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ABSTRACT

Graphene is a newly discovered material that possesses unique electronic properties. It is a two-dimensional single-
layered sheet in which the electrons are free and quasi-relativistic. These properties may open a door for many new
electronic applications. In this paper we proposed a flat 2-dimensional circular graphene-semiconductor quantum dot.
We have carried out theoretical studies including deriving the Dirac equation for the electrons inside the graphene-
semiconductor quantum dot and solving the equation. We have established the energy structure as a function of the ro-
tational quantum number and the size (radius) of the dot. The energy gap between the energy levels can be tuned with

the radius of the quantum dot. It could be useful for quantum computation and single electron device application.
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1. Introduction

Traditionally, quantum dots are nano-particles of a se-
miconductor material, such as chalcogenides of metals
like cadmium or zinc, for example CdSe or ZnS. The size
of the particles ranges from 2 to 10 nanometers in di-
ameter [1]. Excitons, such as electrons or holes in a
guantum dot are confined in all three spatial dimensions.
Therefore, the electronic properties in quantum dot lay
intermediate amid those of bulk materials and those of
discrete atoms or molecules [1-4]. They were discovered
at the beginning of the 1980s by Alexei Ekimov [1,5].
Graphene, a new class of two-dimensional (2D) carbon
material with single-atom-thick layer features different
from ball-like C60 and one-dimensional carbon nano-
tubes, has attracted attention in recent years [6-10]. Sin-
gle atom layer graphene possesses unique electric prop-
erties. The energy bands of graphene can be described by
atwo-dimensional Dirac equation centered on hexagonal
corners (Dirac points) of the honeycomb lattice Brillouin
zone [11-13]. Particularly, the low energy band structure
of graphene is gapless and the corresponding electronic
states are found near two cones located at uneguivalent
corners of the Brillouin zone [12-14]. The low-energy
carrier dynamics mv? is equivalent to that of a 2D gas
of massless charged fermions [12,15,16]. Many studies
of electronic properties, transport properties of a nano-
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scale graphene strips were performed over the past years
[14,17-24]. Transistors using graphene strip and gra-
phene quantum dot have be fabricated recently [25,26].
Quantum dot may have applications in quantum com-
puter and single-electron device.

The layered graphene quantum dot mentioned above
which has two different boundary conditions corre-
sponding to two types of graphene edges, i.e., the zigzag
and “armchair” [20,27], currently attracts intensively
investigations world-wide [12,19].

In this paper we proposed a hovel type of quantum dot,
single layered two-dimensional (flat) graphene quantum
dot composed of a small (in nanometer) circular gra-
phene layer surrounded by a large gap semiconductor
layer on ainsulating substrate and carried out a theoreti-
cal study of such quantum dot. The Dirac equation in
polar coordinate was derived and solved by variable-
separation and series method. The energy structure of
such quantum dot is found to have two discrete states and
depends on the rotational quantum number and the size
(radius) of the dot.

2. Electron Wave Functionsin
Graphene-Semiconductor Quantum Dot

The structure of the graphene-semiconductor quantum
dot is shown in Figure 1. Electrons in graphene can be
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Figure 1. Structure of the graphene quantum dot. (a) Top view; (b) side view.

treated as massless particles. Their behavior is governed
by Dirac Hamiltonian [12,15,16]

The Hamiltonian including the energy gaps of the se-
miconductor film surrounding the graphene circular dot

and adiagonal effective mass-liketerm mv? is[12]
H=v; (¢-P)+mia, +U,
and the Dirac equation is
HY = E¥ (1)
and
¥(4.p) =[ZEZ£;] (2012

where y is the wave function as a function of ¢, p
which are polar coordinates, angle and radius respec-
tively.

Since the effective mass of electrons in graphene sheet

near the corners of the Brillouin zone is close to massless,

the Hamiltonian of the electrons is nearly relativistic.
Hence, the energy of the electrons in the graphene sheet
mostly arises from the spin-orbit interaction [12,28]. In
polar coordinates, the momentum operator can be written
as

g, 010

P=-inv = — €
op " pog

3

The Pauli vector is
G=0,+0,]
=0, (cos¢e —sin¢e¢)+62(sin¢ep+cos¢e¢)
( cos¢—isin¢]e @
cos¢+|sm¢ 0 ?
—Sing—icos¢g
e
( sm¢+|cos¢ 0 ] 4
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Combining Equations (3) and (4), we obtain

_ . 0 cos¢—isin¢
o-P=-ih .
Cos¢g +ising 0
0
cinl . sm¢+|cos¢
sing—icosg p6¢
The Hamiltonian
A 0 -
A = —inv, N Cos¢ |sm¢ 0
cosg+ising op
0
inve| | . sm¢+|cos¢ 10
sing —icos¢ p 0P

,(1 0 U
+ Ve 0 _1"" (,D,¢)

The Dirac Equation (1) then becomes

—ihv, (cos¢—|sn¢) p B +ihve (sing+icosg)— 55/;3
P p
—ihv, (cos¢+isin¢) 6 (sing—icosg)— 1 681/:;
o
(E_U _rnvlg)WA
(E-U+mi )y,
©)
Equation (5) consists of two equations. These are:
—hVe (sm¢+|cos¢) B + v (—cosg+ising) = 6@'/;3
op
:(E_U _mVF)‘//A
(6)
and
10y,
Vi - Vi —=
Ve (sing |cos¢) A+ hve (cos¢+|sm¢)p % (1
=(E-U+m¢ )y,
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Letting
va(#.p)=pa(p)€”
and
e (.0) =05 (p)€"”
where
1=0123 .

Substituting these two functions into Equations (6) and
(7), we obtain the following two equations:

—hVg (Sing+icosg) dd(pB
o

+1hvg (-sing—i cos¢)£goB
P

:(E_U _mvé)(pA
®

A+lave (- Sin¢+iCOS¢)i(0A

Ve (sm¢—|cos¢) i ©
=(E-U+m¢)pq

Differentiating Equation (8), one finds

2

. . (o ")
Ve (-sing—i COS¢)$23

AV, (~sing—i cos¢)[_i2¢8 4100
2

10
pdp) (9

=(E-u —Wﬁ)ddi‘\ ~U'p,

From Equation (9), one can find

E-U+mv

don _ 1
hv; (sing —icosg) s

do  p

11)

Pa

Substituting Equation (11) into Equation (10), we find

dzgoB 1 dg; | E-U-m?
dp2 o dp 2P ~hV; (Sing+icosg)
I E-U+mv?
;¢A+ v, (Sinqé—iCOSqé)(pB
: N
~ —hv, (Sng+icosg) Pa
(12)
From Equation (8), we aso find
o= —hVe (sing+icosg) dy
=
E-U-m? dp 13)

. |7V (—sing—icosg) g,
E-U-m? P
Substituting Equation (13) into Equation (12), Equa-
tion (12) becomes
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(E-U-mz)l
v, (Sing +icosg) p

—hve (sing+icosg) doy .
E-U-my dp

|7V (—sing—icosg)
(E-U-mz)p

Pg

. E-U-m} E-U+mv}
—hVe (Sing +i cos¢) Ve (sing—i cos¢)
~ u’ | 7V (sing +icosg) do,
—hV, (sing +icosg) E-U-mv} dp
+Ith (-sing—icosg)
(E-u-mZ)p 7

(14)
After some cancelations, Equation (14) becomes
d2¢’B _ U’ dog
dp®> E-U-mv? dp
I(1+1) (E-U mevy U’
(104 (E-uy-mhg Npa-o
P hvE E-U—-mv
14y

For inside the graphene quantum dot, p < p,, the po-
tential energy U = 0. And U'=0. Therefore, Equation

(14) becomes
(I +1 —mAvi
[ hzv,f : J(pa =0 (14)
£
0

Letting &= and ¢ <1, Equation (14)" then be-

comes

dpy (142 [&ET_(poer T
d 52 52 P [ v, 7 P (15)
= —[52 —A2]¢)B,

where

g='0°E, and

hve

A= PoMVe

For £>1,i.e. p> p,, outside the dot, electrons are
no longer in graphene layer. Instead, electrons are in
semiconductor which should be described by Schrod-
inger equation. We will study this case in other paper. In
this paper, we only deal with the case that the energy gap
of the semiconductor is infinite. The potential function
can be expressed as

0 1
veo-)
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3. Wave Function and Energy States of the Poe Py s o s e Lor e
Electronsinside the Dot —2 =—2&¥ 4 2(ik) 2" —k’¢,€
ag®  d& dg
Substituting the above function and their derivatives
into Equation (15), we find the equation of ¢, (&)

To find the wave functions and the energy states of the
electrons inside the quantum dot, we have to first solve
Equation (15). Equation (15) is an eigen value-eigen

function equation. From this equation, one can see that &’ 2'kd¢B 1(1+1) 16
the eigen values £°—~A” can be positive or negative. & +4 = P (16)
Since the value for A is usualy very small. Hence let )
usfirst consider ¢?—A? ispositive. assuming
e Cm 2 4 (£) =€),
=& —-A
assuming then
¢B:¢B(§)elk§, %:Sgﬁs‘lL_FfS%
then d¢ d¢
. , and
%&:%e‘k& *4o i), o do o diL
g g ¢ZB — S(S_l)§S—2L+ZS§S—1_+§S_2
and dé dé 7 d¢
Substituting the above two eguations into Equation (16), we obtain the following equation
£2 L +(2s§+2ik§2)$+[2iks§+s(s—1)—| (I+1)]L=0 17
dg* dg
Letting L(&)=D) a,£", and substituting this series into Equation (17), we obtain the following equation
n=0
Y a,n(n-1)&"+2sy na £ + 2k na &M+ 2iksy 8, &M +[ s(s-1) -1 (1+1)] > a,E" =0 (18)
n=0 n=0 n=0 n=0 n=0

From Equation (18), we determine the recursion relation of the series coefficients.
&:[s(s-1)-1(1+1)]a, =0
&i[2s+s(s-1)-1(1+1)]a, +2iksa, =0 (19)
£%:[2+2s-2+5(s-1)-1(1+1) |a, +(2ik+2iks)a =0
&:[3-2+25:3+5(s-1)-I (1 +1) |a, +(2ik- 2+ 2iks)a, =0 (20)

£":[n(n-1)+2sn+s(s-1)-I(1+1)]a, +[ 2ik(n-1)+2iks]a, , =0 (21)
The recursion relation may be extrapolated as

_ -2ik(n+1)

_ n+)(20+1)! o (n+])(20+2)! N
n(n+2+1) ™Y (i

i
=(-2k) ni(n+2 + 1)1 ° n!(n+2|+1)!|!(2k) % @)

For no trivial solution, a,#0,then s=1+1

Finally,
o =g Bho sy 2y .
-gne 2 |)!! : 2y 2n!((i:++l|)i 1) (k)" R (2n +(i)nl(+2ln++1 |) !+ 2)! (2™

The general solution ¢, can beformed as
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?s($) = 5'”%{{003( ke) X (-1 %(zmz” —sin(kg) (1" (Znﬁ; (+2'n++1|)'+ 2)!( 5)2"”}

(2n+1)! (2n+1+1)!

+ B{sjn(kf)Z(—l)"kaf)z” +cos(kg) Y (-1)" DI+ 2) (2k§)2"”}}
(

n=0

(@) 1 a2, 2kt ) . 2k 8k . 4k® g
= _!{A{Cos(kf){m_z(us)f +3(|+5)§ ]_Sn(kf)[nzg_ﬁam)g +15(I+6)§ H

(24)

. 1 a* 2kt 2k 8k . 4k®
+B[9”<k‘f>£m‘z<|+3)5 Y3(1+5)° J+C°S(k§){|+2§_6(|+4)§ "50+6)° H}

One can note that the series above converges fast. Therefore, we make the third order-approximation. The B-com-
ponent of the wave function then can approximately be obtained as

s g (2)! . S S
V/B(¢1p)=e ¢)B(§):e '3 T{A|:COS(k§)£—— ¢ +3 )‘fj

[+1 2(1+3)

_ K OB L K
_S'”(k‘f)[uz‘f‘saw)‘f "50+6)° H
. 1 4k* 2kt
*B{S'”“‘f)[m‘ 20+3)° T3(1+5)° J

ok 8k, 4k® 5
+COS(k§)[| +2§_6(| +4)ét +15(| +6)§ H}

With Equation (13), one can find the A-component of the wave function.
When p = p,, the boundary conditions are:

(25

‘/’A(¢apo):0
or

2 4 3 5
A{[ (2 +1)cosk—ksink]- R S -[(2+1)sink +kcosk - 2k 4k, A
I+1 1+3 3(1+5) 1+2 3(1+4) 15(1+6)

2 4 3 5 2 4
[ AR 8K ask—| 2K AL 4K Tgnkleg [(2+1)sink+kcosk]- L S S (26)
1+3 (1+5) 1+2 1+4 3(1+6) l+1 1+3 3(1+5)

3 5 2 4 3 5
+[(2I+1)cosk—ksink]-[ 2k aK + aK J—[A'k 8k Jsink+[ 2k _ 4k 4K )]cosk}:o

I+2_3(I+4) 15(1+6) I+3_(I+5) I+2_I+4+3(I+6

and
4! (¢,,Do) =0ie

1 2K? 2k* . 2k 4K° 4k°
A| cosk| —— + —sink - +
I+1 1+3 3(+5) [+2 3(+4) 15(1+6)
2 4 3 5
+B| sink 12 +L + cosk 2k 4k N 4k 0
[+1 1+3 3(1+5) [+2 3(1+4) 15(+6)

From Equations (26) and (27), one can conclude that only the vaue of the determinant of coefficients A and B in
Equations (26) and (27) equalsto rezo, i.e..

(27)
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2 4
{[(2I+1)cosk ksmk][ 2k e 2k
I+1

I+3 3(1+5)
4K? 8k*
- - cosk —
1+3 (1+5)

2k 4k® 4K°® .
- + sink
|+2 1+4 15(1+6)

3 5
] [(2I+1)sink+kcosk]-[ 2k 4K + aK J

l+2 3(I+4) 15(1+6)

. 1 2k 2k
-l sink| — —-——+——— |+ cosk
I+1 1+3 3(1+5)
—{[(2|+1)sjnk+kcosk} (i—ﬁ 2

l+1 1+3 3(1+5)
4k* 8kt ) .
—| ————|sink+
[+3 [+5

2k 4k® 4K°
- + cosk
|+2 1+4 15(1+6)

2k 4K3 4k®
[I +2 3(1+4) +15(| +6)J:l

1 2k? 2k* . 2k 43 4k°
.| cosk| — +———|—-sink - + =0,
l+1 1+3 3(1+5) l+2 3(1+4) 15(1+6)

then the wave functions y,,w; have nonzero solutions.
And the above egquation determines the values of k and
then the energy level E. The above equation was nu-
merically solved. And we found the solutions of k as a
function of | which are plotted in Figure 2. Then the
energy level

RGN I (29)
Lo
Tipicdly
hV: =0.539eV-nm [12]
and

A=9.28x10"(nm) ™" - p, (nm) [12],

then

£=2%% ke 86x10° 07 (ev)

Po
Thisrelation for | = Oisplotted in Figure 3.

4. Conclusion

We have derived and solved the Dirac equation for a flat
circular graphene-semiconductor quantum dot. The series
method was employed and the recursion relation of the
coefficients of the series was found. The wave function
wa, Wg Was approximately established. The energy
related quantum number k were obtained as a function of
rotation quantum number |. one can see that for each |
there are two values of k. Namely, there are two energy
levels. The smaller value of k, i.e. the first energy level
increases dlightly with | when | < 1. After | > 1, kis ap-
proximately a constant. The higher k, i.e. the higher en-
ergy level decreases dlightly with increasing | and as-
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Figure 3. Energy levels versusthe size of the dot for | = 0.

ymptotically approaches a constant. These two states of
the electrons in such graphene quantum dot are clear and
stable. From Figure 3 we can see that the energy levelsE
of the quantum dot decrease with the increasing size of
the quantum dot p,. Therefore, the energy gap between
these two energy levels may be tuned with the radius of
the quantum dot. It may have potential applications in
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guantum computation and developing a single-electron
device.
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