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ABSTRACT 

Ridge type estimators are used to estimate regression parameters in a multiple linear regression model when multi- 
colinearity exists among predictor variables. When different estimators are available, preliminary test estimation proce- 
dure is adopted to select a suitable estimator. In this paper, two ridge estimators, the Stochastic Restricted Liu Estimator 
and Liu Estimator are combined to define a new preliminary test estimator, namely the Preliminary Test Stochastic Re- 
stricted Liu Estimator (PTSRLE). The stochastic properties of the proposed estimator are derived, and the performance 
of PTSRLE is compared with SRLE in the sense of mean square error matrix (MSEM) and scalar mean square error 
(SMSE) for the two cases in which the stochastic restrictions are correct and not correct. Moreover the SMSE of 
PTSRLE based on Wald (WA), Likelihood Ratio (LR) and Lagrangian Multiplier (LM) tests are derived, and the per- 
formance of PTSRLE is compared using WA, LR and LM tests as a function of the shrinkage parameter d with respect 
to the SMSE. Finally a numerical example is given to illustrate some of the theoretical findings. 
 
Keywords: Preliminary Test Estimator; Mean Square Error Matrix; Scalar Mean Square Error; Stochastic Restricted 

Liu Estimator; Liu Estimator; Wald Test; Likelihood Ratio Test; Lagrangian Multiplier Test 

1. Introduction 

A common problem in a multiple linear regression model 
is a multicolllinearity. Some biased estimators are pro- 
posed to solve this problem such as the Ordinary Ridge 
Estimator (ORE) by Hoerl and Kennard [1], the Res- 
tricted Ridge Estimator (RRE) by Sarkar [2], the Liu 
Estimator (LE) by Liu [3], the Restricted Liu Estimator 
(RLE) by Kaçiranlar, et al. [4] and the Stochastic 
Restricted Liu Estimator (SRLE) by Hubert and Wijekoon 
[5]. When different estimators are available the preli- 
minary test estimation procedure is adopted to select a 
suitable estimator. The preliminary test approach was 
first proposed by Bancroft [6] and then has been studied 
by many researchers, such as Judge and Bock [7], Wije- 
koon and Trenkler [8] and Saleh and Kibria [9]. Later 
Kibria and Saleh [10] have discussed the performance of 
preliminary test ridge estimators based on WA [11], the 
LR [12] and the LM [13] tests. Then Yang and Xu [14] 
have introduced the preliminary test Liu estimators based 

on these three tests by combining the Restricted Liu 
Estimator (RLE) and the Liu Estimator.  

In this paper, two ridge estimators, the Stochastic 
Restricted Liu Estimator and Liu Estimator are combined 
to define a new preliminary test estimator. The new 
PTSRLE is introduced and derives its stochastic pro- 
perties in Section 2. The mean square error and scalar 
mean square error comparisons between PTSRLE and 
SRLE are carried out in Section 3. In Section 4 the 
SMSE of the PTSRLE based on WA, LR and LM tests 
are derived and the performance of the PTSRLE is com- 
pared using WA, LR and LM tests as a function of the 
shrinkage parameter d with respect to the Scalar Mean 
Square Error. Finally in Section 5, we illustrated these 
comparisons with a numerical example. 

2. Model Specification and Stochastic  
Properties of the Proposed Estimator  

First we consider the multiple linear regression model 
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 20,N I 

Y

,  ~Y X    ,        (1) 

where  is an n × 1 observable random vector, X  is 
an n × p known design matrix of rank p,   is a p × 1 
vector of unknown parameters and   is an n × 1 vector 
of disturbances. 

In addition to sample Model (1), let us be given some 
prior information about   in the form of a set of m 
independent stochastic linear restrictions as follows; 

 2, ~ 0,N  

r R
m p

r R              (2) 

where  is an m × 1 stochastic known vector  is a m 
× p of full row rank  with known elements,   
is non zero m × 1 unknown vector and   is an m × 1 
random vector of disturbances and  is assumed to be 
known and positive definite. Further it is assumed that 



  is stochastically independent of  , i.e.,  

  0E   . 

Let us now turn to the question of the statistical eva- 
luation of the compatibility of sample and stochastic informa- 
tion. The classical procedures is to test the hypothesis 

0 : 0 againsH 1t : 0H  

 

        (3) 

under linear Model (1) and stochastic prior information (2). 
The Ordinary Least Squares Estimator (OLSE) for the 

Model (1) and mixed estimator [15] due to a stochastic 
prior restriction (2) are given by  

 11 ˆR r R1 1ˆ ˆ ˆ and mS X Y S R RS       


  

S X X

 

(4) 
respectively, where  

The Ordinary Stochastic Pre Test Estimator (OSPE) of 
 [8] is defined as 

0

1

if : 0

if : 0

H

H

 

 





    
, ,m n pF

ˆ    ˆ
ˆ      

m
OSPE

 


         (5) 

Further, we can write (5) as follows  

   
,0,

ˆ ˆ ˆ
m n p

OSPE m F
I F I 

 
 F

 


 


   

   (6) 

where,  

  1 ˆR r R1

2

ˆ

ˆ

r R RS
F

m

 



 



 

F

    (7) 

which has a non-central , ,m n p   distribution under 

1 : 0H   , with non-centrality parameter 

     11

2
2

ˆwith
2

Y XRS R ˆ ˆY X

n p

  
 



  
 

 



   
,0, m n pF

, 

(8) 

F


    
, ,m n pF


 I

and  

I F
 

 

are indicator functions which take the value one if F  
falls in the subscripted interval and zero otherwise.  

 ,m n pF 

, ,0m n pF 

 

is the upper α-level critical value from the central F dis-
tribution  

. 

When different estimators are available for the same 
parameter vector   in the linear regression model one 
must solve the problem of their comparison. Usually as a 
simultaneous measure of covariance and bias, the mean 
square error matrix is used, and is defined by 

          ˆ ˆ ˆ ˆ ˆ ˆ,M E D B B       
       
 

 

(9) 
 ˆD   is the dispersion matrix and  where 

   ˆ ˆB E     

denotes the bias vector. We recall that the Scalar Mean 
Square Error  

    ˆ ˆ, , .SMSE trace MSE  

ˆ ˆ
LE d

  

Now the Liu estimator  

F 

ˆ ˆ

               (10) 

and stochastic restricted Liu estimator 

rd d mFs 

  0

1

ˆ    if : 0

ˆ     if : 0

d m
PTSRLE

d

F H
d

F H

 


 

  




   1

d

              (11) 

are combined to define the new preliminary test estima- 
tor (Preliminary Test Stochastic Restricted Liu Estimator 
(PTSRLE)) as 

        (12) 

where, 

F S I S dI
  

0 1d

 

 d and  is the shrinkage parameter. with 
Then we can write (12) as follows 

 

        
, ,0, ,

ˆ ˆ

ˆ
m n p m n p

PTSRLE

d m dF F

d OSPE

d

F I F F I F

F

 



 



    
 





. (13) 

Wijekoon [8] derived the stochastic properties of OSPE. 
By using those results the expectation vector, bias vector, 
dispersion matrix, MSEM and SMSE of  PTSRLE d  
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 dcan be shown as follows 

  ˆ
PTSRLE d OSPE dE d F E F  2 dh F H         
 

 2h H

 (14) 

     1
1PTSRLE dB d F d S dI    

d

d

d d

F

F H H F
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respectively, where,  

1G S R R  ,  

H S R 

 E r R

,  

   ,  H R E r      

and  
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,,   for m n pm mF   

  
 

 



2Pr
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h
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 . 

Hubert and Wijekoon [5] have given the MSE and 
SMSE for SRLE as 


  

  

1

1

1

1

2 1 2ˆ
srd d d d d

d

d

MSE F S F F GF

H

H F

  

 

 

   

  
   

F d S dI
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  2 1ˆ  2

   
   

1

2 2

2 1

1

srd d dSMSE tr F S F  
d d

d

tr F GF
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d dF F d S I

d S I

  

 





     

  

  (20) 

Now we will see some properties of PTSRLE

 Note that the PTSRLE reduces to the OSPE when 
1d

, 

 . 
   2h h 4 0  If 1   then    and hence the MSE 

matrix of  PTSRLE d  reduces to  

     2 1 12 1ˆ 1LE d dMSE F S F d S I S I             

which is the MSE matrix of Liu estimator. 
  2 4 1h h  If 0   then    and hence the MSE 

matrix of  PTSRLE d reduces to 

   

  

2 1 2

1

1

ˆ

1

1

M srd d d d d

d

d

SE F S F F GF

F d S dI H

d S dI H F

  

 

 







     
     

      

 

which is the MSE matrix of SRLE. 
 If    then   0  , and hence from (17), 

the MSE matrix of the PTSRLE tends towards that of 
the LE. 

h

ˆ

3. Performance of the Proposed Estimator 

In this section, we will compare the PTSRLE with the 
SRLE in the sense of mean square error matrix and scalar 
mean square error when stochastic restrictions are correct 
and not correct. 

Definition: (MSEM Superiority of Estimators) 

2
ˆLet two alternative estimators 1  and   of   be 

given. Then 2
ˆ

1̂  is said to be superior to   with re-
spect to the MSEM criterion if and only if  

   1 2
ˆ ˆ, , 0M M    

 
 1 1 2 2

ˆ

.        (21)  

3.1. Comparison between the PTSRLE and  
SRLE under MSE Criterion 

In this subsection, we will compare the PTSRLE with 
SRLE under MSE criterion when the stochastic restric- 
tions are correct and not correct. 

Consider the MSE difference between the PTSRLE 
and SRLE, 

PTSRLE srd

d d

MSE d MSE

F D d d d d F

       
    


        (22)  

where,  

  2 1 2D h G H H      

    1

1 1 2d d S dI h H

 

    

   1

2 1d d S dI H

, 

      

and  
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0

3 Sci

 2 2h h h    . 

3.1.1. Theorem 3.1: 
1) If the stochastic restrictions are true (i.e.,   ); 

the SRLE is always superior to the PTSRLE in the mean 
squared error matrix sense. 

2) Under the assumption  

 1d S    1
dI D 

 

, 

the SRLE is not worse than the PTSRLE if and only if: 
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in the mean square error matrix sense when the stochastic 
restriction are not true (i.e., 0  ). Here  denotes 
the column space of the corresponding matrix. 

 .

0R   

3.1.2. Proof: 
If the stochastic restrictions are correct then  

 E r , 

and consequently the Equation (22) reduced to 

  ˆ
PTSRLE srd d dMSE d MSE   
 F DF   

0 2 1h  D

D

0.

      (23) 

Since  the  matrix is clearly non-
negative definite. 

 

Therefore the mean square difference in (23) is clearly 
nonnegative definite matrix since  is nonnegative 
definite matrix. Hence the SRLE is always superior to the 
PTSRLE in the mean square error matrix sense when    

If the stochastic restriction are not correct then  

 E r 0R   

ˆ

, 

and consequently with respect to the MSE matrix criterion 

srd  is superior to PTSRLE if and only if ( d D   

1 1 2 2d d d d  ) is nonnegative definite. Since is non- 
negative definite, we can apply the lemma of [16] (see 
Appendix) to analyze the MSE matrix superiority of 

D

ˆ
srd  

over  d

D

  

PTSRLE

According to [17] (Theorem A.76, p. 514) we can de- 
rive the generalized inverse of as  
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D
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 24) 
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After some straightforward calculation we can show 
that  
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Using (24) and (25) we can easily prove that 
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Hence, according to the lemma the mean square error 
matrix difference 

PTSRLE srdMSE d MSE       


         

 

is nonnegative definite if and only if  
 

   

 

d S

d S

 

           

1 1 1

2
1 1 1

1 2 1 2 1 1

1 1 1 2 1

dI h H d S dI h H d S dI H D

dI d S dI h H D d S dI H

 



   

   

   

  

                       
               

D


 

 
H

 

  
 

 



S. ARUMAIRAJAN, P. WIJEKOON 287

 
This completes the proof of theorem. 

3.2. Comparison between the PTSRLE and  
SRLE under SMSE Criterion 

In this subsection, we will compare the PTSRLE with 
the SRLE under SMSE criterion when stochastic re- 
stricttions are correct and not correct.  

If the stochastic restrictions are correct then  

  0R   

 ˆ

E r , 

and consequently the SMSE difference between  
 and PTSRLE d srd  can be written as  

 
 2 1 2  

ˆ
PTSRLESMSE d

h tr

   

   


srd

d d

SMSE

F GF

  
 



 0 2 1h

, 

which is nonnegative definite as 
.  

ˆ Hence srd  is always superior to PTSRLE d
0

 
when  . 

If the stochastic restrictions are not correct then 

  0E r R   

S
P

, 

and consequently since the matrix  is positive defi- 
nite, there exist an orthogonal matrix  and a posi- 
tive definite diagonal matrix 

 1 2diag , , , p    

P SP

 

such that   P P PP I  

   
 

, with . Then the 
SMSE difference between SRLE and PTSRLE can be 
written as 
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2

1

2 2
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i
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  (26) 

 
where,  

 1 2, , , pP        ,  1 2, , , pP         

0iia  thi

 

and  is the  diagonal element of the matrix 
A P AP

*0 d d 

        
        

. Therefore, the SMSE difference in (26) is 
nonnegative definite if and only if , where, 

 
2 2

1*

2 2

1

1 2 2 4 2 1 2 1 2

max 1 2 1 2 2 4 2 1 2

i i i i ii i
i p

ii i i i
i p

h h h h a
d

h a h h h

   

   

min     

   
 

 

               


               

  

 
                (27) 

 
Now we summarize our findings: 

Theorem 3.2:  
1) If the stochastic restrictions are true (i.e. 0  ); 

the SRLE is always superior to the PTSRLE in the sca- 
lar mean squared error sense. 

2) If the stochastic restrictions are not true (i.e. 
0  ); the Preliminary Test Stochastic restricted Liu 

Estimator has Smaller SMSE than the Stochastic Re- 
stricted Liu Estimator if and only if , where 

 is given in (27). 

*0 d d 
*d

4. PTSRLE Based on WA, LR and LM Tests 

In general, the finite sample test such as t or F was used 
to define the preliminary test estimator. Since these finite 
sample tests are not always available it is very useful to 
consider the preliminary test estimators based on the 
three tests WA, LR and LM. The WA test offers the ad- 
vantage of only requiring estimates of the unrestricted 
model, whereas LR test requires estimates of both unre-  

stricted and the restricted model. The LM test only re-
quires estimates of the restricted model. In different 
situations, we may find one or the other of these tests 
which is easier to compute. Judge and Bock [7] have 
rewritten the model given in (1) and (2) to obtain the F 
statistics for testing the hypothesis in (3). Using the same 
model we can derive the test statistics for the WA, the 
LR and the LM tests which are well employed for testing 
the Hypothesis (3) and given by 

 

 

 
 

,

ln 1

and

WA

LR

LM

n m mF

n p

mF
n m

n p

n m mF

n p mF












 
    




 

0

         (28) 

respectively [18]. 
H , the It’s known that under the null hypothesis 
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three test statistics have the same asymptotic chi-square 
distribution with  degrees of freedom [18]. When the 
exact distribution is approximated by the asymptotic chi- 
square distribution, the critical value for an α-level test of 

o

m

H  is approximated by the central chi-square critical 
value m  2   for large sample tests. This asymptotic 
chi-square distribution has wide application in the field 
of Econometrics. Based on the above tests, the PTSRLE 
takes the form [10] as 

          2 2 *,m
I

 * *0,
ˆ ˆ,  

m
d m dd F I F

 PTSRLE   


     

 2

  

(29) 
where (*) stands for either WA, LR or LM tests values, 
and m  2 is the upper percentiles of the central   
distribution with m degrees of freedom. 
By using the equation in (18), now we can obtain the 
SMSE of the PTSRLE based on WA, LR and LM tests.  

 

 
   

    
   

*

2 1 2

* *

*

2 2

,

2 2 4

2 1 2

1

PTSRLE

d d

SMSE d

tr F S F h

h h

d h S

d S I



 



 

 

 





  

 

     

 

  



   



*

1

2 d d

d d

d

tr F GF

F F

I F

 

 

 



   (30) 

where,  

 
2

* Pr mh




*

,
2
n p

mc

n p




 
    



N *c

 

for , and  takes the value for WA, LR and LM 
tests as 
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We consider the SMSE difference between WA and 
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where:  
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Now we consider the SMSE difference between LR 
and LM tests of the PTSRLE 
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Case I: If the stochastic restrictions are true then δ = 0. 
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LRc  then the SMSE difference in (31) reduced to 
 2tr F GF 1d d   which is nonnegative definite as 1 
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Case II: If the stochastic restrictions are not true then 
 . 
We can rewrite the SMSE difference in (31) as follows 
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Therefore the SMSE difference in (33) is nonnegative 
definite if  , where  
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We can rewrite the SMSE difference in (32) as fol- 
low: 
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Therefore, the SMSE difference in (36) is nonnegative 
definite if , where  *

3 1d d 




 
 

2 *
2 2

1*
3 2 2
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Now the performance of the PTSRLE estimator based 
on WA, LR and LM tests are compared with respect to 
the SMSE, and the following theorem can be stated. 

Theorem 4.1: 

1) The stochastic restrictions are true (i.e. δ = 0); then 
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then 
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where, 1 , , 3  and 4  are given in Equations 
(34), (35), (37) and (38), respectively. 

*
2d

From Theorem 4.1(2b) and according to [14] we can 
say that when d  is small, WA test has the smallest 
SMSE than the other tests. Similarly according to the 
results stated in (2a), the LM test has the smallest SMSE 
than the other tests when  becomes large. 

5. Numerical Example 

To illustrate our theoretical results, we consider the fol-
lowing data set on Portland cement originally due to 
Woods, Steinour and Starke [19]. This data set came 

from an experimental investigation of the heat evolved 
during the setting and hardening of Portland cements of 
varied composition and the dependence of this heat on 
the percentages of four compounds in the clinkers from 
which the cement was produced. The four compounds 
considered by Woods, Steinour and Starke [19] are trica- 
lium aluminate: 3CaOAl2O3, tricalcium silicate: 3CaOSiO2, 
tetracalcium aluminaferrite: 4CaOAl2O3Fe2O3, and beta-di- 
calcium silicate: 2CaOSiO2, which we will denote by 1X , 

2X , 3X  and 4X , respectively. The dependent variable 
 is the heat evolved in calories per gram of cement 

after 180 days of curing. This dataset has since then been 
widely used by many researchers (e.g. [4,20]). 

Y

7 26 6 60

1 29 15 52

11 56 8 20

11 31 8 47

7 52 6 33

11 55 9 22

3 71 17 6

1 31 22 44

2 54 18 22

21 47 4 26

1 40 23 34

11 66 9 12

10 68 8 12
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113.3

109.4
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,  

The X = (X1, X2, X3, X4) matrix contains n
4p

 ob- 
servations and   predictor variables. Since the re-
gressor matrix X does not include a column of ones a 
homogeneous multiple linear regression, Model (1) 
without intercept is fitted to the data. 

The ordinary least square estimator of regression coef- 
ficient   is  

 1ˆ 2.1930,1.1533,0.7585,0.4863S X Y   

ˆ, 0.0638MSE     

2ˆ 5.8455 

r R

 

with  

 

and  

. 

Consider the following stochastic restrictions    
 0,1,3,1R  0r ,  and    where 

 2ˆ~ 0, 5.8455OLSEN  

d

d

 (see [20,21]). 

Figures 1 and 2 are drawn by using the SMSE given 
in Equations (18) and (20) for different  values se- 
lected from (0, 1). 

According to the Figures 1 and 2, we can conclude 
that when  is small the PTSRLE has the smallest 
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SMSE value than the SRLE, OSPE and OLSE. 
Figures 3 and 4 are drawn by using the SMSE given 

in Equation (30) for different  values selected from (0, 1). d
d

d

d

d

From Figures 3 and 4, we can notice that when  is 
small, the WA test has the smallest SMSE than the other 
tests. When  becomes large, the LM test has the 
smallest SMSE. Hence the data analysis supports the 
findings of this paper. 

6. Conclusions 

In this paper, we have introduced a new preliminary test 
estimator in a multiple linear regression model. When  
is small, the PTSRLE based on WA test has the smallest 
SMSE than the other tests. When  becomes large, the 
PTSRLE based on LM test has the smallest SMSE. 
Moreover, for certain cases (Figures 1 and 2) the pro-
posed estimator has the smallest SMSE. The results of  
 

 

Figure 1. Estimated the SMSE values for SRLE, PTSRLE, 
OSPE and OLSE at 0.01.  
 

 

Figure 2. Estimated the SMSE values for SRLE, PTSRLE, 
OSPE and OLSE at 

 

Figure 3. The SMSE of the PTSRLE based on WA, LR and 
LM tests for 0.01.  
 

 

Figure 4. The SMSE of the PTSRLE based on WA, LR and 
LM tests for 0.05.  
 
this paper have a potential for future developments for 
both theoretical and practical aspects. 
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Appendix 

Lemma: (Baksalary and Trenkler, [16]) 
Let  be a nonnegative definite matrix and 1c , 2  

be linearly independent vectors. Furthermore for some 
generalized inverse  of , let

C c

C
ij i jC f c C c

1, 2,i 

 
 

; 
 and let  1, 2j 

 
 

2 2

1

I CC c

I CC c

 

 

 

 

C (.)

1 1 2 2 0C c c c c

1

c I CC
s

c I CC





 

 

where 1  and  denote the column space 
of the corresponding matrix. Then we have  

c 

    

if and only if  
   1 2,c C c C   and  1) 

   2
11 22 121 1f f f    or 

   1 2 1, ,c C c C c 

    2
2 1 2 1 1c sc C c sc s

and  2) 

   

C

 

and all expressions in (1) and (2) are independent of the 
choice of . 
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