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ABSTRACT 

Graphene is a newly discovered material that possesses unique electronic properties. It is a two-dimensional single- 
layered sheet in which the electrons are free and quasi-relativistic. These properties may open a door for many new 
electronic applications. In this paper we proposed a flat 2-dimensional circular graphene-semiconductor quantum dot. 
We have carried out theoretical studies including deriving the Dirac equation for the electrons inside the graphene- 
semiconductor quantum dot and solving the equation. We have established the energy structure as a function of the ro-
tational quantum number and the size (radius) of the dot. The energy gap between the energy levels can be tuned with 
the radius of the quantum dot. It could be useful for quantum computation and single electron device application. 
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1. Introduction 

Traditionally, quantum dots are nano-particles of a se- 
miconductor material, such as chalcogenides of metals 
like cadmium or zinc, for example CdSe or ZnS. The size 
of the particles ranges from 2 to 10 nanometers in di-
ameter [1]. Excitons, such as electrons or holes in a 
quantum dot are confined in all three spatial dimensions. 
Therefore, the electronic properties in quantum dot lay 
intermediate amid those of bulk materials and those of 
discrete atoms or molecules [1-4]. They were discovered 
at the beginning of the 1980s by Alexei Ekimov [1,5]. 

Graphene, a new class of two-dimensional (2D) carbon 
material with single-atom-thick layer features different 
from ball-like C60 and one-dimensional carbon nano- 
tubes, has attracted attention in recent years [6-10]. Sin- 
gle atom layer graphene possesses unique electric prop- 
erties. The energy bands of graphene can be described by 
a two-dimensional Dirac equation centered on hexagonal 
corners (Dirac points) of the honeycomb lattice Brillouin 
zone [11-13]. Particularly, the low energy band structure 
of graphene is gapless and the corresponding electronic 
states are found near two cones located at unequivalent 
corners of the Brillouin zone [12-14]. The low-energy 
carrier dynamics 2

Fmv  is equivalent to that of a 2D gas 
of massless charged fermions [12,15,16]. Many studies 
of electronic properties, transport properties of a nano- 

scale graphene strips were performed over the past years 
[14,17-24]. Transistors using graphene strip and gra-
phene quantum dot have be fabricated recently [25,26]. 
Quantum dot may have applications in quantum com-
puter and single-electron device.  

The layered graphene quantum dot mentioned above 
which has two different boundary conditions corre-
sponding to two types of graphene edges, i.e., the zigzag 
and “armchair” [20,27], currently attracts intensively 
investigations world-wide [12,19].  

In this paper we proposed a novel type of quantum dot, 
single layered two-dimensional (flat) graphene quantum 
dot composed of a small (in nanometer) circular gra-
phene layer surrounded by a large gap semiconductor 
layer on a insulating substrate and carried out a theoreti-
cal study of such quantum dot. The Dirac equation in 
polar coordinate was derived and solved by variable- 
separation and series method. The energy structure of 
such quantum dot is found to have two discrete states and 
depends on the rotational quantum number and the size 
(radius) of the dot.  

2. Electron Wave Functions in  
Graphene-Semiconductor Quantum Dot 

The structure of the graphene-semiconductor quantum 
dot is shown in Figure 1. Electrons in graphene can be 
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Figure 1. Structure of the graphene quantum dot. (a) Top view; (b) side view. 
 
treated as massless particles. Their behavior is governed 
by Dirac Hamiltonian [12,15,16].. 

The Hamiltonian including the energy gaps of the se- 
miconductor film surrounding the graphene circular dot 
and a diagonal effective mass-like term 2

Fmv  is [12]  

  2ˆ
F F ZH v mv    P U , 

and the Dirac equation is  

Ĥ E                    (1) 

and 

   
 

,
,

,
A

B

  
 

  
 

  
 

            (2)[12] 

where   is the wave function as a function of ,    
which are polar coordinates, angle and radius respec-
tively. 

Since the effective mass of electrons in graphene sheet 
near the corners of the Brillouin zone is close to massless, 
the Hamiltonian of the electrons is nearly relativistic. 
Hence, the energy of the electrons in the graphene sheet 
mostly arises from the spin-orbit interaction [12,28]. In 
polar coordinates, the momentum operator can be written 
as 

i
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The Dirac Equation (1) then becomes 
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Equation (5) consists of two equations. These are: 
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Letting 

    i, e l
A A

      

and  

    i, e l
B B

      

where 

0,1, 2,3,l   . 

Substituting these two functions into Equations (6) and 
(7), we obtain the following two equations: 
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Differentiating Equation (8), one finds 
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From Equation (9), one can find 
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Substituting Equation (11) into Equation (10), we find 
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From Equation (8), we also find 
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Substituting Equation (13) into Equation (12), Equa-
tion (12) becomes 

 
 

   
 

   

 
 

22

2 2

2 2

2 2

2

d d

d sin i cosd

sin i cos sin i cosd

d

sin i cos sin i cos

sin i cos d

sin i cos d

FB B
B

F

F FB
B

F F

F F
B

F F

F B

F F

E U mv ll l

v

v l v

E U mv E U mv

E U mv E U mv

v v

vU

v E U mv

 


     

   


 


   

  
 

 
  

 

    
  

    
   

 
  

 
 
   



 

 




 
 2

sin i cosF
B

F

l v

E U mv



 








 

  



 

(14) 

After some cancelations, Equation (14) becomes 
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For inside the graphene quantum dot, 0  , the po-
tential energy U = 0. And . Therefore, Equation 
(14) becomes 
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For 1  , i.e. 0  , outside the dot, electrons are 
no longer in graphene layer. Instead, electrons are in 
semiconductor which should be described by Schrod-
inger equation. We will study this case in other paper. In 
this paper, we only deal with the case that the energy gap 
of the semiconductor is infinite. The potential function 
can be expressed as 
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2

2

3. Wave Function and Energy States of the 
Electrons inside the Dot   

2 2
i i

2 2

d d d
e 2 i e e

dd d
k kB B B

Bk k 2 ik    


 
    

To find the wave functions and the energy states of the 
electrons inside the quantum dot, we have to first solve 
Equation (15). Equation (15) is an eigen value-eigen 
function equation. From this equation, one can see that 
the eigen values  can be positive or negative. 
Since the value for  is usually very small. Hence let 
us first consider  is positive.  
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Substituting the above function and their derivatives 
into Equation (15), we find the equation of  B   
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Substituting the above two equations into Equation (16), we obtain the following equation 
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From Equation (18), we determine the recursion relation of the series coefficients.  
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The general solution B  can be formed as 
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One can note that the series above converges fast. Therefore, we make the third order-approximation. The B-com- 
ponent of the wave function then can approximately be obtained as 
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With Equation (13), one can find the A-component of the wave function. 
When 0  , the boundary conditions are: 
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From Equations (26) and (27), one can conclude that only the value of the determinant of coefficients A and B in 
Equations (26) and (27) equals to rezo, i.e.. 
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then the wave functions ,A B   have nonzero solutions. 
And the above equation determines the values of k and 
then the energy level E. The above equation was nu-
merically solved. And we found the solutions of k as a 
function of l which are plotted in Figure 2. Then the 
energy level 
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Tipically  

0.539 eV nmFV    [12] 

and 
Figure 2. Quantum number k versus quantum number l. 
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This relation for l = 0 is plotted in Figure 3. 

4. Conclusion 

We have derived and solved the Dirac equation for a flat 
circular graphene-semiconductor quantum dot. The series 
method was employed and the recursion relation of the 
coefficients of the series was found. The wave function 

,A  B  was approximately established. The energy 
related quantum number k were obtained as a function of 
rotation quantum number l. one can see that for each l 
there are two values of k. Namely, there are two energy 
levels. The smaller value of k, i.e. the first energy level 
increases slightly with l when l < 1. After l > 1, k is ap-
proximately a constant. The higher k, i.e. the higher en-
ergy level decreases slightly with increasing l and as- 

Figure 3. Energy levels versus the size of the dot for l = 0. 
 
ymptotically approaches a constant. These two states of 
the electrons in such graphene quantum dot are clear and 
stable. From Figure 3 we can see that the energy levels E 
of the quantum dot decrease with the increasing size of 
the quantum dot 0 . Therefore, the energy gap between 
these two energy levels may be tuned with the radius of 
the quantum dot. It may have potential applications in 
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quantum computation and developing a single-electron 
device. 
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