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ABSTRACT 

In this paper, approximate controllability of fractional order retarded semilinear systems is studied when the nonlinear 
term satisfies the newly formulated bounded integral contractor-type conditions. We have shown the existence and 
uniqueness of the mild solution for the fractional order retarded semilinear systems using an iterative procedure ap-
proach. Finally, we obtain the approximate controllability results of the system under simple condition. 
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1. Introduction 

Let X and U be Hilbert spaces with the corresponding  
function spaces

 2 0, : Z L  X  and  2 0, :Y L U   

respectively. Consider the following fractional order se-
milinear system 

       
     

, , 0

, ,0

C q
tD x t Ax t Bu t f t x t

x h

t 

   

    

  
 (1.1) 

where  is the fractional order qth derivative in  C q
tD x

Caputo’s sense, 
1

1
2

q  , A is the infinitesimal genera- 

tor of a Co-semigroup T(t) of bounded linear operator on 
the Hilbert space X, B is a bounded linear operator from 

, f is a nonlinear function such that Y Z
   : 0, ,0 :f C h X X   ,  : ,0tx h X 


 is de-

fined as      for t ,0x x t  
 ,0 :C h X

h    and  
. The norm in X shall be denoted by    . .  

The corresponding linear fractional order system is 
given by  

     
     

, 0

, ,0

C q
tD x t Ax t Bu t t

x h



   

  

  


  (1.2) 

Fractional differential equations are the generalization 
of ordinary differential equations of arbitrary non integer 
orders. The fractional calculus is widely popular in the 

field of engineering and sciences, Shantanu [1]. Debnath 
[2] studied the recent applications of fractional calculus 
to dynamical systems in control theory, electrical circuits 
with fractance, generalized voltage divider, viscoelastic-
ity etc. Many papers have appeared on the controllability 
concepts for fractional order differential systems. For 
instance, Wang and Zhou [3] studied complete controlla-
bility of fractional evolution systems. In that paper frac-
tional calculus method and fixed point theorem are used. 
The semigroup operator is assumed to be noncompact. 
Similarly controllability of fractional order impulsive 
neutral functional infinite delay integrodifferential sys-
tems in Banach space is studied by Tai and Wang [4]. 
Sakthivel et al. [5] discussed the controllability of a class 
of control systems governed by the semilinear fractional 
equations in Hilbert spaces using fixed point techniques. 
Kumar and Sukavanam [6] studied approximate control-
lability of fractional order semilinear systems with 
bounded delay. In that paper contraction principle and 
Schauder fixed point theorem are used. Zhou and Jiao [7] 
and El-Borai [8] studied the existence of mild solutions 
for fractional neutral evolution systems. 

The notion of integral contractor was first introduced 
by Altman [9] and later on it was used by many authors 
to study the existence and uniqueness of solution of 
nonlinear evolution systems. In [10] George et al. studied 
the existence and uniqueness of the solution and the con-
trollability of the nonlinear third order dispersion equa-
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tion without delay using the bounded integral contractor. 
In this paper the approximate controllability of a frac-

tional order retarded semilinear system is studied. We 
consider the system with the nonlinear term satisfying a 
bounded regular integral contractor-type condition. Un-
der this condition we show first the existence and 
uniqueness of the mild solution of the system. Then us-
ing some simple condition we obtain the approximate 
controllability results. 

2. Preliminaries and Basic Assumptions 

Some notions of fractional order differential equations are 

given as follows. 
Definition 2.1:  
1) The fractional integral of order  for a function f is 

defined as  

       1

0
0

1
d , 0, 0

t

tI f t t s f s s t
 


  

    

provided that the right hand side is defined pointwise on 
[0,). Here  is the gamma function.  0 tI f t  is called 
Reimann Liouvilli integration. 

2) Riemann-Liouville derivative order of  for a func-
tion  : 0,f R   can be written as 

 

       1

0
0

1 d
d , 0, 1

d

tm
m

t m
D f t t s f s s t m m

m t

 


    
    



 

3) Let . Then the Caputo derivative of order  for a function  0,mf C  : 0,f R   can be written as  

         1

0

1
d , 0, 0 1

t
mC m m m

tD f t t s f s s I f t t m m
m

  


         
    

Define the mild solution of (1.1) as [7] 
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0

1
0 , d
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        (2.1) 

where 

             
1 1

1

0 0

1
d , d , 0q q q q
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1

11
1 sin ,

!
n qn

q
n

nq
w n

n
  


  



 
   
 0,q   

 

q  
is a probability density functio  defined on n  0, , 

that is  and    0, 0,q      
0

d 1q  


 ,

 
     0 0

1 1
d d

1q qq
w

q
    



 

 
    (see [7]) 

Let M be a constant such that  T t M  for all 
 0,t  . Then the following Lemma stated as follows. 

Lemma 2.1: [7] Sq(t) and Tq(t) are bounded linear op-
erators and  

       and for all 0,
1q q

Mq
S t M T t t

q
 

 
 . 

Definition 2.2: The system (1.1) is said to be ap-
proximately controllable over a time interval

 

[0,],

 

if for 
any given 1x X  and a constant  > 0, there exists a 

control u such that the corresponding mild solution x(t) 
of (1.1) satisfies   1x x   . 

Let   0, :C C X  denote the Banach space of  

continuous functions on  0,J   with the standard  

norm   max : 0
C

x x t t  for x  C. By con-   

 sidering the nonlinear initial value problem of the form

      , , 0 , 0x t F t x t x      in Banach space X [9] 

introduced a bounded integral contractor in the following 
definition. 

Definition 2.3: [9] A function f is said to have a 
bounded integral contractor  if 

 : J X BL X    is a bounded operator and there 
exists a positive number  such that for any w, y  C  

 

                
0

0

max , , d , ,
t

Ct
f t w t y t s w s y s s f t w t t w t y t y




 

 
      

 
       (2.2) 
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Definition 2.4: [9] A bounded integral contractor   

is said to be regular if the integral equation  

        
0

, d
t

z t y t s w s y s s    (2.3) 

has a solution y in C for every w, z  C.  

We define a bounded integral contractor operator q  
for the fractional order system without delay in a similar 
fashion as: 

Definition 2.5: Suppose  :q J X BL X    is a 
bounded operator and there exists a positive number  
such that for any w, y  Z we have  

 

                      1

0

, , d , ,
t

q q q
qf t w t y t t s T t s s w s y s s f t w t t w t y t y t 

        
 

 (2.4) 

 
Then we say that f has a bounded integral contractor 
 with respect to the operator Tq(t).  q

Definition 2.6: A bounded integral contractor q  is 
said to be regular if the integral equation  

            1

0

,
t

q q
qz t y t t s T t s s w s y s s

    

has a solution y in Z for every w, z  Z. Let us assume 

  
  1, ,q

LB X
t w t t J w Z    

d  

(2.5) 

 Let  2 , :hZ L h X  . Now we define a new 
bounded integral contractor-type operator  so as to 
make compatible with retarded system as follows. 

q
h

Definition 2.7: Let : ,q
h h h J C BL C X    be 

such that for  ,0h    
 

   
     

 

1

0

, d , 0

0,    ,0

t
q q

q h s sq
t t t

t s T t s s w y s t
w y

t h



  





       
  

 
            (2.6) 

If for any w, y Zh 

                  , , ,q q
t hf t w t h y t h w y t f t w t h t w t h y t h y t           ,           (2.7) 

then f is said to have an integral contractor-type operator q
h .  

It can be seen easily if , then 0q
h  0q

h   and f is Lipschitz continuous. 

Let us assume that  
  2,

, , ,
h

q t wh t hLB C X
t J w Z      and  1 2max ,   . Similar to Equation (2.5) con-  

sider the integral equation of the form 

 
       

   

1

0

, d ,  0, ,

,                       ,0

t
q q

t q h s s

t

y t s T t s s w y s t z w
z

t t



   


  




         
  

 t t hC

h 

      (2.8) 

Definition 2.8: If 
 

is bounded and the integral Equation (2.8) has a solution yt in Ch for every zt, wt  Ch, then 
is called regular on Ch. 

q
h

q
h  
Now we assume the following conditions: 
1) The semigroup T(t), t  0, is compact and T(t) = 0 for t  [–h,0) 
2) f has a bounded regular integral contractor-type q

h  on Ch i.e.  

       , , ,q q
t t t t t t h t t tf t w y w y f t w t w y y       

 
3) f is uniformly bounded, i.e. there exists M1 > 0 such 

that   1, tf t x M  
4) The fractional order linear system corresponding to 

(1.1) is approximate controllable 
5) For all y  Y there exists a constant k>0 such that 

By k y  
Lemma 2.2: [7] If the assumption (1) is satisfied, then 

 qS t  and  qT t  are also compact operators for every 
t>0.  

3. Main Result 

Define the solution mapping W: Y  Z by Wu = x where 
x(t) is the unique mild solution of (1.1) corresponding to 
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the control u(t). 
Lemma 3.1: The solution mapping W is compact.  
The procedure of the proof is quite similar to Lemma 1 

in [11]. 
Theorem 3.1: Under the assumptions (1) and (2) the 

abstract fractional order semilinear system (1.1) has a 

unique mild solution if 
 

1
1

qM

q




 
. 

Proof: First we show the existence of the mild solution. 
Consider the following iteration procedure to produce 

sequences {xn(t)} and {yn(t)} in X. For –h  t   
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               (3.3) 

For every t  [0,] and x  C we can define xt  Ch such that     ,  0tx x t h      . Hence, we consider the 
following formulation for the sequences {xtn} and {ytn}. 
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Then from (3.3) we get 
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 d

 

Applying the definition (2.7) with yt: –ysn and wt: xsn we obtain the following inequality. 
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Since 
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, as n   we have 

   
1

10 lim 0
1

n
q

n
n

M
y t h

q


,





 
         

 

Hence the  for all t  [0,]. lim 0n
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Now we show the convergence of the sequence xn(t) to the mild solution of the system (1.1). From (3.2) we have  
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Define :t t    then we get 
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Consider the sequence of {xn(t)} in X. For a positive integers m and n, assume m < n. Then from the above proce-
dures we have  
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Clearly the right hand side is the tail of a convergent series for sufficiently large m and n since 
 

1
1

qM

q




 
. Thus 

the sequence xn is a Cauchy sequence in C hence the sequence converges to say x in X.  
Therefore from (3.1) we have 
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Hence x(t) is a mild solution of the system (1.1). 
Now let us show the uniqueness of a mild solution. Let x1(t) and x2(t) be the two mild solutions of (1.1) with control u. 

By the regularity of the integral contractor type q
h  with 2t t tz x x 1   there exists yt in Ch such that  
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This implies that  
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Since the integrand in the right hand side is positive 

then the integral is an increasing function of t. Hence 
the abstract retarded semilinear control system (1.1) is 
approximate controllable.  

Proof: Let w(t) be the solution of the linear control 
system (1.2) corresponding to the control v and consider 
the following system. 

        1
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By Gronwall’s inequality y(t) becomes zero for all t  
0. Since           

     
, , , 0

, ,0

C q
t t tD x t Ax t f t x Bv t f t w t

x h



   

    

  


 

(3.6) 
   

0
max max

h
t C h h t

y y t y t
 


     

    

This implies that yt is zero. Therefore, x2 = x1 which 
means that the mild solution of (1.1) is unique. This 
completes the proof of the theorem. 

Note that the above system is the same as the system  
(1.1) in which Bu is replaced by    , tBv t f t w . We 

define the mild solution of the linear system (1.2) as Theorem 3.2: Consider the assumptions (1)-(5), then 
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And the mild solution of the system (3.6) is  
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Taking the norms we get 
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By Gronwall’s inequality 
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Subtracting (3.8) from (3.7) and taking norm on both sides we get 
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From (3.9) and (3.10) it follows that  
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Since the integrand in the right hand side is positive then the integral is an increasing function of t. Hence  
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0 00

sup exp sup d
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Again Gronwall’s inequality implies    w t x t  for 

all t [–h,]. Under condition (5) the equation  
has a solution u(t). Therefore, the fra- 

ctional order retarded semilinear control system (1.1) is 
approximately controllable with control u. 

 , tBu Bv f t x  
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