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ABSTRACT 

We have studied Locally Rotationally Symmetric (LRS) Bianchi type-I cosmological model filled with anisotropic fluid 
in general theory of relativity. The solutions of the field equations are obtained by using special form of deceleration 
parameter which gives early deceleration and late time accelerating cosmological model. The geometrical and physical 
aspect of the model is also studied. 
 
Keywords: LRS Bianchi Type-I Space-Time; Special Form of Deceleration Parameter; Anisotropic Fluid; Dark Energy; 

Isotropization 

1. Introduction 

Our universe is undergoing a late-time accelerating ex- 
pansion which has been evidenced by Riess et al. [1], 
Bahcall et al. [2], Bennett et al. [3], Spergel et al. [4], 
Cunha [5]. We live in a spatially flat universe composed 
of (approximately) 4% baryonic matter, 22% dark matter 
and 74% dark energy. Recently, Li et al. [6] studied the 
present acceleration of the universe by analyzing the 
sample of baryonic acoustic oscillation (BAO) with cos-
mic microwave background (CMB) radiation and con-
cluded that such sample of BAO with CMB increases the 
present cosmic acceleration which has been further ex-
plained by plotting graphs for change of deceleration 
parameter q with redshift . 2z 

Many authors suggested a number of ideas to explain 
the current accelerating universe, such as scalar field 
model, exotic equation of state (EoS), modified gravity, 
and the inhomogeneous cosmology model. The dark en-
ergy EoS parameter is w p  , where p is the dark- 
energy pressure and   is its energy density. The value 

1 3w    is necessary for comic acceleration. The sim- 
plest candidate for dark energy is the cosmological con-
stant ( ) for which . The matter with  1 w 1w    
gives rise to Big Rip singularity (Caldwell [7]). Elizalde 
et al. [8] and Nojiri et al. [9] proposed several ideas to 
prevent the Big Rip singularity by introducing quantum 
effect terms in the action. Recently, Astashenok et al. [10] 
studied phantom cosmology without Big Rip singularity. 

In the present paper, we have considered a LRS spa- 

tially homogeneous and anisotropic Bianchi type-I cos- 
mological model with special form of deceleration pa- 
rameter in general relativity. The physical and geometri- 
cal aspects of the model are also discussed. To have a 
general description of an anisotropic dark energy com- 
ponent, we consider a phenomenological parameteriza- 
tion of dark energy in terms of its equation of state    
and skewness parameter   . Some features of the evo- 
lution of the metric and the dynamics of the anisotropic 
dark energy fluid have been also examined. This paper is 
organized as follows. In Section 2, we have given the 
line element, energy momentum tensor and its pa- 
rametrization and the field equations. In Section 3, isot-
ropization and solutions are given. The physical and 
geometrical parameters such as the anisotropy parameter 
of expansion   , the energy density   , the devia-
tion-free EoS parameter    and the deviation parame-
ter    etc are also studied with proper interpretation. 

2. Metric and Field Equations 

The LRS Bianchi type-I line element is given by  

    2 22 2 2 2 2d d d d d s t A t x B t y z    ,    (2.1) 

where  A t  and  B t  are the scale factors (metric 
potential) and functions of the cosmic time t only (non- 
static case). 

Here we are dealing only with an anisotropic fluid 
whose energy-momentum tensor is in the following form 
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0 1 2 3
0 1 2 3diag , , ,i

jT T T T   T . 

We parametrize it as follows: 

   diag , , ,i
jT                  (2.2) 

where   is the energy density of the fluid,   is the 
equation of state (EoS) parameters of the fluid and   is 
the skewness parameter. 

Here   and   are not necessarily constants and 
can be taken as functions of the cosmic time t. 

The Einstein field equations, in natural limits 
( 8  and ) are π 1G  1c 

1

2ij ij ijR g R  T .              (2.3)
 

The Einstein’s field Equations (2.3) for metric (2.1) 
with the help of Equations (2.2) give 

2

2
B AB

B AB


 
  

 

 
               (2.4) 

2

2
B B

B B


 
   

 

 
              (2.5) 

 B AB A

B AB A
      

  
         (2.6) 

where dot    indicates the derivative with respect to t. 

3. Isotropization and the Solutions 

We have three linearly independent Equations (2.4)-(2.6) 
with five unknowns , , ,A B    and  . In order to 
solve this system completely, we use a special form of 
deceleration parameter as 

2
1

1

aa
q

a a


    





             (3.1) 

where  is mean scale factor of the universe and a   
(>0) is constant. 

This form has been proposed by Singha and Deb-
nath[11] for FRW metric. Adhav et al. [12] used this law 
for studying Bianchi type models and Kantowski-Sachs 
cosmological model with dynamical equation of state 
(EoS) parameter. 

From Equation (3.1) after integrating, we obtain the 
Hubble parameter as 

 1
a

H m a
a

  


,              (3.2) 

where m is an arbitrary constant of integration. 

Integrating twice Equation (3.1), we get 
a

H
a




 and 

the average scale factor as 

 
1

e 1m ta


  .

2



                (3.3) 

The spatial volume is given by 
3V a AB  ,                (3.4) 

i.e. 


3

e 1tV    ,                (3.5) 

here we consider 1m  . 
The mean Hubble parameter H  for LRS Bianchi 

type-I metric may be given by 

1
2

3

a A B
H

a A B

 
  

 

 
 .            (3.6) 

The directional Hubble parameters in the direction x , 
 and  respectively can be defined as  y z

x

A
H

A



 and y z

B
H H

B
 


.        (3.7) 

Subtracting Equation (2.5) from Equation (2.6), we get  

d
2

d

A B A B A B

t A B A B A B
.

    
         

    

    
    (3.8) 

Now, from Equations (3.4) and (3.8), we get  

d

d

A B

t A B V

VA B A B

A B A B


 

 
   

  
   

  

 


  



  .        (3.9) 

Integrating, this gives 

d

e

t
B A

B AV A B

A B

 



 
 

 


 

  
 

 
,          (3.10) 

  = constant of integration. 
In order to solve above Equation (3.10), we use the 

condition 

B A

B A





 
 

 



.              (3.11) 

Using Equation (3.11) in Equation (3.10), we obtain 

e tA B

A B V
 

  
 

 
.            (3.12) 

Now integrating Equation (3.12) and using Equation 
(3.5), we obtain the scale factors as 

       
1 32

e 1 exp e 1
3 3

t tA t


  


       
,  (3.13) 
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       
1

e 1 exp e 1
3 3

t tB t


  


      

3 
.  (3.14) 

The expansion scalar   is found to be 

  1
3 3e e 1t tH  


   .           (3.23) 

Using Equations (3.13) and (3.14) the directional Hub-
ble parameters are found as 4. Discussion 

1) From Figure 1, one can verify that q decreases from 
 1  to  1  during evolution of the universe.   

3
12

e e 1 e e 1
3

t t t t
xH     


           (3.15) 

2) The dynamics of energy density    for LRS Bi-
anchi type-I metric is illustrated in Figure 2. Here one 
can observe that all models [for different  f x ] start 
with Big Bang having infinite density and as time in-
creases (for finite time), the energy density tends to a 
finite value. Hence, after some finite time, the models 
approach to a steady state. 

   
3

1
e e 1 e e 1

3
t t t t

y zH H     


     .   (3.16) 

The mean Hubble parameter H  for LRS Bianchi 
type-I metric may be given by 

 
1

1 e t
H





.             (3.17) 

3) In Figure 3, we have plotted anisotropy parameter 
of expansion () against cosmic time t. For LRS Bianchi 
type-I model, it is observed that anisotropy parameter 
decreases to zero after some time. Hence, the model 
reaches to isotropy after some finite time which matches 
with the recent observations as the universe is isotropic at 
large scale. 

The anisotropy parameter of the expansion is defined 
as 

23

1

1

3
i

i

H H

H

    
 

 , 

where  1, 2,3iH i   represent the directional Hubble 
parameters in the directions of x, y and z axis respectively 
and is found as 

4) The evolution of expansion scalar   for 1   is 
shown in Figure 4. It is observed that the expansion is 
infinite at 0t  . As cosmic time t increases, it decreases 
to a finite value  3   after some finite value of t. 

 
 2 322

e 1
9

t


  

   .         (3.18) 
5. Conclusions 

The shear scalar 2 , defined by 2 23

2
H    is 

found as 

We have verified that the energy density of the fluid, the 
deviation-free equation of state parameter and the devia-
tion parameter are all dynamical. 

 
62

2 2e e 1
3

t t  



 

 .         (3.19) 

Using Equations (3.15), (3.16) and (2.4) we obtain the 
energy density as  

   
62

22e 3 e 1 e 1
3

t t t   


 
    

 
.    (3.20) 

Using Equations (3.16) and (3.20) in Equation (2.5), 
we obtain the deviation-free parameter as 

Now using Equation (3.11), we obtain the deviation 
parameter as 

   
3 322

3e e 1 e 1
9

t t t   


 






 
   

 

.    (3.22) 
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Figure 1. The variation of  vs  for q t 2  . 
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Figure 2. Energy density   vs cosmic time . t
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Figure 3. Anisotropy parameter  vs cosmic time  for  t
1   . 
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Figure 4. Expansion scalar   vs cosmic time . t
 

It is observed that when , we get t  0  , 
1    and 3  0   . 

Which is mathematically equivalent to the cosmologi-

cal constant ( CDM) model. 
The SNe Ia data (Riess et al. [13], Astier et al. [14], 

Riess et al. [15]), the SDSS data (Eisenstein et al. [16]), 
and the three year WMAP data (Spergel et al. [17]) all 
indicate that the CDM  model or the model that re-
duces to CDM  model is described as a standard ex-
cellent model in cosmology to describe the cosmological 
evolution. Hence, one can conclude that LRS Bianchi 
type-I cosmological model is the best fitted model as it 
reduces to CDM  model. 
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