T3 (w)y(t))- f (Lw(t-h))-T3 (Lw(e-h) y(e-h)| <y (0], 2.7)

then f is said to have an integral contractor-type operator T} .

It can be seen easily if T} =0,then I'} =0 and fis Lipschitz continuous.

Let us assume that ||1"ﬂ (t,w, )"LB(C X
"

sider the integral equation of the form

Y, (0)+

z,(0)= '([
$(t+0),

)sﬂz, vtel, weZ, and B=max{f,p,}. Similar to Equation (2.5) con-

(t+6-5) " T, (t+6-5)T¢ (s,w,)y,ds, t+620, z,w, C,

(2.8)
t+0¢ [—h, O]

Definition 2.8: If T'} is bounded and the integral Equation (2.8) has a solution y; in C,, for every z;, w; € Cy, then

Iy is called regular on Cy.
Now we assume the following conditions:

1) The semigroup T(t), t > 0, is compact and T(t) = 0 for t € [-h,0)
2) f has a bounded regular integral contractor-type I'} on Cyi.e.

Hf (tw)+Y, +F_?(Wt)yt_ f(t,w)-T7} (tht)yt

3) fis uniformly bounded, i.e. there exists M; > 0 such
that | f(t,x )| <M,

4) The fractional order linear system corresponding to
(1.1) is approximate controllable

5) For all y € Y there exists a constant k>0 such that
[By]> K[y o

Lemma 2.2: [7] If the assumption (1) is satisfied, then

Copyright © 2013 SciRes.

<7vl

S,(t) and T, (t) are also compact operators for every
t>0.

3. Main Result

Define the solution mapping W: Y — Z by Wu = x where
x(t) is the unique mild solution of (1.1) corresponding to
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the control u(t). . . . Myr®
Lemma 3.1: The solution mapping W is compact. unique mild solution if r(L+q) <
The procedure of the proof is quite similar to Lemma 1 ) ) ) )

in [11]. Proof: First we show the existence of the mild solution.
Theorem 3.1: Under the assumptions (1) and (2) the Consider the following iteration procedure to produce

abstract fractional order semilinear system (1.1) has a  sequences {X,(t)} and {yn(t)} in X. For-h<t< 7

xo(t)z +;[ (t-s Bu(s)ds, t>0
4(t), te[-h,0]
[ 3.1)
o ()= X, (t) - E[(t $)"T, (t=5) f (5., (s=h))ds—x, (1), t>0
0, te[—h,O]
Xoua ( j =8$)TR (S, %) YnOs = ¥, (1)
j —S)T7 (S, Xg ) Yeu OIS — ( jt s)? —s) f (s, %, )ds—x (t)j (3.2)
:i(t—s)qqu (t-s)f (s,xsn)ds—i‘(t—s)qlT (t=8)T7 (S, X ) Vinds +Xo (1)
Your (1) =X ( j; )t (S Xy(ne1 )ds % (1)
- j(t—s)q_qu (t-s)f (s,xsn)ds—l“_f(s, Xon ) Yen (1) + % (1) (3.3)

9T (=) (51005 )

For every t € [0,7] and x e C we can define x; € C, such that x (6)=x(t+8), h<#<0. Hence, we consider the
following formulation for the sequences {Xi,} and {yu}.

. (6)= Sq(t)¢(0)+_([(t+6’-s)°"l'|'q(t+¢9—s)Bu(s)ds, 4050
$(t+0), t+60e[-h,0]

t+6

ym(6')=xm(¢9)—g(t+9—s)q’qu(t+6'—s) (5,%,, ) ds =%, (8) -

Xt(n+l) (9) = th (0) - ytn (9) _F?(Xin)ytn (0)
Then from (3.3) we get

t

yn+l(t):'[(t—s)q’lTq (t—s)f(s,xsn)ds—z|:'(t—s)0I T, (t=5)T7 (5, %, ) Yo dis

0

T () (st T
:_I(t-s)“Tq(t-s){f( KoY T (550 ) V) (5.50) 4T (5%, ) v

Applying the definition (2.7) with y;: —ys, and wy: X, we obtain the following inequality.

e ( sn)ysn)ds

Copyright © 2013 SciRes. IIMNTA
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b (1= =) =9l 50~y = Ot )= £ (50T )
- =) e = (s v+ T ) ) £ ()3 (s .
'\ﬁyq g "Nl dS=F('\ﬁyq)i\(t—S)“ max |y, (s+6)ds
[y, (0] < (ﬂz)ﬁgydﬂﬂa—ﬂ”ds
(1+q nax |y, (t)] < ( ]ax Yous (1) (35)

Yo (t)"

n+l
<o M
r(1+q) ~h<6<0

n+1
q q
Since 77 <1, asn— o we have Myz -0 = limy,,, =0 Vte[-h,7]
(1+q) r(1+q) oo
Hence the limy, =0 forallt e [0,].

n—o0

Now we show the convergence of the sequence x,(t) to the mild solution of the system (1.1). From (3.2) we have
Xt(n+1 (9) = th (0)_ yln (9)_(1—‘?th ) ytn (9)
Kouy (1+0) =%, (t+0) =¥, (t+6) (%, ) (6)

Note that if t+60<0 then X, (t+60)-x,(t+0)=0 and vy, (t+0)=0
Thus for t+6>0

t+6
n+1 (t + 0) (t + 9)" < "y” (t + 6)" + E[ ‘(t - S)'k1 ||TCI (t - S)””Fg (S’ XSH ) " ysn”Ch ds
t+60
<|lv. (t+6)]+ ! ‘(t = )T (t=3)] 3 (5.)] max [y, (s+)] s
Define t:=t+6 then we get
t
Ko (6= (O (O = 9)" I (=) (5.0 e o)
<l O g e M-y

M Bt Myt M
S[“F(uq)][r(uq)J el

Consider the sequence of {x,(t)} in X. For a positive integers m and n, assume m < n. Then from the above proce-
dures we have

[0 (8) =% (0)]

Xmoa (1) =X (1))

S[“ rl\?lirt:)]““’ ()":Zm{( '\(Alfq)]kﬁj

(t)+-+

Copyright © 2013 SciRes. IIMNTA
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Clearly the right hand side is the tail of a convergent series for sufficiently large m and n since e

the sequence X, is a Cauchy sequence in C hence the sequence converges to say x’ in X.
Therefore from (3.1) we have

lim yn(t):Iimxn(t)—Iimj'(t—s)q'qu(t—s) f (S, % )ds—%,(t), te(0,7]

n—oo n—oo n—oo

(t-s)" T(t—s)f(s,x;)ds—xo(t)

=0=x(t)-

o'—.«-

=X (t)+_:[(t—s)q_qu (t—s)f(s,x)ds

Hence x'(t) is a mild solution of the system (1.1).

r'(1+q)

<1. Thus

Now let us show the uniqueness of a mild solution. Let x;(t) and x,(t) be the two mild solutions of (1.1) with control u.

By the regularity of the integral contractor type I'} with z, =x,—X, there existsy; in C, such that

t+6

2,(0)=y,(0)+ [ (t+0-5)"" T, (t+0-5)T7(s,x,)y,ds

X, (0) =%, (0)+Y, (0 j t+¢9—s)q’1Tq(t+¢9 )T (s, %, ) y.ds
0

= %1 (0)+ ¥, (8)+T (%) ¥, (6)
But

(050 = J(15)" T (-8) (1)~ 1 (5.0

- T ) sty T ()3 (5T e s
=9 (=0T 5 ) s

b 05 0 [ T s o TE - o)

~T7 (s, %) Ys ||ds +j”(t —s) T, (t —S)HHFE (s,%y) yS"ds
0

MQJ/ h g-1 Mgs | g-1
M 9
r(1+q)(“ﬂ)ﬂ%§o y”(5+9)"

Note that if t + 6 e [-h0], then X (t+0)=¢(t+0)=x,(t+0) and we put y(t+6)=0 .

x1(t) =Xy (O)' X, (t) = X2 (O) and y(t) =% (O)

Hence

(t=s)"" T, (t=s)TE (s, %) y,ds

x
N
—
—
~
Il

W<
—_
—
~—
+
<
—~
—
~—
+

O —

Then we have

y(t) =%, (t) = (t)- _:[(t §7UT, (t=5)T% (5,%,) y,s

Copyright © 2013 SciRes.
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This implies that

159

t
MOIE F(qu)f (t=)" 1 (5% )= F (s0%a) =T (5,%2) s s
0
M ! _
<) il o
<_May ‘:[(t—s)q_1 max ||y, (s +0) )|ds

—
—~
[EN
+
o]
~—

Since the integrand in the right hand side is positive
then the integral is an increasing function of t. Hence

Mgy ”t Sql

1+ q
By Gronwall’s inequality y(t) becomes zero for all t >
0. Since
y ()]

[vel,

This implies that y;, is zero. Therefore, X, = x; which
means that the mild solution of (1.1) is unique. This
completes the proof of the theorem.

Theorem 3.2: Consider the assumptions (1)-(5), then

max

—h<r<t

max

—h<s<t

Yo (s)]ds

= max
—h<9<0

y(t+6)]< max

—h<t<r

w(t)= s, (t)4(0

~—
[ ——

(t—s)q’lTq (t-s)Bv

the abstract retarded semilinear control system (1.1) is
approximate controllable.

Proof: Let w(t) be the solution of the linear control
system (1.2) corresponding to the control v and consider
the following system.

“Dix(t) = Ax(t)+ f (t,x )+ Bv(t)- f (t,
x(0)=¢(0), 6<[-h,0]

W), 0<t<r

(3.6)

Note that the above system is the same as the system

(1.1) in which Bu is replaced by Bv(t)— f (t,w,). We
define the mild solution of the linear system (1.2) as

(S)ds, te [O,r]

(3.7)
4(t), e[-h.0]
And the mild solution of the system (3.6) is
t
S, (1)p(0)+[(t—s)"'T, (t—s)(Bv(s)+ f (s,w,)— f (s,x.))ds, te[0,7],
X(t)= Q()¢( ) ,([( ) q( )( ( ) ( s) ( s)) e[ T] (38)
¢(t), te [—h,O]
But by the regularity condition with z, =w, —x, there exists y; such that
2= =% = Yo+ T (%)Y,
Ye =W — X _rtq (Xsl)ys
t
=W, — X, —I(t—s)q_qu (t—s)TR(s,%)y,ds
0
Taking the norms we get
t
Ik, <lw=xl, =g =5 Il o
By Gronwall’s inequality
M B¢
Ik, <l e 25 @9)
Subtracting (3.8) from (3.7) and taking norm on both sides we get
Copyright © 2013 SciRes. IIMNTA



160 S. TAFESSE, N. SUKAVANAM

j;(t—s)q_qu (t—s)( f(s,w,)—f(s,%)-T} (s,xs)ys)ds

um—mhs\

t
+ J'(t - s)c"lTq (t=s)I3(s, %, )y,ds
0

Mg ¢ 4

gl" 1+q E[(t_s)q "f(s’ws)_f(S'XS)_Fﬂ(S'Xs)ys ds (3.10)
Mgg |

Ty 5l o
t
S (1+q 7+/B_(l; "ChdS
From (3.9) and (3.10) it follows that
[y <=3+ e [ ]J - x|, ds
Ch (1 q) 0 Ch

Mg Mgzt —5)" max [w(s+6)-x(s+ s
< s o] ALt o s 0)-x(s )

]_+q 0 -h<6<0

Since the integrand in the right hand side is positive then the integral is an increasing function of t. Hence

sup Jw, — xt||_ (7+p)ex [ J” (t—s)""|sup w(s)-x(s)|ds
o<r<t ) 0<s<t
Again Gronwall’s inequality implies w(t)=x(t) for plications, Vol. 62, No. 3, 2011, pp. 1451-1459.
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