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ABSTRACT 

This paper discusses the estimation of the parameter in a truncated form of a discrete distribution which is analogous to 
Burr distribution. The maximum likelihood and the moment estimators of the parameter are obtained. Their asymptotic 
properties are also established. 
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1. Introduction 

Sreehari [1] has derived a class of discrete distributions 
analogous to Burr family by solving a differential equa-
tion. The probability mass function (pmf) of the random 
variable X having the d-th class of the distributions de-
rived by Sreehari (2010) is  

     1

1 , 0,1,2,
1 !,

0, otherwise

x

x x
xp x





     





 (1) 

with 0 <  < 1.  
Nanjundan and Naika [2] have discussed the estima-

tion of the parameter of this distribution. 
When this distribution is truncated at 0, the pmf of X 

turns out to be 
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It is straightforward to observe that E(X) > Var(X). 
That is this truncated distribution is under dispersed. 

The Fisher information measure is computed in Sec- 
tion 2. The maximum likelihood (ML) estimation of θ is 
discussed in Section 3 whereas the method of moment 

estimate of θ is obtained in Section 4. An asymptotic 
comparison of the maximum likelihood and method of 
moment estimates is done in Section 5. The results of a 
simulation study are presented in Section 6. 

2. Fisher Information Measure 

When X has the pmf specified in (2), we get 
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The Fisher information measure corresponding to this 
pmf is given by  
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Since the infinite series  
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is not tractable, it can be numerically evaluated for the 
required values of θ.  
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is convergent and it can be evaluated numerically. 

3. Maximum Likelihood Estimation 

Let ),...,,( 21 nXXXX  be a random sample on X 
having the pmf specified in (2). Then the likelihood cor-
responding to the sample is 
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The log-likelihood becomes 
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The maximum likelihood (ML) estimator is given by 
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and hence the ML estimator of θis the solution of  
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Since (3) does not yield a closed form expression for 
the ML estimator, it can be evaluated by a numerical 
procedure like Newton-Raphson method. Let m̂le  de- 
note the ML estimator of θ. 

The pmf in (2) satisfies the following regularity 
conditions. 

1) The support of X does not de- 
pend on the parameter θ. 
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2) The parameter space (0, 1) is an open interval. 
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The conditions 1)-5) are easy to verify. We prove the 
validity of 5). 
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where 0 is the true value of the parameter. Since the pa-
rameter space is an open interval such a neighborhood 
exists. Obviously,   .E M X      

Therefore, p(x, θ) satisfies all the regularity conditions 
of Cramer [3] and it belongs to Cramer family. 

Hence 
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In other words, m̂le is consistent and asymptotically 
normal (CAN) for θ. 

4. Method of Moment Estimation 

Let  1 2, , , nX X X X  be a random sample on X hav-
ing the pmf specified in (1.2) and  
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be the first moment of the sample. Since  

   1
e 1 ,E X 


   

the method of moment (MM) estimator of θ is given by 
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Evidently the above equation does not admit a closed 
form expression of the MM estimator of θ and hence for 
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an observed sample, it has to be numerically computed. 
Let m̂me  denote the moment estimator of θ. 

Since p(x, θ) does not belong to exponential family, 
the asymptotic normality of m̂me  is not automatic. We 
establish this property using the delta method. 

Note that 1 2, , , nX X X  are independent and identi- 
cally distributed (iid) with 
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Note that  1
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By Levy-Lindeberg central limit theorem, 
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and is continuous. 
Hence by the delta method (see Knight [4]), 
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that is m̂me is also CAN for θ. 

5. Asymptotic Relative Efficiency 

The asymptotic relative efficiency of the ML estimator 
over the method of moment estimator is given by 

ˆAsymptotic variance of
.
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Since the asymptotic variance of m̂le has no closed 
form expression and is computed numerically, the ARE 
has also to be numerically evaluated. The Table 1 shows 
the ARE for various values of θ. 

The ARE of the ML estimator over the MM estimator 
is steadily increasing as θ increases. That is the ML esti- 
mator uniformly performs better than the MM estimator. 

6. Simulation Study 

A modest simulation study has been carried out using the 
R software. One thousand samples, of size 100, 250, and 
500 were generated from the truncated distribution speci- 
fied in (2) for θ = 0.5. Both the ML and the MM esti- 
mates were computed solving respectively (3) and (4) 
using Newton-Raphson method. Sample means were 
taken to be the initial estimates. Since the asymptotic 
normality of both estimates has been analytically estab- 
lished, an elaborate simulation study has not been done. 
However the following histograms give graphical evi- 
dence of the asymptotic normality of the estimates. As 
the sample size increases, the estimates tend to be dis- 
tributed more normally. 

The Figures 1-3 show the histograms of the MLEs and 
the MMEs based on 1000 samples of sizes 100, 250, and 
500 and θ = 0.5. 
 

Table 1. The ARE of the MLE over the MME. 

 0.1 0.2 0.3 0.4 

ARE 1.100273 1.189627 1.268874 1.338841 

 0.5 0.6 0.7 0.8 

ARE 1.400382 1.454398 1.501861 1.543859 
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Figure 1. The histograms of the MLEs and the MMEs for 
sample size 100. 
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7. Discussions and Summary Histogram of mle
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The distribution discussed in this paper is structurally 
similar to the truncated Poisson distribution and under 
dispersed. Hence this distribution can be used as an al- 
ternative to the truncated Poisson when the data exhibit 
under dispersion. 

Both the ML and MM estimators do not have closed 
form expressions. But they can easily be computed using 
Newton-Raphson method. Both of the estimators are 
CAN for the parameter. The ML estimator is asymptoti- 
cally more efficient than the MM estimator. 
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Figure 3. The histograms of the MLEs and the MMEs for 
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