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ABSTRACT 

The equations of mathematical physics, which describe some actual processes, are defined on manifolds (tangent, a 
companying or others) that are not integrable. The derivatives on such manifolds turn out to be inconsistent, i.e. they 
don’t form a differential. Therefore, the solutions to equations obtained in numerical modelling the derivatives on such 
manifolds are not functions. They will depend on the commutator made up by noncommutative mixed derivatives, and 
this fact relates to inconsistence of derivatives. (As it will be shown, such solutions have a physical meaning). The exact 
solutions (functions) to the equations of mathematical physics are obtained only in the case when the integrable struc- 
tures are realized. So called generalized solutions are solutions on integrable structures. They are functions (depend 
only on variables) but are defined only on integrable structure, and, hence, the derivatives of functions or the functions 
themselves have discontinuities in the direction normal to integrable structure. In numerical simulation of the deriva- 
tives of differential equations, one cannot obtain such generalized solutions by continuous way, since this is connected 
with going from initial nonintegrable manifold to integrable structures. In numerical solving the equations of mathe- 
matical physics, it is possible to obtain exact solutions to differential equations only with the help of additional methods. 
The analysis of the solutions to differential equations with the help of skew-symmetric forms [1,2] can give certain 
recommendations for numerical solving the differential equations. 
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1. Specific Features of Solutions to Equations 
Describing Actual Processes 

Let us take the simplest case: the first-order partial dif- 
ferential equation 

 , , 0,i
i i

iF x u p p u x           (1) 

The exact solution (the solution that depends only on 
variables, i.e. it is a function) can be obtained in the case 
when the derivatives obeying the equations made up the 
differential. 

Let us construct the differential made up of derivatives 
that obey the differential equation  

du                  (2) 

where  (the summation over repeated indices 
is implied). It should be noted that  is a skew- 
symmetric differential form of the first degree. 

d i
ip x 

d i
ip x 

It appears that, in the general case when differential 
Equation (1) describes any physical processes, the form  

d i
ip x   made up of derivatives of differential equa- 

tion is not a differential. 
For the form  be a differential, its different- 

tial has to be equal to zero. 
d i

ip x 

The differential d  of the form  can be 
written as 

d i
ip x 

d diij
jK x x , where 

i J
ij j iK p x p x       

are the components of the differential form commutator. 
From Equation (1) it does not follow (explicitly) that the 
derivatives i

ip u x   , which obey to the equation (and 
to given boundary or initial conditions), are consistent, 
that is, their mixed derivatives are commutative. The 
components of the commutator ijK  is nonzero. There- 
fore, the differential form commutator and the different- 
tial of the form   are nonzero. This points to the fact 
that the differential expression made up of the derivatives 
of differential equation is not a differential. That is, the 
derivatives of differential equation do not made up a dif- 
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ferential (without additional conditions). 
This means that the solution  to Equation (1) ob- 

tained from such derivatives is not a function of variables 
u

ix  only. This solution will depend on the commutator 

ijK  with nonzero value related to inconsistence of de- 
rivatives. 

To obtain the solution that is a function (i.e., the de- 
rivatives of this solution made up a differential), it is 
necessary to add the closure condition (vanishing the 
form differential) for the form  and for the 
relevant dual form (in the present case the functional 

d i
ip x 

F  
plays a role of the form dual to  ): 

 
 

d , ,

d d 0.

i
i

i
i

F x u p

p x

 0,



                (3) 

If to expand the differentials, one gets a set of homo- 
geneous equations with respect to d ix  and d  (in the 

-dimensional space): 
ip

2n

 d d

d d d d 0

i i
i i

i i
i i

F x p F u x p F p

p x x p

         


 

0i  

It is well known that vanishing the determinant com- 
posed of coefficients at d ix ,  is the solvability con- 
dition of the set of homogeneous differential equations. 
This leads to relations: 

d ip

dd i
i

i
i i

px

F p F x p F u




      
        (4) 

Relations (4) specify the integrating direction, which 
defines an integrable structure, that is, a pseudostructure 
(in its metric properties) on which the form  
turns out to be closed one, i.e. this form becomes a dif- 
ferential. 

d i
ip x 

On the pseudostructure, which is defined by relation 
(4), the derivatives of differential Equation (1) constitute 
the differential  (on the pseudostructure), 
and this means that the solution to Equation (1) becomes 
a function. Solutions, namely, functions on the pseu- 
dostructures, are so-called generalized solutions. The char- 
acteristics, characteristic surfaces, singular points, poten- 
tial surfaces, and others are examples of pseudostructures 
or their formations. 

d di
iu p x u  

It should be underlined the following. The solutions, 
which are functions, are obtained only under additional 
condition that determines integrable structures. This ad- 
ditional condition, as one can see, is vanishing the deter- 
minant. Such an additional condition is a condition of 
degenerate transformation. The degenerate transforma- 
tion executes the transition from tangent nonintegrable 
manifold of differential equations to integrable structures 
(pseudostructures). (The Legendre transformations are ex- 
amples of such a transformation.) The realization of ad- 

ditional conditions (that can be caused by any degree of 
freedom) leads to the realization of integrable structure 
and the transition from the solutions, which are not func- 
tions, to generalized solutions (functions). 

One can see that the generalized solutions cannot be 
obtained by numerical modelling the differential equa- 
tion only on original tangent manifold. 

The first-order partial differential equation has been ana- 
lyzed. Similar functional properties have all differential 
equations describing actual processes. Below it will be 
shown that the sets of differential equations that describe 
actual processes possess such properties. 

2. The Properties and Peculiarities of  
Solutions to the Equations of Mechanics 
and Physics of Continuous Medium 

The equations of mechanics and the physics of continu- 
ous media (material systems such as gas-dinamical and 
cosmological systems, the systems of charged particles 
and others) are the equations that describe conservation 
laws for energy, linear momentum, angular momentum, 
and mass [3] (The set of Navier-Stokes equations is an 
example [3]). Such conservation laws can be referred to 
as the balance conservation laws since these laws estab- 
lish a balance between variations of physical quantities 
and appropriate external action. 

The equations of conservation laws are differential (or 
integral) equations that describe the variation of func- 
tions corresponding to physical quantities like the parti- 
cle velocity (of elements), temperature or energy, pres- 
sure and density. Since these physical quantities relate to 
one material system, the connection between them has to 
exist. This connection is described by state functional 
that specifies the material system state. The action func- 
tional, entropy, the Pointing vector, Einstein’s tensor, wave 
function and others can be regarded as examples of such 
functionals [4]. From the equations of conservation law, 
it follows the evolutionary relation for state functional, 
which enables one to disclose the properties and peculi- 
arities of the solutions to the equations of mechanics and 
the physics of continuous media. 

2.1. Evolutionary Relation 

When studying the solutions to partial differential equa- 
tions the conjugacy of derivatives with respect to various 
variables was analyzed. When describing physical proc- 
esses in continuous media (in material systems) one ob- 
tains not one differential equation but a set of differential 
equations. And in this case it is necessary to investigate 
the conjugacy of not only derivatives but also the conju- 
gacy (consistency) of the equations of this set.  

The equations are consistent if they can be contracted 
into identical relations for the differentials, i.e. for closed 
forms. 

Copyright © 2013 SciRes.                                                                                AJCM 



L. PETROVA 207

Let us now analyze the consistency of the equations 
that describe the conservation laws for energy and linear 
momentum. 

In the accompanying frame of reference, which is tied 
to the manifold built by the trajectories of particles (ele- 
ments of material system), the equation for energy is 
written in the form (see example [5]) 

11
A








                 (5) 

Here 1  are the coordinates along the trajectory,   
is the functional of the state, 1A  is the quantity that de- 
pends on specific features of the material system and 
external (with respect to the local domain) energy actions 
onto the system. 

Similarly, in the accompanying frame of reference, the 
equation for linear momentum appears to be reduced to 
the equation of the form 

, 2,A

 



 


             (6) 

where   are the coordinates along the direction nor- 
mal to the trajectory, A  are the quantities that depend 
on the specific features of material system and the exter- 
nal force actions. 

Equations (5) and (6) can be convoluted into the rela- 
tion  

 d d 1,A 
                (7) 

where d is the differential expression  
 d d       . 

Relation (7) can be written as 

d                     (8) 

here dA 
   is a skew-symmetric differential form 

of the first degree. 
[In the case of the Euler and Navier-Stokes equations a 

concrete form of relation (8) and its properties were con- 
sidered in papers [5]]. 

Since the equations of balance conservation laws are 
evolutionary ones, the relation obtained is also an evolu- 
tionary relation. 

Relation (8) was obtained from the balance conserva-
tion law equations for energy and linear momentum. In 
this relation the form   is that of the first degree. If the 
balance conservation law equation for angular momen- 
tum be added to the equations for energy and linear mo- 
mentum, this form in the evolutionary relation will be a 
form of the second degree. And in combination with the 
equation of the balance conservation law for mass this 
form will be a form of degree 3. 

Thus, in the general case, the evolutionary relation can 
be written as  

d p                    (9) 

where the form degree  takes the values p .0,1, 2,3p   
Evolutionary relation obtained from the equations of 

the balance conservation laws possesses some peculiarity. 
This relation proves to be nonidentical since the differen- 
tial form in the right-hand side of this relation is not a 
closed form, and, hence, this form cann’t be a differential 
like the left-hand side. 

Let us analyse the relation (8). 
The evolutionary relation d   is a nonidentical 

relation as it involves the unclosed skew-symmetric dif- 
ferential form dA 

  . The form   isn’t a close 
form since its differential d  is nonzero. The differen- 
tial d  can be written as d dK  

   , where 

K A A 
          

are the components of the differential form commutator 
built of the mixed derivatives (here the term connected 
with the nonintegrability of the manifold has not yet been 
taken into account). The coefficients A  of the form 
  can be obtained either from the equations of the bal- 
ance conservation law for energy or from that for linear 
momentum. This means that in the first case the coeffi- 
cients depend on the energetic action and in the second 
case they depend on the force action. In actual processes 
energetic and force actions have different nature and ap- 
pear to be inconsistent. The commutator of the form   
constructed from the derivatives of such coefficients is 
nonzero. This means that the differential of the form   
is nonzero as well. Thus, the form   proves to be un- 
closed and cannot be a differential. 

[The skew-symmetric form in evolutionary relation is 
defined on the manifold made up by trajectories of the 
material system elements. Such a manifold is a deform- 
ing manifold. The commutator of the skew-symmetric 
form defined on such manifold includes an additional 
term connected with the differential of the basis. This 
term specifies the manifold deformation and hence is 
nonzero. Both terms in the commutator (obtained by dif- 
ferentiating the basis and the form coefficients) have a 
different nature and, therefore, cannot compensate one 
another. This fact once more emphasize that the evolu- 
tionary form commutator, and, hence, its differential, are 
nonzero. That is, the evolutionary form remains to be 
unclosed]. 

Hence, without the knowledge of a particular expres-
sion for the form  , one can argue that for actual proc-
esses the evolutionary relation proves to be nonidentical. 

The nonidentity of the evolutionary relation means that 
the initial equations of conservation laws turn out to be 
inconsistent, and hence, they are not integrable. The so-
lutions to these equations will not be functions without 
additional conditions. They will depend on the commu-
tator, which is nonzero due to inconsistence of the con-
servation law equations. 
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The solutions that are functions can be obtained only  
under additional conditions when the identical relation 
can be obtained from nonidentical evolutionary relation. 
This will point to the consistency (but only local, under 
additional condition) of the conservation law equations 
and the local integrability. 

The identical relation can be obtained from nonidenti- 
cal evolutionary relation only in the case when the closed 
exterior form, which is a differential, is obtained from 
unclosed evolutionary form. This is possible only under 
degenerate transformation, namely, under the transfor- 
mation that does not conserve the differential, since, the 
evolutionary form differential is nonzero, whereas the 
differential of closed form is equal to zero. The addi- 
tional conditions (which are the conditions of local inte- 
grability) are the conditions of degenerate transforma- 
tion. 

The additional conditions are caused by any degrees of 
freedom. The vanishing of functional expressions such as 
the determinant, Jacobian and so on corresponds to the 
additional conditions. These conditions can be realized 
under changing the evolutionary relation, which is self- 
variable. 

If the conditions of degenerate transformation are re- 
alized, from the unclosed evolutionary form with non- 
vanishing differential , one can obtain the dif- 
ferential form closed on pseudostructure. The differential 
of this form equals zero. That is, it is realized the transi- 
tion 

d p  0

0
  π

π

d 0
d 0 degenerate transformation

d

p
p

p





    


 

where p  is the dual form (which is a metric form). 
The condition π  is an equation for a certain 
pseudostructure π on which the differential of evolution- 
ary form vanishes: π . This points to the fact that 
the pseudostructure is realized, and the closed (inexact) 
exterior form 

d p 

d p 

0

0

π
p  is obtained on pseudostructure. 

On the pseudostructure, from evolutionary relation 
d p   it is obtained the identical relation π πd p  , 
since the closed exterior form π

p  is a differential of 
some differential form. (This relation will be an identical 
one as the left and right sides of the relation contain dif-
ferentials). The identity of the relation obtained from the 
evolutionary relation means that on pseudostructures the 
original equations for material system (the equations of 
conservation laws) become consistent and integrable. 

Pseudostructures constitute the integrable surfaces (such 
as characteristics, singular points, potentials of simple 
and double layers, and others) on which the quantities of 
material system desired (such as the temperature, pres-
sure, density) become functions of only independent 
variables and do not depend on the commutator (and on 

the path of integrating). This are generalized solutions.  
They may be found by means of integrating (on inte- 
gradle structures) the equations of conservation laws for 
material systems. 

Since generalized solutions are defined only on real- 
ized integrable structures (pseudostructures), they or their 
derivatives have discontinuities in the direction normal to 
integrable structure [6]. 

One can see that the integrable structures are obtained 
from the condition of degenerate transformation of the 
evolutionary relation. The conditions of degenerate trans- 
formation (a vanishing of such functional expressions as 
determinants, Jacobians, Poisson’s brackets, residues) are 
connected with the symmetries, which can be due to the 
degrees of freedom of the material systems under con- 
sideration (for example, the translational, rotational and 
oscillatory degrees of freedom of material system). 

The degenerate transformation is realized as the transi- 
tion from the noninertial frame of reference to the locally 
inertial one, i.e. the transition from nonintegrable mani- 
fold (for example, tangent or accompanying) to integrable 
structures and surfaces. 

Thus, one can see that the solutions to the set of equa- 
tions, as well as in the case of a single equation, may be 
of two types: the solutions that are not functions, that is, 
they depend not only on independent variables, and gen- 
eralized solutions, which are functions, and are obtained 
only under realization of additional conditions (which de- 
termine integrable structures or surfaces). The specific 
feature is the fact that they are definded on different spa-
tial objects. Such solutions cannot be obtained by con-
tinuous modelling the differential equations only on a 
single spatial odject. 

Before turning back to the problems of numerical solv- 
ing the differential equations, it should call attention to 
the physical meaning of the solutions to these equations. 

2.2. Physical Meaning of the Solutions to the 
Mathematical Physics Equations 

The physical meaning of the solutions to the mathemati- 
cal physics equations can be understood by the analysis 
of the evolutionary relation. 

The evolutionary relation includes the functional that 
specifies the system state. Sinse this relation is noniden- 
tical, it is impossible to obtain the state functional from 
this relation. This points to the absence of the state func- 
tion and nonequilibrium state of the material system un- 
der consideration. The solutions of the first type just de-
scribe such nonequilibrium state. In this case, the com- 
mutator describes the internal force that induces the non- 
equilibrium state of material system. The solutions of the 
second type (genealized solutions, which are functions) 
are obtained under realization of additional conditions 
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when the closed exterior forms is obtained from the un- 
closed evolutionary form, and the identical relation is 
realized. From such relation one can get the state func- 
tional and find the state function. This fact will point to 
the transition of material system into the locally equilib- 
rium state. 

The transition of the material system from nonequilib- 
rium state into the locally-equilibrium one means that the 
unmeasurable quantity described by the nonzero com- 
mutator of the unclosed evolutionary differential form, 
which acts as an internal force, transforms into the meas- 
urable quantity. In material system, this reveals as the 
emergence of certain observable formations, which de- 
velop spontaneously. Such formations and their manifes- 
tations are fluctuations, turbulent pulsations, waves, vor- 
tices, and others [7]. 

It appears that the transition from the solutions of the 
first type to the generalized solution corresponds to the 
transition of material system from the nonequilibrium 
state to the locally equilibrium one that is accompanied 
by the emergence of a certain (observable) formation in 
material system. The discontinuous functions that corre- 
spond to generalized solutions just describe such obser- 
vable formations. 

Thus we obtain that the discrete realization of general- 
ized solution points to the emergence of a certain (ob- 
servable) formation in material system that is described 
by discontinuous functions corresponding to generalized 
solutions. 

It may be also noted that the type of solutions to the 
equations describing material systems is of great signifi- 
cance for mechanics and physics of continuous media. In 
mechanics and physics of continuous media the same 
equations are considered (the equations of conservation 
laws for energy, linear momentum, angular momentum, 
and mass). The set of Navier-Stokes equations is an ex- 
ample [5]. However, the approaches to solving these equa- 
tions in mechanics and physics are different. In physics 
the interest is expressed in only generalized solutions that 
are invariant ones and describe measurable physical quan- 
tities (but not the process itself), and noninvariant solu- 
tions are ignored (even if they have a physical meaning). 
The aim of mechanics of continuous media is to describe 
the process of the continuous media evolution. And in 
this case the numerical methods of solving differential 
equations are commonly used without studying the inte- 
grability conditions of these equations. The question of 
searching for invariant solutions that are realized only 
under additional conditions is commonly not posed. That 
is, one considers the solutions that are not functions. 

Such restricted approaches, both in physics and me- 
chanics, lead to nonclosure of relevant theories and this 
has some negative points. In mechanics without finding 
the generalized solutions it is impossible to describe such 

processes as the emergence of vorticity, turbulence and  
others. The physical approach enables one to find allowed 
invariant solutions, however, in this approach there is no 
way to say at what time instant of evolutionary process 
one or another exact solution was realized. This does not 
also discloses the causality of phenomenon described by 
these solutions. It is evident that in mechanics, as well in 
physics, it is necessary to seek for solutions of both types. 
In particular, in the case of gas-dynamic system such an 
approach had been studied in paper [5]. 

3. On the Problem of Numerical Solving the 
Differential Equations 

As it was noted, the equations that describe actual proc- 
esses are definded on manifolds (tangent, accompanying), 
which are nonintegrable. If to model the equations on 
such a manifold, one can obtain, without additional con- 
ditions, the solutions of only first type, i.e. the solutions 
that depend on the commutator with nonzero value caused 
by inconsistency of derivatives or equations in the set of 
equations. It should be emphasized once more that such 
solutions have physical meaning, namely, they describe 
the nonequilibrium state induced by the physical proc- 
esses proceeded in the system. The generalized solutions, 
which are functions and describe discrete formations, 
cannot be obtained by modelling the equations only on 
original manifold, since they are obtained on integrable 
structures that do not belong to original nonintegrable 
manifold. Therefore, to obtain the generalized solutions 
by numerical simulation, one must use two systems of 
reference. One more problem of obtaining the general- 
ized solution relates to the fact that the integrable struc- 
tures with generalized solution are not initially given, and 
they are realized spontaneously in the process of inte- 
grating under the realization of additional conditions, 
namely, the integrability conditions. (As additional con- 
ditions it may serve, for example, the characteristic con- 
ditions, the dynamical conditions of the consistency of 
equations in the set of equations [8] and so on). To obtain 
the integrable structures, it is necessary to trace for the re- 
alization of additional conditions, which define the inte- 
grable structures, in the process of numerical integrating 
the equations on the original manifold. This gives a pos- 
sibility to obtain the instant of realization the generalized 
solution. 

In this case, the transitions from inexact solutions to 
generalized ones describe the process of emergence of 
any observable formations (in particular, such as waves, 
vorticity and others), which intensity is definded by gen- 
eralized solution. 

As it was noted, in mechanics and physics the interest 
is expressed in various types of the solutions to equations. 
The methods of numerical solving the equations relate to 
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this fact. 
In mechanics this is the method of direct numerical 

simulating the equations, which is fulfilled on tangent 
manifold (being nonintegrable) and enables one to obtain 
only inexact solutions. 

In physics this is the method of solving equations 
when the equations are provided with the integrability 
conditions (the conditions of consistency) and this en- 
ables one to obtain integrable structures or surfaces, that 
is, to go out onto cotangent integrable manifold and ob- 
tain exact solutions (the methods of characteristics, sym- 
metries, eigen-functions and others are examples of such 
methods). The analytical methods may be such methods. 

It is possible that the integration of these both methods 
will allow solve some problems on numerical integrating 
the mathematical physics equations. 

It should be emphasized that on integrable structures 
the variables of the function desired do not coincide with 
the variables of original manifold (since they belong to 
different spatial objects). Thus, the coordinates of the 
equations for characteristics are not identical to the inde-
pendent coordinates of the initial manifold, on which the 
initial equation is defined. 

It should be emphasized once more that the existence 
of two types of solutions has a deep physical sense. This 
peculiarity of the equations enables one to describe the 
process of origin of discrete formations such as waves, 
vorticities, turbulent pulsations [7] and so on. 

It has been shown that the origin of discrete formations 
is described by the transition from the solutions of the 
first type, which depend on a certain commutator, to the 
generalized solution that is a function. To describe the 
process of origin of discrete formations, it is necessary, 
firstly, have the solutions of the first type, which can be 
obtained only by numerical modelling of the equation on 
the original nonintegrable manifold (it is impossible to 
find such a solution by analytical method), and, secondly, 
have the solution of the second type (generalized solu- 
tion). This solution can be obtained only on integrable 
structure that is definded by the integrability conditions 
being realized. Here there is a delicate point. The allow- 
able generalized solutions can be obtained by analytical 
methods if the integrability conditions are imposed on 
the equations. However, in this case it is impossible to 
define the instant of realization of generalized solution 
and thereby to describe the process of the discrete forma- 
tion emergence. The description of evolutionary proc- 
esses is possible only either by numerical methods, but 

with two frames of reference, or by using simultaneously 
numerical and analytical methods. 

4. Conclusions 

It has been shown that the equations, which describe ac- 
tual processes, have the solutions of two types, which are 
defined on different spatial objects, and, therefore, can- 
not be obtained by continuous numerical simulations of 
the equations. The existence of two spatial objects on 
which the solutions are defined gives rise to the problems 
on which the attention must be focused while numerical 
solving the mathematical physics equations. 

It should be also emphasized that the methods of nu- 
merical solving the equations with account for the exis- 
tence of two types of solutions can allow describing the 
evolutionary processes such as the emergence of any 
discrete formations. 
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