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ABSTRACT 

By using experimentally determined measurements of potential energy together with the principle of conservation of 
energy and solving directly, the space-time geometry equation for space outside matter is obtained. That equation fits all 
the experimental observations that support the accepted Schwarzschild metric, yet predicts there isn’t a singularity at the 
Schwarzschild radius. The accepted Schwarzschild metric is the first approximation of the conservation of energy 
space-time metric. No observation yet made can distinguish between the predictions of the two metrics. 
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1. Introduction 

With the passage of time, Einstein’s gravitational field 
equations [1-4], now often written as 

4
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where Rμν is the Ricci curvature tensor, gμν is the metric 
tensor, R is the scalar curvature, G is Newton’s universal 
gravitational constant, c is the speed of light and Tμν is 
the stress energy tensor, remain the only theory of grav-
ity to correctly predict observations against which they 
were tested [The cosmological constant term g   is 
often included on the left hand side of Equation (1)]. 
Among the features Einstein predicted from his theory 
were: 
 Photons leaving the sun would be redshifted by the 

time they reached Earth; 
 The orbit of the planet Mercury would undergo a 

precession due to the sun’s mass curving space-time; 
 The sun’s mass would deflect the path of photons that 

travelled close to it; 
 Photons leaving the surface of a star or planet would 

be redshifted. 
His subsequent predictions of gravity waves and gra-

vitational lensing have also been confirmed. 
Schwarzschild [5] was the first to attempt to solve 

them. Later solutions [6-11] yielded the now accepted 
exact solution [12] 
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where s is the space-time geometry co-ordinate, t is time, 
r is distance from the centre of mass, θ and φ are angles  

and 
2

2G
 

M

c
   where M is the mass of the body that  

is distorting space-time, G is Newton’s universal gravita- 
tional constant and c is the speed of light. It is rather ob- 
vious that Equation (2) behaves badly at r = α and this is 
the source of the concept of black holes with an event 
horizon at radius r = α. 

Einstein’s gravitational field equations were based 
upon mass distorting space-time. The success of the gen-
eral theory of relativity in predicting gravitational effects 
has been highly significant. As well as explaining the 
effects mentioned above, Einstein also predicted that 
gravity waves would be produced by rotating non sym-
metric objects, gravitational lensing and moving mass 
dragging space-time with it. These were subsequently 
observed. A prediction from Equation (2) was that any-
thing originating at a distance r < α from a massive ob-
ject could not pass through the barrier at r = α because it 
would need to travel at faster than c, which led to the 
concept of black holes. Subsequent studies have sug-
gested that black holes lost all properties except mass and 
rotation. Kerr [13] studied the properties of rotating black 
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holes and was able to predict a spreading of photon 
wavelengths when seen by outside observers. 

The developments of the general theory of relativity 
have been very good at explaining most planetary and 
stellar gravitational effects as well as many galactic phe-
nomena and some inter galactic effects. There is no 
doubt as to the validity of the derivations of the space- 
time metric of Equation (2) from Einstein’s field Equa- 
tions (1). Einstein showed the relationship between his 
work and Newtonian gravity. Newton [14] unified poten- 
tial energy with stellar behavior and gravitational effects 
on planet Earth. His theory successfully described the 
behavior of objects under the influence of large masses 
such as planets and stars. In particular it enabled gravita-
tional effects to be calculated mathematically, explaining 
all effects observed to that time. 

Despite its success, the general theory of relativity still 
has its critics, particularly those aspects dealing with the 
predictions of an event horizon associated with collapsed 
matter forming black holes. From Equation (2) it is ob-
vious that a black hole will form with an event horizon at 
r = α, beyond which even light cannot travel. In the case 
of matter collapsing to a point singularity the event hori- 
zon requires gravity to have an action at a distance. There 
is no physical principle in which action at a distance can 
occur. One of the early criticisms of Newton’s theory of 
gravity was that it required action at a distance for two 
objects to attract each other across space. Despite that 
criticism, Newton’s calculations dominated all gravita- 
tional studies for over two hundred years. Einstein’s gen- 
eral relativity theory overcame the problem of action at a 
distance by showing that mass distorted space-time and 
in turn, space-time determined how mass moved. That 
has allowed general relativity to successfully describe all 
situations against which it has been tested since its in- 
troduction. 

All theories are attempts to describe reality. That does 
not mean that a theory is reality even if it successfully 
describes all situations against which it has been tested. 
When it comes to gravitational effects, the theory of gen- 
eral relativity gives the best description, having success- 
fully predicted the outcome of all measurements against 
which it has been tested. Despite almost a century pass-
ing since it was first published, its format is still regarded 
as entirely mathematical. Some of its predictions, such as 
a black hole having an event horizon, are seen as predic- 
tions from the mathematics of an accurate theory for 
which no physical explanation is invoked. This lack of a 
physical explanation and the complexity of the mathe- 
matics has led many to question the integrity of general 
relativity, despite the accuracy of its experimentally 
tested predictions. General relativity has its supporters 
and its detractors. None of its supporters appear to have 
been able to offer a physical explanation for its effect. 

None of its detractors appear to have come up with an 
alternative that can satisfy all the measurements that 
general relativity has successfully predicted. 

Reality is the result of gravity determined by measur- 
ing such properties as potential energy. It is beneficial for 
measurements on planet Earth that Newton’s theory of 
gravity gives a means of calculating potential energy. 
With or without Newton’s theory, potential energy is still 
a measurable property associated with mass, which effect 
can be calculated by using Newton’s universal gravita- 
tional constant G. In his derivation of general relativity, 
Einstein still used the same universal gravitational con- 
stant associated with mass. Gravity and potential energy 
are inseparably associated with mass. It is an aim of this 
manuscript to show that gravitational effects can be cal- 
culated from the well known physical principle of con- 
servation of energy. 

2. The Conservation of Energy Metric 

Potential energy (PE) is associated with mass through the 
relationship 
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where r1 and r2 are the different distances r from the 
centers of mass of an object of mass m from another ob-
ject of mass M. When 2 1  r r r r    , this simplifies 
to 

PE mg r                   (3b) 

where g is the average acceleration due to gravity over 
the distance Δr. No experiment or observation has yet 
been made in which Equation (3a) does not hold. As such 
it is a suitable starting point for a study of the behavior of 
photons in space outside matter. A photon is a particle of 
energy E = hν, where h is Planck’s constant and ν is its 
frequency. From Einstein’s special theory of relativity 
[15,16] it is known that E = mc2, which yields the mass 
m of a photon as 2m hv c  [17-21]. It is known from 
experiment that an object of mass m with kinetic energy 
(KE) moving up against a gravitational field will lose 
kinetic energy as it gains potential energy. This is illus-
trated in Figure 1, for a photon of mass 2hv c  moving 
distance Δr against a gravitational field of strength g. 
This was recognized by Einstein [22,23] when he dis-
cussed the effect of gravity upon the propagation of light. 
He expressed the relationship between the frequencies of 
light at different vertical positions by the equation 
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where ν1 and ν2 are the frequency of the light at vertical  
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Figure 1. Illustration of the gain in potential energy when a 
photon travels a distance Δr against gravity. 
 
distances r1 and r2, separated by height Δr = r2 − r1, in a  
gravitational field of strength 2Gg M r  , as illus-
trated in Figure 1. With a photon being a constant veloc-
ity particle, a loss in kinetic energy can only occur by a 
loss of mass and hence frequency. Equation (4) was used 
by Einstein [22,23] and was subsequently verified by the 
work of Pound, Rebka and Snider [24-26]. Equation (4) 
is based upon experimental observation and has been 
adequately calculated using Newtonian mechanics. To 
date no observation has been made in which Equations (3) 
and (4) do not hold true. 

The conservation of energy as the light travels away 
from the centre of mass, as illustrated in Figure 1, yields 

2 1KE KE PE  , 

which becomes 
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Setting the limit as Δr tends to zero in Equation (4), 
while allowing that G and c are constants and M is the 
mass of a gravitationally attracting body, enables Equa-
tion (5) to be rearranged to give 
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for which there is no experimental evidence to suggest 
that it is not applicable for all values of r from the centre 
of mass of M. Newton [14] showed that mass distributed 
throughout space behaves gravitationally as if all the 
mass were concentrated at the centre of mass, when ob-
served from outside the mass, allowing r to be used as 
the distance from the center of mass M. 

Introducing a constant 2

2GM

c
   and integrating 

from r1 to r2 (>r1) gives 
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Equation (6) is an exact expression for the variation of 
frequency of light when the energy of an individual pho-
ton remains constant as it moves away from the centre of 
mass M. An observer at a distance from M will see the 
light coming away from the object as being red shifted. 
To such an observer, it would appear as if time was 
slowing down the closer the observation was made to the 
centre of mass. If we apply this to the case of the red 
shift from the sun, r1 = 700,000 km,  km 
and α = 2.95 km, a photon leaving the surface of the sun 
would be red shifted by an amount equal to 

8
2 1.49 10r  

2.95 2.95

1,400,000 298,000,000e e               (6a) 

by the time it reaches the surface of planet Earth. This 
equates to 62 10 , which agrees with the result reported 
by Einstein [22,23]. Such a change in frequency has been 
observed [27,28]. It should be noted that others have 
used Newtonian mechanics in the same manner to calcu-
late the redshift of photons from the sun, reaching the 
same answer [29,30]. Those authors did not continue the 
study in the manner reported in the following work. 

From knowledge that c is constant to all observers and 
the relationship 

c


                      (7) 

where λ is the wavelength of the photon, it follows that 
this change of frequency will generate an inverse change 
in wavelength. The only method we have of measuring 
the properties of distant objects is with photons. If the 
frequency of photons has changed, the distance measured 
using photons will also change. Equation (7) can now be 
substituted into Equation (6) to determine the corre-
sponding variation of length with distance, yielding 
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Equations (6) and (8) can now be used to define the 
exact nature of the variation of time and length with dis-
tance from the centre of mass of a body. This is equiva-
lent for each of the coordinates, x, y and z enabling the 
exact nature of the space-time continuum to be calculated 
in any direction radially out from the centre of mass of a 
massive object M. We can now go directly to the Min-
kowski space-time equation [31,32], which is applicable 
to flat space-time that is well away from significant mass, 
which using the most common convention is expressed 
as 

2 2 2 2 2s ct x y z     

Following the work of Schwarzschild [5], when mass 
is involved, we need to change the form to take into ac-
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count the distortion of space, giving 
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where F, H and J are functions of r when 
. 2 2 2r x y z   2

2

Equation (9) can be transformed from Cartesian to po-
lar co-ordinates to yield 
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Allowing that the distortion of space and time is 
measured by variations to the frequency and wavelength 
of photons, it is apparent from Equation (7) that the 
product of . From Equations (6) and 
(8) this gives 
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Equation (11) describes how space-time varies around 
an object of mass 

2

2G

c
M


  

based upon the principle of conservation of energy. The 
only way we have of observing space-time is the detec-
tion of photons that have traveled through it. The distor-
tion of space-time is both a measure of and is measured 
by the distortion of the photons that have traveled 
through it. 

3. Comparison with Other Metrics 

From his field equations for space outside matter, Ein-
stein derived his approximate solutions of 

1d 1 2x r   and 4d 1 2x r  . He then used those 
approximations to solve for the deviation of a photon by 
the gravitational field of the sun and the precession of the 
orbit of the planet Mercury. Schwarzschild [5] provided a 
solution to them, which solution had the form 
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It should also be noted that Schwarzschild introduced 
a co-ordinate change from r to R to simplify his calcula-

tions. In his answer, the singularity at R = α equates to a 
singularity at r = 0. 

Equation (2) is an exact solution to Einstein’s field 
Equations. Equation (11) is an exact derivation of the 
space-time geometry equation using the principle of 
conservation of energy. Equations (2) and (11) are dif-
ferent. Although Einstein was aware of Equation (5) and 
used it in his first paper to derive the effect of mass upon 
space-time, his further work that led to the general rela-
tivity theory, was based upon the effect of the gravita-
tional field upon space-time. This has led some general 
relativity practitioners to conclude that his field equations 
hold for all values of α/r, i.e., all gravitational field 
strengths, while Newtonian mechanics, which Einstein 
showed was a first approximation of general relativity, 
was only a weak field solution and as such could not be 
extended to high field strengths. This author contends 
that the principle of conservation of energy applies at all 
values of α and r, i.e., all gravitational field strengths. 
Until experimental evidence shows that Equations (3) and 
(4) do not hold, Equation (11) must be considered to be valid. 

Further it should be noted that e r



 can be expressed by 
the Maclaurin/Taylor series as: 

 2 3

2 3
1

2! 3! !

n

nr r r r n

   
    , 

making 1
r


  the first approximation to e r



. 

The only mechanism for separating those two solu-
tions is to make measurements well within the difference 
between the two terms, namely approximately  2

0.1 r . 
This can be done either by performing measurements on 
planet Earth that are accurate to better than 1 part in 1021, 
or making independent observations of the Schwarzs- 
child radius α, the radius r and measuring the distortions 
of space-time at distances r less than 10 α to an accuracy 
of better than 1:100. Many experiments have been for-
warded as verifying Equation (2). Each of those observa-
tions and subsequent verifications has been based upon 
only knowledge of Equation (2) only and not of Equation 
(11). To date no observation has been made that can dis-
tinguish between the predictions of Equations (2) and (11) 
[33]. 

It should be noted that Eddington [30] pointed out that 
light had mass and that using Newtonian mechanics as 
the basis of calculation, the deflection of light rays by the 
sun would be half that due to Einstein’s space-time dis-
tortion, the same as was originally calculated by Einstein 
[22,23]. The other half of the distortion comes about be-
cause a change in frequency automatically means a 
change in time as well as length. Eddington [34] spoke of 
light pulses and accepted that they behaved according to 
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what is now called the Schwarzschild metric given in 
Equation (2). It is equally clear that his original work on 
the influence of gravity upon the propagation of light, 
Einstein [22,23] considered the effect of Newtonian cal-
culations of gravity upon particles of light, now called 
photons. Under the Einstein-de Broglie model of photons, 
they are considered as particles that have relativistic  

mass given by 
2

h
m

c


 . 

4. Calculating Some Gravitational Effects 

The ability of photons to be treated in the conservation of 
energy as particles of constant velocity and variable mass 
makes it somewhat easier to grasp the mechanism in-
volved in the general theory of relativity. The redshift of 
photons leaving a massive object is done in the same 
manner as was done by Einstein [22,23] and gives the 
same answer, namely 62 2 10r    for photons leav-
ing the sun, as shown in the derivation of Equation (6). 

Consider the situation shown in Figure 2, in which a 
photon passes at distance r0 from the origin O of an ob-
ject of mass M. From Equation (4) the photon experi-
ences a distortion of time at distance r given by 2r  
as it travels from −∞ to +∞. The total time distortion it 
experiences is given by summing all distortions, namely 

π
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π 0
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cos d
2r r

  



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where r0 is the distance of closest approach. From Equa- 
tions (7) and (11) it is obvious that there is a similar term 
for the distortion of space, but with opposite sign. Equa- 
tion (11) shows that the total distortion of space-time is 
obtained by subtracting these two, which gives a space- 
time distortion that shows up as a deflection given by 

2
é

r


                (12) 

with the negative sign indicating that the distortion is 
towards the massive object. Using α of the sun = 2.95 km 
and the radius of the sun as r0 = 700,000 km, gives é = 
1.74 arc seconds which agrees with Einstein’s prediction 
[1,3,4] and was subsequently observed [34,35]. 
 

 

Figure 2. Illustration of the passage of a photon ϒ close to 
the surface of a massive object, making its closest approach 
at distance r0. 

A study of the derivation of the precession of the orbit 
of planet Mercury, also predicted by Einstein [2] may 
help to illustrate the easier understanding of this “relativ-
istic” effect. Mercury is the innermost planet and has an 
elliptical orbit, moving between distances of 46.6 million 
kilometers and 69.8 million kilometers from the sun, 
giving it an orbit eccentricity e of 0.2056, taking ap-
proximately 88 Earth days to travel once around the sun, 
meaning that it makes 415 orbits per Earth century. 

From Equation (12), we know that a photon passing by 
the sun at the orbit of Mercury, will be deflected by an 
amount, é, equal to 2 Mr  , where Mr  is the corrected 

radius for Mercury’s orbit. Under this presentation é is 
the distortion of space-time at this distance, as viewed 
from infinity. On planet Earth, from where these obser-

vations are made, there is a time distortion of 2e Er



,  
where rE is radius of planet Earth’s orbit, see Equation 
(6). This is illustrated in Figure 3, which shows the time 
dilation, vertical scale, plotted against distance. When 
measured from Earth, this must be included in the space- 
time distortion Δs at Mercury’s orbit, to give 
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which simplifies to 
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 2M E

s
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 
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when Mr  and Er  . 

Note that this calculation only takes planet Earth’s 
time distortion into account and not the space-time dis-
tortion because all measurements are made by photons 
travelling from Mercury to Earth, which, to a first ap-
proximation, is at a fixed distance rE from the sun. We 
need to consider the distortion at those distances for the 
whole circle of radius r. Figure 4 illustrates photons 
moving at a distance r from mass M. In each case a pho-
ton passing at distance r will be distorted Δs to move in a 
slightly different direction. Another photon passing at the 
new point will be distorted by the same Δs, this time 
starting at a different point. To determine the space-time 
distortion over a complete orbit, we must consider the 
deflection of the photon over angle φ. This is given by 

 

 

Figure 3. Schematic illustration of the relationship between 
time dilation and distance for the sun and planets Mercury 
and Earth. 
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Figure 4. Schematic illustration of the passage of a photon 
past a massive object centered at point M. Summing the 
series of those segments yields the complete trajectory. 
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where e is the eccentricity of Mercury’s orbit and rM is its 
semi-major axis. To obtain the space-time distortion at 
Mercury’s orbit, we set the limit of φ tends to zero, 
yielding sinφ = φ, and integrate φ from 0 to 2π, which 
gives 
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where ε is the distortion of space-time that leads to the 
precession of Mercury’s orbit in its direction of rotation. 
Using the above information, α = 2.95 km and 

, gives the precession ε of Mercury’s 
orbit as ε = 42.15 arc seconds per century. 

6149 10 kmEr  

This is slightly less than that predicted from Einstein’s 
calculation, which gives ε = 42.98 arc seconds per cen-
tury. Part of these differences can be attributed to the 
uncertainties in e, α, rE and rM. It should also be noted 
that the total precession of Mercury’s orbit is 5599.7 arc 
seconds per century [36]. Of this, 5560.26 arc seconds 
per century is explained by other factors [37], leaving 
39.44 arc seconds per century unexplained. At 42.98 arc 
seconds per century, Einstein’s explanation is too large 
by about 3.5 arc seconds per century. At 42.15 arc sec-
onds per century, this derivation leaves about 2.7 arc 
seconds per century unexplained. 

The ease of understanding this approach could be 
compared to the more complex approaches used by oth-
ers. For example Trencèvski et al. [38] used flat Min-
kowski space to calculate their equivalent to Equation 
(13), yielding 

 2

3π

1 e Mr

 


 

which equates to 35.6 arc seconds per century when ap- 
plied to the precession of the orbit of the planet Mercury. 
It should be noted that when Einstein derived his expla- 
nation for the motion of Mercury’s perihelion, he also 
derived that same expression. Trencèvski et al. [38] cal- 
culation of the equivalent of Equation (12) gave the same 
answer as Equation (12). 

The accuracy of Einstein’s field equations from his 
general theory of relativity in predicting gravitational 
effects should not be overlooked. Einstein [39] made a 
further prediction that non-symmetrical rotating massive 
bodies would radiate gravity waves and hence loose en- 
ergy. That loss of energy would be detected by the slow- 
ing down of the rotating body. Hulse and Taylor [40] re- 
ported a binary pulsar, PSR B1913 + 16, two neutron 
stars rotating about each other, which seemed to fit the 
situation of a non-symmetrical rotating body. Observa- 
tion by Weisberg and Taylor [41-43] showed it was in- 
deed slowing down according to Einstein’s predictions. 
Consequently it is generally believed that Einstein’s gen-
eral theory of relativity been verified to an accuracy of 
approximately 1 part in 1014. The decay rate is inde-
pendent of whether the metric used is Equation (2) or 
Equation (11). The same situation applies for other veri- 
fications of Einstein’s field equations. Unless independ- 
ent measurements of r and α are made to the accuracy 
required to separate the two metrics, there is no experi- 
mental evidence to suggest that Equation (2) is accurate 
and Equation (11) is not. 

5. Discussion 

The above has demonstrated that treating photons as par- 
ticles of variable mass and constant velocity while calcu- 
lating the effect of conservation of energy upon them, 
has produced the space-time metric for space outside 
matter. These calculations, based upon the experiment- 
tally verified principles of conservation of mass/energy 
and the existence of potential energy associated with 
massive objects, were done without any approximations. 
The relationship between the general relativity and con-
servation of energy metrics is illustrated in Figure 5. 

Figure 5(A) suggests that mass generates potential 
energy, leading to gravity, which in turn distorts space- 
time, as derived in this presentation. Figure 5(B) sug- 
gests that mass distorts space-time, causing gravity, 
which in turn leads to potential energy. In both cases, the 
central theme is mass, from which potential energy, gra- 
vity and space-time distortion cannot be separated, as 
suggested in Figure 5(C). The pathway for the calcula- 
tion of gravity from mass can be either conservation of       
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Figure 5. Schematic illustration of the possible relationships between mass, potential energy, gravity and space-time distor-
tion. A illustrates the pathway that gravity arises from mass by potential energy, with gravity distorting space-time, as shown 
in this presentation. B illustrates the pathway that mass distorts space-time, which leads to gravity that generates potential 
energy. C suggests that both pathways will lead to the same result. 
 
energy or space-time distortion. In either pathway the 
answers should always be the same because their effect, 
namely gravity, is the same. The important question is 
“which pathway offers the best means of calculating 
gravitational effects?” General relativity predicts a sin- 
gularity at the Schwarzschild radius, which requires “ac- 
tion at a distance” when the Schwarzschild radius is lar- 
ger than the radius of the massive body. This conser- 
vation of energy metric does not use any approximations 
and does not require “action at a distance” to explain any 
gravitational effect. Without independent determinations 
of r and α at r < 10α and the measurement of gravita- 
tional effects to an accuracy of ≈ 1%, there is no experi- 
mental evidence to suggest that the Schwarzschild metric 
better describes gravitational effects than those described 
by this conservation of energy metric. Lasky [33] has 
shown that current observations are several orders of 
magnitude away from being able to verify the accuracy 
of general relativity predictions under all conditions. Un- 
til measurements are made that can distinguish between 
the two metrics, there is no experimental evidence to 
suggest that the predictions of gravitational effects using 
general relativity are better than those obtained using 
conservation of energy. 

The relationship between the three descriptions of 
gravity, Newtonian mechanics, general relativity and 
conservation of energy was shown above. It is contended 
that the conservation of energy metric will accurately 
predict all gravitational phenomena for space-time out-
side matter. The Schwarzschild metric from general rela-
tivity is the first approximation to the conservation of  

energy metric in which e r



 is approximated to 1
r


 .  

Newtonian mechanics is based upon the speed of light 
being infinite and the mass of a photon being zero. It 
accurately describes local situations where experimental 
error is not sufficient to distinguish between c and ∞ or 
measure the change in mass (and hence frequency) of 

photons. As this presentation shows, giving photons a 
mass and a finite velocity enables Newtonian mechanics 
to predict relativistic effects when conservation of energy 
is applied to the photons. The differences are between the 
predictions of general relativity and the conservation of 
energy metrics. 

Figure 6 illustrates the difference expected when 
photons of frequency 0  are emitted at different dis-
tances r from a massive object at O and detected by an 
observer at infinity. The conservation of energy metric 
predicts that a photon emitted at r will have a frequency 
at infinity given by  

2
0e r



 


                  (14) 

where r is the distance from the centre of mass. The 
Schwarzschild metric predicts that the photon will have a 
frequency given by 

0 1
r

    .             (15) 

For photons emitted at distances r  , the predic- 
tions of the two metrics will be the same for observations 
at infinity. As the emission distance approaches the 
Schwarzschild radius the predictions become signifi- 
cantly different. The Schwarzschild metric predicts that 
photons emitted at r = α will have no frequency left when 
they reach infinity. The conservation of energy metric 
predicts that photons emitted at r = α will have a redshift 
of ≈ 0.6065 and still be detected. Until observations are 
made at distances r < 10α to an accuracy of ≈ 1%, this 
conservation of energy metric matches all observations 
that have confirmed the accuracy of general relativity 
predictions. 

Equations (14) and (15) make different predictions for 
the detected frequency of photons leaving the surface of 
a massive compact object when seen by an observer in 
free space. It is apparent that these differences are only 
significant for distances of r close to α, a situation that  
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Figure 6. Illustration of the differences predicted by the 
conservation of energy and Schwarzschild metrics for pho-
tons of frequency ν0 emitted at distances r from an object, as 
detected by an observer at infinity. 
 
can only apply for very massive objects, such as neutron 
stars. A neutron star of solar mass M

2

 will have α = 
2.95 km and a physical radius r0 = 13.4 km based upon 
an average neutron star density of [44], 
giving it 

17 310 kg/m

0 0.220r  . The redshift of spectral lines 
emitted from the surface of non rotating neutron stars 
gives an opportunity to determine the accuracy of Equa-
tion (11), provided the density of the neutron star, and 
hence r0, is accurately known. The Schwarzschild radius 
α increases linearly with mass while the physical radius 
of the neutron star, rN, increases with the cube root of 
mass. 

Figure 7 shows a plot of Nr  for neutron star 
masses less than 10 M . Using Equations (14) and (15) 
for the relationship of frequency versus distance for the 
conservation of energy and Schwarzschild metrics, Fig-
ure 8 shows a plot of the variation of frequency of pho-
tons emitted from the surface of a non rotating neutron 
star when plotted under these metrics. As can be seen 
from Figure 8, there is a region above ≈ MN ≈ 0.5 M  
where there are significant differences between the fre-
quencies of photons emitted from the surface of the neu-
tron star as predicted by the different metrics. This still 
requires measurements to be made of the MN, which de-
termines α, and either the density or radius rN of the neu-
tron star. If this can be done, it provides one means of 
discriminating between the two metrics. It is postulated 
that when observations are made with the required accu-
racy, the predictions from the conservation of energy 
metric will match all gravitational measurements made in 
space outside matter. 

6. Conclusion 

This paper has shown that gravitational effects can be 
calculated from the physical principal of conservation of 
energy. Potential energy is a measurable properties asso-
ciated with mass, which, in the case of photons, is given  

by 
2

h
m

c


 . It can be calculated using Newtonian me-  

chanics and Newton’s universal gravitational constant G. 
The resultant space-time metric matches all experimental  

 

Figure 7. Plot of Schwarzschild radius α divided by the 
neutron star radius rN, versus the mass of the neutron star 
expressed as a proportion of the solar mass . M

 

Figure 8. Plot of the detected frequency variation expected 
from photons emitted from the surface of a neutron star as 
calculated from the Schwarzschild metric and the conserva-
tion of energy metric, as indicated, for neutron star masses 
up to 10 M . 

 
observations that currently support the predictions of the 
general relativity theory. It predicts that there is no sin-
gularity at the Schwarzschild radius and hence no black 
holes. It also overcomes the problem of gravitational 
action at a distance associated with the Schwarzschild 
radius being outside the mass of a collapsed object. 
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