
Journal of Software Engineering and Applications, 2013, 6, 435-445
http://dx.doi.org/10.4236/jsea.2013.69054 Published Online September 2013 (http://www.scirp.org/journal/jsea)

435

Towards Enhanced Program Comprehension for Service
Oriented Architecture (SOA) Systems

Eman El-Sheikh1, Thomas Reichherzer1, Laura White1, Norman Wilde1, John Coffey1, Sikha Bagui1,
George Goehring1, Arthur Baskin2

1Department of Computer Science, University of West Florida, Pensacola, USA; 2Intelligent Information Technologies Corporation,
Indianapolis, USA.
Email: eelsheikh@uwf.edu, treichherzer@uwf.edu, lwhite@uwf.edu, nwilde@uwf.edu, jcoffey@uwf.edu, bagui@uwf.edu,

gng3@students.uwf.edu, abaskin@intelligent-it.com

Received July 2nd, 2013; revised August 1st, 2013; accepted August 10th, 2013

Copyright © 2013 Eman El-Sheikh et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Service Oriented Architecture (SOA) is an emerging paradigm for orchestrating software components to build new
composite applications that enable businesses, government agencies and other organizations to collaborate across insti-
tutional boundaries. SOA offers new languages and a variety of software development tools that enable software engi-
neers to configure software as services and to interconnect services with other services independent of differences in
operating platform and programming and communicating languages. However, SOA composite applications introduce
additional complexity into the construction, deployment and maintenance of software, for the purpose of aggravating
the issue of program comprehension, which is at the heart of software maintenance. This article describes the challenges
in SOA program comprehension and reports on the results of a two-part case study aimed at identifying information that
would help a SOA software maintainer. Analysis of the results indicates a need for higher-level abstractions and visu-
alizations that can enhance conventional text-based search to support SOA program understanding. This paper then re-
ports on several specific abstractions, visualization methods, and the development of an intelligent search tool to en-
hance comprehension of the relationships and data within a SOA composite application.

Keywords: Service Oriented Architecture; Software Maintenance; Program Comprehension; Intelligent Search;

Abstraction; Visualization; Web Services

1. Introduction

The emergence of Service Oriented Architecture (SOA)
has created a new generation of information technology
systems that support mission critical tasks in government
and industry. Unfortunately, like each previous genera-
tion of software, SOA is also likely to create some new
challenges for software maintainers.

Definitions of SOA vary [1], but generally they de-
scribe large systems-of-systems [2] in which composite
applications are created by orchestrating loosely-coupled
service components that run on different nodes and that
communicate via message passing. An infrastructure
layer, sometimes called an Enterprise Service Bus (ESB),
mediates the communication, providing features such as
routing, security, and data transformation.

The fundamental technique is the concept of service
interface contracts, which play a critical role in allowing
communication among the various components. The ser-

vices are heterogeneous in both implementation language
and operating environment, distributed geographically,
and, possibly most important, commonly distributed in
ownership. A main attraction of SOA is that it enables
collaborations that cross company and organizational
boundaries.

These characteristics of SOA aggravate the issue of
program comprehension, which has been at the heart of
the software maintenance problem for all previous gen-
erations of software. It is very important for a maintainer
to understand software at a deep level before making
changes; modifications made based on imperfect under-
standing are highly likely to fail, possibly with disastrous
consequences. Such deep knowledge is, in practice, best
obtained from skilled software engineers who have par-
ticipated in the system’s creation. Software maintenance
typically becomes difficult and expensive precisely at the
time when such individuals disperse, and take their ex-

Copyright © 2013 SciRes. JSEA

Towards Enhanced Program Comprehension for Service Oriented Architecture (SOA) Systems 436

pertise with them.
Most SOA composite applications are still young, so

the challenges of SOA maintenance are still emerging.
SOA implementations vary greatly so it is not clear that a
typical SOA maintenance environment may look like.
However, we hypothesize that SOA maintainers may
face a situation similar to that is shown in Figure 1.

As illustrated in Figure 1, the maintainer works for
one particular organization and typically has access to
the services operated by that organization, which may be
a mixture of components large and small, legacy and new,
and implemented in different languages and styles. Fur-
ther, these services interoperate with components owned
and controlled by other organizations, and here the main-
tainer’s information may be more fragmentary. The
maintainer is unlikely to have, or desire, access to source
code. Documentation may be partial and not always up-
to-date. The one guaranteed-correct item will likely be
the service interface description. If, as is often recom-
mended, web services standards are being followed, then
this description will take the form of a Web Services
Description Language (WSDL) service interface and an
Extensible Markup Language (XML) Schema Definition
(XSD) for service datatypes. These documents must be
current for the components to interoperate correctly at
runtime.

In addition to source code, WSDLs and XSDs, there
may be a plethora of other documents that shed light on
how SOA composite applications actually work. These
may include configuration files for the ESB and applica-
tion servers in which the code is deployed, Business
Process Execution Language (BPEL) orchestration in-
structions that tie component services together, project
files describing the build process, and unstructured
documentation in various formats; all of which may help
provide insight into system operation.

Figure 1. Typical SOA maintenance environment for a com-
posite application.

In this environment, how will a SOA maintainer go
about performing enhancements, adaptations or bug fixes?
We hypothesize that the maintainer will follow advice
that is as old as the software engineering profession: start
by gathering all available information that is relevant to
the problem [3]. That gathering process must include
searches in the collection of documents described in the
previous paragraph.

Our research group has been studying how intelligent
search techniques could help ease the challenges of SOA
maintenance. We have constructed a SOA search tool
called SOAMiner—not as a finished product for imme-
diate use—but rather as a research tool to explore the
information needs of those maintaining SOA systems [4].
The research reported here builds upon and expands a
two-part case study reported in Reichherzer [5] and
White [6], which focused on observing software engi-
neers as they use the search tool to help identify what
SOA maintainers will want to know. This paper reports
on additional analysis of the case study results and the
development of methods and tools to enhance program
comprehension for SOA systems.

From previous research results and related literature, it
has become clear that naive search can be helpful, but for
the combination of structured and unstructured SOA
documents, it would be much more useful to combine
simple text-based search with additional visualizations
and abstractions of the information in the documents.
More advanced search and visualization techniques will,
for example, simplify the task of locating domain con-
cepts within the system and perform impact analysis for
proposed code enhancements.

In the remainder of this paper, we present our most
recent research on enhancing program comprehension for
SOA systems. Section 2 summarizes related research in
the area of comprehension and maintenance of SOA sys-
tems. We then describe challenges in SOA comprehend-
sion and how intelligent search techniques and our search
tool, SOA Miner, can contribute to improved understand-
ing of those systems. Section 4 describes a case study
that explores search within the context of maintenance
for two different SOA applications, followed by the re-
sults, which highlight the need for specific abstractions
that distill pertinent from irrelevant information. Section
5 presents additional analysis of the case study results as
well as several visualization methods to enhance com-
prehension. Novel research reported in Sections 5 and 6
focuses on enhancing program comprehension for SOA
systems through the development of various types of
visualizations of the identified abstractions, including
trees and Entity Relationship visualizations and a visu-
alization tool, SOA Intel. The paper ends with a discus-
sion of conclusions and plans for future work.

Copyright © 2013 SciRes. JSEA

Towards Enhanced Program Comprehension for Service Oriented Architecture (SOA) Systems 437

2. Related Work

A review of recent related work identifies the aspects of
SOA that may make comprehension and maintenance
even more difficult than it was with earlier systems [7-
10]. Some of the main factors discussed are:
 The heterogeneity of SOA applications: expertise in

many different languages and environments may be
needed.

 The distributed ownership of services: source code or
key documents may not be made available to the
maintainers for business reasons.

 Poorly coordinated changes: multiple fielded versions
of services arise as different service owners are driven
by different business needs.

Researchers have also considered the organizational
structures needed to support SOA maintenance. Kajko-
Mattson, Lewis, and Smith [11] discuss how organiza-
tions adding SOA applications to their maintenance
workload influence traditional IT roles. Several new
roles emerge—which need to be filled—and new prob-
lems arise such as the prioritization of changes requested
by different partners.

Recently, Papazoglou, Andrikopoulos, and Benbernou
[12] described the problems of managing versions as a
SOA system evolves. They distinguish between shallow
service changes, which are localized in their impact, and
deep changes, which may cascade to other services. For
deep changes they suggest that a gap-analysis model
should be constructed to identify the differences between
an as-is currently deployed system and a to-be system
with desired changes implemented. This suggestion high-
lights the importance of program comprehension since
the creation of such a gap-analysis model would require a
deep understanding of the services making up the as-is
SOA system.

Our literature review identified only one paper that
reports on experiences with program comprehension re-
lated to a specific interoperable system. Gold and Ben-
nett [13] describe a research prototype web services sys-
tem for integrating health care data from multiple pro-
viders. The project used the UK’s National Health Ser-
vice as an example. Their work suggests that there are
many consequences which result from widespread dis-
tributed ownership of services. Maintainers will gener-
ally have to rely on WSDLs as descriptions of external
services; however, WSDLs have many limitations with
respect to comprehension since they are designed pri-
marily to allow runtime calling of services. The main-
tainer will not be able to drill down into the code to get
richer information since the code for an external service
will most likely not be available to the maintainer. Gold
and Bennett [13] argue further that since there are many
service owners, the maintainer of a SOA composite ap-
plication may need to deal with frequent unanticipated

changes in external services with which he is interoper-
ating. The maintainer will need to re-read updated
WSDL interfaces and analyze the changes to identify
necessary modifications to his own code. Time may be
very short when there is a need to comprehend a modi-
fied service and make adjustments.

Little research has been conducted specifically on
maintenance tools for Service Oriented Architecture sys-
tems. However, some researchers have proposed the use
of dynamic analysis to aid in SOA understanding. Dy-
namic analysis involves collecting execution data, such
as a trace from a running system in either a test environ-
ment or in a live deployed environment. The Web Ser-
vices Navigator tool, described by a group at IBM, col-
lects trace data from a SOA application and provides five
different views of the executing system [14]. Coffey,
White, Wilde and Simmons [15] use dynamic analysis to
address the problem of locating the message interchanges
associated with a particular user feature in a SOA system.
A rather different form of dynamic analysis involves
hypothesizing an interface contract for an unfamiliar ser-
vice and sending it a series of messages to confirm the
correctness of the hypothesis [16]. Analysis of execution
data can be a powerful way to gain understanding of
software. However, dynamic analysis is not always prac-
tical because of the difficulty of collecting the necessary
data when dealing with large systems running across
many nodes.

3. SOA Search Support

3.1. SOA Artifacts

An alternative approach to analyzing systems dynami-
cally is to analyze the artifacts that build them. In the
case of SOA composite applications, SOA artifacts in-
clude a variety of different files that provide insight into
the architecture of a SOA system and the messages ex-
changed between its services. The artifacts are automati-
cally produced by SOA development and deployment
tools and formatted according to standardized SOA Web
languages, such as WSDLs, Simple Object Access Pro-
tocol (SOAP), XSD, and more. Since machines produce
them from annotations in source code and user-specified
deployment and integration information, the artifacts
tend to be diverse and complex sometimes involving
hundreds of lines of XML encoded descriptions that
makes them difficult to inspect (the PAVER™ system
described below has 10 WSDL files and 63 XSD files
with a total of 49,000 lines and 14,000 lines of XML
code respectively). Moreover, the SOA Web languages
provide flexibility in the encodings of service and data
descriptions, resulting in syntactic differences in SOA
artifacts that further complicate their analysis. Yet, in-
formation that the artifacts contain is important to under-
stand how a SOA composite application works. For ex-

Copyright © 2013 SciRes. JSEA

Towards Enhanced Program Comprehension for Service Oriented Architecture (SOA) Systems 438

ample, the implementation of a service is described by a
WSDL interface description, a type of contract that al-
lows services to be loosely coupled. Among other things,
the description includes operations of services, messages
that may be exchanged between services along with data
type information. Such information is valuable to soft-
ware maintainers that will ultimately need to understand
how services communicate and what data they exchange
to make any changes to them consistent with the long-
term maintenance goals of SOA composite applications.

3.2. Challenges in SOA Comprehension

Maintaining SOA composite applications requires a
deeper understanding of the applications’ services, their
operations, and exchanged messages. To illustrate the
maintenance challenges that engineers face, consider a
few excerpts from the Web Auto Parts example dis-
cussed in more detail later. The artifacts include a BPEL
file (Order Processing.bpel) that orchestrates multiple
services to search inventories in the store for auto parts,
computes taxes and shipping costs, among others, a
WSDL file (Inventory Repository Artifacts.wsdl) that
fronts the company’s inventory database and a data type
definition file (Inventory Query.xsd) that describes mes-
sage data to and from the inventory repository. A main-
tainer that needs to know the data being passed when
inventory is checked needs to step through a number of
artifact files to answer this question, searching the files
for text labels that match the names of services, opera-
tions, and data involved in the inventory check. A strat-
egy to find the hidden information within the SOA arti-
facts may involve the following sequence of steps:

1) Examine the BPEL file to search for a partner ser-
vice that involves inventory checks in the processing of
an order.

2) Identify the partner link type associated with the
partner service.

3) Look for the WSDL service interface file that im-
plements the partner link type. This specific information
is not available in the BPEL code. It must be discovered
manually by matching tag names across the different
WSDL files.

4) Find the operations associated with the service in
the service interface file.

5) Identify the operation involved in the inventory
check using the name of the operation and keywords for
filtering.

6) Search for the correct input message specified by
the operation. The input message contains the data type
for the data passed to the service.

7) Find the data type within the same WSDL file or
imported XSD files.

8) If the data type is a complex type, identify the parts
of the type. This may involve additional searches for

more data types.
In conclusion, multiple searches are needed through

various SOA artifacts to answer a maintenance question.
In the specific case of Web Auto Parts, service names,
operations, and messages include keywords in their la-
bels that made it possible to identify the correct data type.
The discovery of such information requires an in-depth
understanding of the languages encoding the SOA arti-
facts as well as their relationships.

3.3. SOA Miner: A Search Tool

Scenarios such as the one described above lead us to be-
lieve that future SOA maintainers will need the ability to
search quickly across multiple document types and to
integrate multiple kinds of information as they build
their conceptual picture of a composite SOA application.
However, there is not yet any published experience about
what actual types of searches SOA maintainers will want
to perform.

To explore this question, we have developed a proto-
type SOA search tool called SOA Miner, as a research
prototype to explore information needs. SOA Miner cur-
rently focuses on searches of documents having XML
structure since WSDLs, XSDs, BPELs and many ESB
configuration files take this form. SOA Miner is built on
the Apache Solr search tool [17], with an interface de-
rived from AJAX-Solr [18]. To use SOA Miner, the
software engineer indexes the collection of files that have
an XML structure and then queries the collection using
the interface shown in Figure 2. In this interface, the
current query is shown on the upper left and the current
set of result tags are displayed on the right.

4. Two-Part Case Study of SOA Search

4.1. General Structure

We performed a two-part case study of SOA systems to

Figure 2. SOA Miner screenshot.

Copyright © 2013 SciRes. JSEA

Towards Enhanced Program Comprehension for Service Oriented Architecture (SOA) Systems 439

gain insight into what SOA maintainers would want to
know as they try to understand a SOA composite appli-
cation and perform a maintenance task. The objectives
and methods of the two parts were the same, but since
SOA systems are very diverse, we found two different
composite applications representing different implement-
tation approaches to services-based computing. The case
study thus involves two different “units of analysis”
within a single context as described by Runeson and Host
[19].

The main research question for the case study was:
What abstractions would SOA maintainers find useful to
help them understand a composite application?

The method for each part of the study followed the
same steps. We started from a non-trivial services-based
system and indexed artifacts from it such as WSDLs and
XSDs. We also developed a list of questions to answer
about the specific SOA application. The questions were
loosely based on the search questions that Sim, Clarke,
and Holt [20] found that software engineers asked when
maintaining traditional software systems. The questions
included both concept location queries that look for do-
main concepts (e.g., “What services/operations/messages
deal with parts inventory?”) and impact analysis queries
(e.g., “If I change this data type, what code is affected?”).

Case study participants were first provided some
training in using the tool. Then they used it individually
to respond to the questions while “thinking out loud” to
verbalize their thought processes. An observer noted the
searches they made and the areas where they seemed to
encounter difficulties. Finally, for each part of the study,
there was a group debrief session with all participants to
discuss the results and contribute suggestions for im-
proved search and visualization support.

4.2. The Web Auto Parts System

The first unit of analysis involved a hypothetical online
automobile parts dealer called Web Auto Parts [5]. Web
Auto Parts models an Internet start-up company that is
using SOA for rapid development. Its software uses
BPEL for orchestration of commercially available exter-
nal services from well-known vendors. As shown in
Figure 3, the Order Processing workflow for Web Auto
Parts has two stubbed in-house BPEL services (Order
Processing and Inventory Repository) and four comer-
cially available external services:
 Amazon Web Services-Simple DB (data base) and

Simple Queue Service (message queuing).
 StrikeIron.com-Tax Data Basic (sales tax rates).
 Ecocoma-USPS (shipping costs).

Web Auto Parts is, of course, much smaller than most
real SOA applications as shown in Table 1. However, it
is useful for a case study since it consists of syntactically
correct BPEL code and contains XSD and WSDL docu-

Figure 3. Web Auto Parts-services in the order processing
workflow.

Table 1. SOA artifacts of web Auto Parts.

Filename Lines of Code

AmazonSimpleDB.wsdl 611

ldeploy.xm 51

InventoryQuery.xsd 28

InventoryRepositoryArtifacts.wsdl 69

OrderProcessing.bpel 118

OrderProcessing.bpelex 55

PurchaseOrder.xsd 36

QueueService.wsdl 1043

lTaxDataBasic5.wsd 436

usps.wsdl 197

Total 2644

ments typical of current industrial practice.

Study participants were three computer science faculty
members who were familiar with the basic concepts of
SOA. However, only one of them had any SOA pro-
gramming experience or experience with WSDLs, XSDs
and BPEL. They were given only very general informa-
tion about Web Auto Parts and about the Order Process-
ing workflow, typical of what a maintainer might have in
dealing with an unfamiliar application.

4.3. The PAVER™ System

The second unit of analysis involved a full-scale indus-
trial SOA application called PAVER™ [6]. It included a
graduate student and professional software engineers ex-
perienced in services computing. PAVER™ is a pave-
ment management system for condition-based mainte-
nance management of airport pavements and roadways.

Copyright © 2013 SciRes. JSEA

Towards Enhanced Program Comprehension for Service Oriented Architecture (SOA) Systems 440

The version used in this study had 10 services, which
totaled approximately 400,000 lines of Visual Basic code.
PAVER™ can be used by pavement engineers in several
ways: 1) to develop an inventory of the pavements to be
managed; 2) to collect distress data about inventory items
using an international standard for such field observa-
tions; 3) to model pavement condition over time, and 4)
to plan budgets for repair work in order to make the best
use of limited resources.

The PAVER™ system is not a typical SOA applica-
tion because it uses SOA principles to manage the sepa-
ration of what appears to the user as a unified system into
a family of components that are mostly independent yet
closely cooperate. The system uses Microsoft’s Windows
Communication Foundation (WCF) to implement a fam-
ily of cooperating services that span the major modules
within PAVER™. The WSDL and XSD files are gener-
ated automatically from interface definitions using spe-
cialized WCF tags, and can be used to describe the ser-
vices in a standard way.

The case study followed the same structure described
in Section 4.1, with pre-indexing of the WSDLs and
XSDs, a training exercise for the participants, a main
study using a questionnaire, and a debrief session. How-
ever, the main study was structured somewhat differently
since the study dealt with a real application and some
participants were professional software engineers having
experience with that application. The main study took
place in three phases as follows:
 First, a graduate student with some SOA background

but no PAVER™ experience went through the ques-
tions in a university setting.

 Second, a software engineer at the company that de-
velops PAVER™ worked on the questions and re-
lated SOA Miner’s responses to his insight from de-
veloping the PAVER™ code.

 Third, two software engineers from the PAVER™
development company used SOA Miner searches and
compared the results with information obtainable
from Microsoft’s Visual Studio™ programming en-
vironment used in their daily work. They also expe-
rimented with allowing Visual Studio to generate a
stub client for one of the services to see what infor-
mation was recoverable in that way.

4.4. Case Study Results: Identified Abstractions

Almost all search tools present a low-level worm’s eye
view of the subject matter. Just as a source code search
tool may identify many isolated lines that match search
criteria, SOAMiner finds many isolated XML tags. To
make changes successfully, a maintainer needs to create
for himself a higher-level conceptual view of the soft-
ware, and this may require many searches. We would
like to supplement search results with higher-level ab-

stractions to speed up the maintainers work. For example,
a click on a search result could provide a pop-up showing
how that isolated result fits into a larger picture as shown
in Figure 4.

The case study identified a variety of such abstractions.
They could be classified roughly as service linkage ab-
stractions that pull together distant information across
service boundaries, and summarizing abstractions that
eliminate verbose syntax that may hinder understanding.
A third category, datatype abstractions, has characteris-
tics of both categories and, because of its importance, is
discussed separately in Section 5.

The service linkage abstractions summarize logical
chains in XML, which are found by tracing names from
one XML element to another. Case study participants
identified several relationships between service defini-
tions and service invocations that they felt would help
answer questions such as: How do services call each
other?

High level-service invokes service. This abstraction
would summarize chains similar to:

<bpel: process> (BPEL file)
<bpel: partnerLink> (BPEL file)
<plnk: partner Link Type> (WSDL file)
<service> (WSDL file)
This abstraction essentially ties a BPEL process to the

services that it may use since a partner link of the correct
type has been declared. It does not establish if or where
such usage actually takes place. However the abstraction
can provide a high-level view of the potential relation-
ships in a composite application and supports further
exploration of input and output data.

Low level-process invokes operation. Summarizes
chains similar to:

<bpel: invoke> (BPEL file)
<bpel: partner Link> (BPEL file)
<plnk: partner Link Type> (WSDL file)
<port Type> (WSDL file)

Figure 4. Displaying an abstraction in a search result.

Copyright © 2013 SciRes. JSEA

Towards Enhanced Program Comprehension for Service Oriented Architecture (SOA) Systems 441

<operation> (WSDL file)
<bpel: receive> (BPEL file of invoked service)
This abstraction ties a BPEL invocation of an opera-

tion on a service to the high-level WSDL description and
through that to a BPEL implementation of the called op-
eration. This particular chain enables the maintainer to
examine the actual code that may be implementing a
called service.

Low level—“called by”. Summarizes chains similar to:
<bpel: receive> (BPEL file of invoked service)
<bpel: partner Link> (BPEL file of invoked service)
<bpel: partner Link> (BPEL file of calling service)
<bpel: invoke> (BPEL file of calling service)
This abstraction allows a maintainer to understand

how other BPEL processes may invoke a particular op-
eration implemented in BPEL.

Summarizing abstractions are needed because XML is
so verbose and because WSDL and XSD files are often
machine generated, making them still more verbose. All
the study participants noted that the WSDL/XSD de-
scription of a service was too dispersed and hard to
navigate. In debrief sessions they all agreed that one so-
lution would be a simple expandable tree abstraction of a
service as shown in Figure 5. This eliminates many
XML tags and provides a more compact description that
should be adequate for many purposes.

The best example of machine generated verbosity
identified in these studies comes from WCF generated
XSD files. Figure 6 shows how WCF has generated five
tags encapsulating an empty <sequence>, simply to con-
vey the information that the response to a Report Delete
operation is empty. The single word “void” could replace
the whole structure.

5. Datatype Abstraction and Visualization

This research analyzes and expands upon the results of
the case study described above to facilitate enhanced
program comprehension for SOA systems. The case

Figure 5. Expandable tree abstraction of a service.

Figure 6. Datatype description of a void return type.

study results showed that naive search can be helpful, but
for the combination of structured and unstructured SOA
documents, it would be much more useful to combine
simple text-based search with additional visualizations
and abstractions of the information in the documents. As
a result, more advanced search and visualization tech-
niques were developed to simplify the task of locating
domain concepts within the system and of performing
impact analysis for proposed code enhancements. More
specifically, the case study results demonstrated the need
for specific abstractions that distill pertinent from irrele-
vant information and for visualizations to display the
pertinent information to software maintainers. This sec-
tion presents methods that we have developed to enhance
SOA program comprehension, including an enhanced
search and visualization tool, and tree and Entity Rela-
tionship (ER) visualizations of the identified abstractions.

5.1. Analysis of the Case Study Results

The results of the case study highlighted the challenge in
understanding SOA datatypes and their significance in
SOA program comprehension. Experienced study par-
ticipants emphasized the importance of understanding the
data model underlying a SOA application before making
any changes to it. The results indicated that while
searches for services and for operations went fairly
smoothly, searches related to datatypes were substan-
tially more difficult. Data definition information is
spread across multiple tags, such as <message> and
<part> tags in WSDLs, and <element>, <complexType>
and <sequence> tags in XSDs. Since a search result
shows individual matching tags, the user often has to
make multiple searches to identify the entire structure. It
is not even easy for SOA maintainers to know in which
files to search for datatype information since service au-
thors may choose to reference separate XSD files or to
incorporate such information directly into the <types>
section of the WSDL itself.

Additionally, the results suggested that it was easy to
make time-consuming mistakes in trying to locate
datatype information. For example in trying to find the
data passed in an inventory query, participants searched
for a <complexType> tag matching the string “invent-
toryQuery”. However, in an XSD, the datatype can be
named in either an <element> tag as depicted in Figure 7,
or in a <complexType> tag. Much time may be lost if the
maintainer searches on the wrong alternative.

Due to the variety of difficulties identified with
datatypes, a high priority for enhanced SOA program
comprehension is to provide a compact way of abstract-
ing and visualizing them. An abstraction would be con-
structed by walking the XML structure and collecting
references to each datatype and the elements and types it
contains. For visualizing the resulting abstraction, we

Copyright © 2013 SciRes. JSEA

Towards Enhanced Program Comprehension for Service Oriented Architecture (SOA) Systems 442

Figure 7. Datatype named in the <Element> tag.

employ two strategies, a tree view and an ER view, each
with its advantages and disadvantages.

5.2. Tree Visualization of Datatypes

A tree visualization would use an expandable tree view
of datatypes. For example, consider a simple XSD ele-
ment from the <types> section of the Amazon Simple
DB WSDL file. Select Response is the payload of the
Select Response Msg, which is the result of the Select
operation in Amazon Simple DB. The XSD definition of
Select Response is:

<xs:element name = “Select Response” >
<xs:complexType >
<xs:sequence>
<xs:element ref = “tns: Select Result”/>
<xs:element ref = “tns: Response Metadata”/>
Here we see that the element Select Response has two

child elements that reference Select Result and Respon-
seMetadata so we would next have to locate these ele-
ments. If we continue this location process in total we
would need to identify five separate elements scattered
throughout Amazon Simple DB WSDL.

As a first visualization alternative, we could display a
compact expandable tree view for Select Response:

CES-Select Response
+E-element-Select Result
+E-element-Response Metadata
This view uses abbreviations to summarize commonly

occurring structures. “CES” denotes a “complex element
sequence” and “E” an “element”. The view has “+” sym-
bols next to the child elements indicating that they can be
expanded. In a user interface, a click on the “+” would
expand the tree to show additional information. This al-
lows dependencies for an element to be aggregated and
displayed without requiring additional queries by the user.
The fully expanded tree view for Select Response is as
follows:

CES-Select Response
-E-element-Select Result
CES-Select Result
-E-element-Item
CTS-Item
E-element-Name
-E-element-Attribute
CTS-Attribute
E-element-Name
E-element-Value
E-element-Next Token

-E-element-Response Metadata
CES-Response Metadata
E-element-RequestId
E-element-Box Usage
However, for a complete visualization of a datatype it

would be useful to show how it is used; a right-click or
other gesture could show a list of the elements that de-
pend upon it, as shown below. For example, Response-
Metadata is utilized by additional XSD elements besides
Select Response. In fact, in this particular WSDL, Re-
sponse Metadata is a common element of all “response”
elements. The enumeration of these dependencies, listed
below, provides additional invaluable information about
the layout of SOA artifacts.

Response Metadata References:
-Select Result
-Batch Delete Attributes Response
-Delete Attributes Response
-Get Attributes Response
-Batch Put Attributes Response
-Put Attributes Response
-Delete Domain Response
-Domain Metadata Response
-List Domains Response
-Create Domain Response

5.3. Entity Relationship Visualization of
Datatypes

An alternative to the tree view involves generating an
Entity Relationship (ER) view of SOA datatypes. ER
diagrams present an abstraction of a data model com-
posed of entities, relationships and attributes. ER dia-
grams show how entities, which contain attributes, are
related, but are not limited to a hierarchical structure.
Since not all relationships between data elements are
hierarchical in nature or necessarily have a tree structure,
the ER model is an effective way of showing all rela-
tionships between entities, and has become an estab-
lished method of presenting relationships between data
elements or entities [21].

Entities or complex types (in XML), are depicted by
rectangles in ER visualization and are units used to hold
data or concepts of data. Characteristics of complex types
are referred to as attributes in ER visualization and are
depicted in ER diagrams as ovals attached to the entities.
Relationships between the entities, denoted by element
refs (in XML), are depicted by diamonds in ER diagrams.
ER diagrams also show how many of one element is re-
lated to another element. For example, as shown in Fig-
ure 8, we can see that one Select Result element can be
related to many Items, or one Item can be related to
many Attributes. And we can also see immediately that
Response Meta Data is related to several other entities,
not shown in the figure for the sake of brevity.

Copyright © 2013 SciRes. JSEA

Towards Enhanced Program Comprehension for Service Oriented Architecture (SOA) Systems 443

Figure 8. ER visualization of the select response element.

Figure 9. SOA Miner and SOA Intel architecture.

The expandable tree visualization has the advantage of
being more compact than an ER diagram and it has a
textual representation that could be easier to display in a
web browser or similar interactive interface. On the other
hand the ER visualization makes use of a well-known
modeling method that will be familiar to many software
engineers and perhaps conveys more information without
the need for mouse clicks or other navigational gestures.

6. Enhancing SOA Search with SOA Intel

Modern search technology can help users quickly iden-
tify pieces of information whether on the Web or in
documents including SOA artifacts. Search can support
program comprehension of complex, heterogeneous SOA
systems by discovering patterns and links across the
various types of documents that compromise SOA com-
posite applications. Research involving SOA Miner has
demonstrated the usefulness of exposing information in
SOA artifacts to software engineers that can help with
maintenance activities. However, search tools can only
discover and present patterns as they exist in the docu-
ments themselves encoded in the language of the indexed

documents. As the case study results have shown, what
maintainers need to know most is conceptual information
about the composite application, not syntactic informa-
tion included in the SOA artifacts. They need to know
what services are involved in a composite application
and what data is being exchanged among services. Thus,
while search is useful, we need to be able to transform
the search results into meaningful entities. The identified
abstractions discussed earlier represent those meaningful
units.

Compiling abstractions from the diverse artifacts of
SOA composite applications requires interpretation and
knowledge of the language that encodes the artifacts. A
difficulty is that in the SOA open environment, the rele-
vant abstractions will vary from system to system and
over time as standards, practices and tools change.

Thus, we need a flexible approach to complement
SOA search and automate the discovery of abstractions
within the SOA artifacts. An ideal tool would index the
collection of artifacts from a composite application and
provide maintainers with two types of information:

1) Abstractions where it can discover them, or
2) Text snippets taken from the artifacts where it can-

not.
The tool would also allow for the definition of addi-

tional abstractions so that more and more search results
can be of the first category. Such a tool would have to be
flexible to adapt to a wide range of SOA artifacts from
different environments and allow for the inclusion of
new abstractions as they are identified by software engi-
neers.

In an effort to extend SOA Miner with the kinds of
search capabilities identified from an analysis of the case
study results outlined above, we developed SOA Intel, a
tool to discover abstractions within SOA artifacts. Fig-
ure 9 shows the relationship between SOA Miner, SOA
Intel, the SOA artifacts and software maintainers. As
shown in the figure, a software maintainer submits a text
query using the SOA Search interface. SOA Intel then
uses knowledge-based systems methods and applies a
rule-based approach to build abstractions from the arti-
facts. Next, SOA Miner indexes these abstractions to
provide them to users upon request. A reasoning engine
automates the process of the expert’s analysis of SOA
artifacts by executing chains of rules on the artifacts once
they are committed to the engine’s working memory.
Matching rules build and store the abstractions in work-
ing memory, which can then lead to the discovery of ad-
ditional abstractions and relationships between them.
Finally, after all rules have fired, working memory may
be queried to collect the abstractions and store them for
future retrieval by SOA Miner in response to user-en-
tered search queries. Each abstraction is formatted as an
XML snippet that includes constituents and relations

Copyright © 2013 SciRes. JSEA

Towards Enhanced Program Comprehension for Service Oriented Architecture (SOA) Systems 444

from the SOA artifacts to model the abstraction. More
details on the rules can be found in [22].

Rule engines have traditionally been used to capture
expert problem solving as a set of rules and apply them
to reason about a solution for a new problem. Through
experiments and case studies involving domain experts,
we can create a set of rules that identify abstractions
within the SOA artifacts, and extract and transform them
into human-readable representations. In essence, the rules
are designed to capture an expert’s experience with iden-
tifying useful excerpts of information relevant to main-
tenance problems.

7. Discussion and Conclusions

SOA offers the prospect for greater interoperability
among software systems by enabling developers to con-
figure software as services and to interconnect services
with other services independent of differences in operat-
ing platform and programming and communicating lan-
guages. Resulting systems can bridge heterogeneous en-
vironments of platforms and languages across institu-
tional boundaries. However, the new languages, infra-
structures and flexibility that accompany SOA also in-
troduce new complexities.

From the perspective of software maintenance, SOA
systems require:
1) An in-depth understanding of the mechanics involved

in the deployment of composite applications and their
interaction;

2) Expertise in many different languages and environ-
ments that make up a SOA composite application,
and

3) Insight into the distribution and ownership of ser-
vices.

These new challenges make it difficult for maintainers
to determine how an existing SOA system actually works.
We believe that searching techniques can help maintain-
ers locate needed information in the large body of arti-
facts that describe a SOA application. However, search
will need to be accompanied by a process of abstraction
and visualization to enhance the comprehension of search
results. Additional analysis of the case study results iden-
tified some of the abstractions and visualizations needed
to enhance SOA program comprehension. These were
classified as service linking abstractions to identify rela-
tionships between services, summarizing abstractions to
remove unneeded verbose syntax, and data type visuali-
zations to help understand the data that services share.
These abstractions and visualizations distill useful in-
formation by compiling dependencies among services
and references of messages to data types into single, co-
herent units free from syntactic overhead of XML en-
coded machine descriptions. Several visualizations were
developed, including trees, Entity Relationships and the

framework for an intelligent search-based visualization
tool.

Several directions for future work can be explored to
provide further support for program comprehension of
SOA systems. We are exploring methods for semantic
analysis of SOA composite applications, including con-
cept maps [23] and ontologies. Future tools to support
SOA maintainers could build on ontologies describing
the web services standards, the most common extensions
to these standards, and domain concepts from different
problem domains such as health care, travel, etc. Infor-
mation from the ontologies could be used in several ways.
It could provide searchable help that a SOA maintainer
could use in interpreting the WSDL, XSD, and other
documents encountered in his work. It could also provide
input for search tools such as SOA Miner for synonym
analysis of queries and help prioritize query results.

Research into program comprehension for SOA sys-
tems is still at a very early stage and doubtless, many
novel tools and techniques remain to be developed.
However, as an initial step, we think that search en-
hanced by abstraction and visualization can make an im-
portant contribution in addressing the emerging cha-
llenges of SOA maintenance.

8. Acknowledgements

Work described in this paper was partially supported by
the University of West Florida Foundation under the
Nystul Eminent Scholar Endowment. We would like to
thank UWF graduate students Douglas Leal, Joshua
Dault and Juan Gil Restrepo who implemented and tested
different versions of SOA Miner, and Ben Hartmann and
Mircea Manea, Software Engineers at Intelligent Infor-
mation Technologies, for their participation in the
PAVER™ case study.

REFERENCES
[1] N. Josuttis, “SOA in Practice: The Art of Distributed

Software Design,” O’Reilly Media, Sebastopol, 2007.

[2] G. Lewis, E. Morris, S. Simanta and D. Smith, “Service
Orientation and Systems of Systems,” IEEE Software,
Vol. 28, No. 1, 2011, pp. 58-63. doi:10.1109/MS.2011.15

[3] S. D. Fay and D. G. Holmes, “Help! I Have to Update an
Undocumented Program,” Proceedings of the IEEE Con-
ference on Software Maintenance-1985, Washington DC,
11-13 November 1985, pp. 192-204.

[4] L. White, T. Reichherzer, J. Coffey, N. Wilde and S.
Simmons, “Maintenance of Service Oriented Architecture
Composite Applications: Static and Dynamic Support,”
Journal of Software Maintenance and Evolution: Re-
search and Practice, Vol. 25, No. 1, 2011, pp. 97-109.
doi:10.1002/smr.568

[5] T. Reichherzer, E. El-Sheikh, N. Wilde, L. White, J. Cof-
fey and S. Simmons, “Towards Intelligent Search Support

Copyright © 2013 SciRes. JSEA

http://dx.doi.org/10.1109/MS.2011.15
http://dx.doi.org/10.1002/smr.568

Towards Enhanced Program Comprehension for Service Oriented Architecture (SOA) Systems

Copyright © 2013 SciRes. JSEA

445

for Web Services Evolution: Identifying the Right Ab-
stractions,” Proceedings of 2011 13th IEEE International
Symposium on Web Systems Evolution (WSE), Williams-
burg, 30 September 2011, pp. 53-58.
doi:10.1109/WSE.2011.6081819

[6] L. White, N. Wilde, T. Reichherzer, E. El-Sheikh, G.
Goehring, A. Baskin, B. Hartmann and M. Manea, “Un-
derstanding Interoperable Systems: Challenges for the
Maintenance of SOA Applications,” Proceedings of the
45th Hawaii International Conference on System Sci-
ences (HICSS), Maui, 4-7 January 2012, pp. 2199-2206.

[7] G. Canfora and M. Di Penta, “New Frontiers of Reverse
Engineering,” Proceedings of the 29th International
Conference on Software Engineering, Minneapolis, 20-26
May 2007, pp. 326-341. doi:10.1109/FOSE.2007.15

[8] N. Gold, C. Knight, A. Mohan and M. Munro, “Under-
standing Service-Oriented Software,” IEEE Software, Vol.
21, No. 2, 2004, pp. 71-77.
doi:10.1109/MS.2004.1270766

[9] K. Kontogiannis, “Challenges and Opportunities Related
to the Design, Deployment and Operation of Web Ser-
vices,” Proceedings of the 24th Conference on Software
Maintenance, Beijing, 28 September-4 October 2008, pp.
11-20. doi:10.1109/FOSM.2008.4659244

[10] G. A. Lewis and D. B. Smith, “Service-Oriented Archi-
tecture and Its Implications for Software Maintenance and
Evolution,” Proceedings of the 24th Conference on Soft-
ware Maintenance, Bejing, 28 September-4 October 2008,
pp. 1-10. doi:10.1109/FOSM.2008.4659243

[11] M. Kajko-Mattsson, G. A. Lewis and D. B. Smith, “Evo-
lution and Maintenance of SOA-Based Systems at SAS,”
Proceedings of the 41st Annual Hawaii International
Conference on System Sciences (HICSS), Waikoloa, 7-10
January 2008, p. 119. doi:10.1109/HICSS.2008.154

[12] M. P. Papazoglou, V. Andrikopoulos and S. Benbernou,
“Managing Evolving Services,” IEEE Software, Vol. 28,
No. 3, 2011, pp. 49-55. doi:10.1109/MS.2011.26

[13] N. Gold and K. Bennett, “Program Comprehension for
Web Services,” Proceedings of the 12th IEEE Interna-
tional Workshop on Program Comprehension, Bari, 24-
26 June 2004, p. 151.

[14] W. De Pauw, M. Lei, E. Pring, L. Villard, M. Arnold and
J. F. Morar, “Web Services Navigator: Visualizing the
Execution of Web Services,” IBM Systems Journal, Vol.
44, No. 4, 2005, pp. 821-845. doi:10.1147/sj.444.0821

[15] J. Coffey, L. White, N. Wilde and S. Simmons, “Locating
Software Features in a SOA Composite Application,”
Proceedings of the 8th IEEE European Conference on
Web Services (ECOWS’10), Ayia Napa, 1-3 December
2010, pp. 99-106. doi:10.1109/ECOWS.2010.28

[16] S. Halle, T. Bultan, G. Hughes, M. Alkhalaf and R. Vil-
lemaire, “Runtime Verification of Web Service Interface
Contracts,” Computer, Vol. 43, No. 3, 2010, pp. 59-66.
doi:10.1109/MC.2010.76

[17] Apache Software Foundation, “Apache Solr,” 2011.
http://lucene.apache.org/solr/

[18] GitHub Inc., “Evolvingweb/AJAX-Solr,” 2012.
http://github.com/evolvingweb/ajax-solr

[19] P. Runeson and M. Host, “Guidelines for Conducting and
Reporting Case Study Research in Software Engineer-
ing,” Empirical Software Engineering, Vol. 14, No. 2,
2009, pp. 131-164. doi:10.1007/s10664-008-9102-8

[20] S. E. Sim, C. L. A. Clarke and R. C. Holt, “Archetypal
Source Code Searches: A Survey of Software Developers
and Maintainers,” Proceedings of the 6th International
Workshop on Program Comprehension (IWPC’98), Is-
chia, 26 June 1998, pp. 180-187.
doi:10.1109/WPC.1998.693351

[21] S. Bagui and R. Earp, “Database Design Using Entity-
Relationship Diagrams,” 2nd Edition, Auerbach Publica-
tions, Boca Raton, 2012.

[22] G. Goehring, T. Reichherzer, E. El-Sheikh, D. Snider, N.
Wilde, S. Bagui, J. Coffey and L. White, “A Knowledge-
Based System Approach for Extracting Abstractions from
Service Oriented Architecture Artifacts,” International
Journal of Advanced Research in Artificial Intelligence,
Vol. 2, No. 3, 2013, pp. 44-52.

[23] J. Novak and D. Gowin, “Learning How to Learn,” Cam-
bridge University Press, New York, 1984.
doi:10.1017/CBO9781139173469

http://dx.doi.org/10.1109/FOSE.2007.15
http://dx.doi.org/10.1109/MS.2004.1270766
http://dx.doi.org/10.1109/FOSM.2008.4659244
http://dx.doi.org/10.1109/FOSM.2008.4659243
http://dx.doi.org/10.1109/HICSS.2008.154
http://dx.doi.org/10.1109/MS.2011.26
http://dx.doi.org/10.1147/sj.444.0821
http://dx.doi.org/10.1109/ECOWS.2010.28
http://dx.doi.org/10.1109/MC.2010.76
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1109/WPC.1998.693351
http://dx.doi.org/10.1017/CBO9781139173469

