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ABSTRACT 

This paper extends the option betas presented by Cox and Rubinstein (1985) and Branger and Schlag (2007). In par- 
ticular, we show how the beta of the underlying asset affects both an option’s covariance beta and its asset pricing beta. 
In contrast to Branger and Schlag (2007), the generalized option betas coincide if the options are evaluated according to 
the CAPM option pricing model of Husmann and Todorova (2011). The option betas are presented in terms of Black- 
Scholes option prices and are therefore easy to use in practice. 
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1. Introduction 

In continuous time settings, the option beta of [1] based 
on the [2] pricing model properly reflects the risks in- 
herent in options. However, since empirical studies focus 
on discrete return intervals, the utilization of continu- 
ous-time betas may give rise to a distortion of an un- 
known magnitude. For example, [3] examine the ex- 
pected option returns under very general assumptions. 
For building zero-beta index straddles, [3] employ the 
instantaneous version of beta and present empirical evi- 
dence that option returns appear to be other than theo- 
retically expected. One possible explanation for these 
findings might be the incorrect application of a non-dis- 
cretized risk measure1. 

Based on Black-Scholes option prices, [6] present 
closed-form expressions for discrete-time option betas. In 
particular, they distinguish between an asset beta, which 
is important for asset pricing, and a covariance beta, 
relevant mostly for hedging purposes. Furthermore, they 
show that, unlike the instantaneous beta of [1] derived 
from the continuous-time arbitrage-free perspective, the 
discrete-time betas depend explicitly on the expected rate 
of return on the underlying asset. The differences be-
tween discrete-time and continuous-time option betas are 
also likely to be of a significant magnitude. However, in 
the limit, when the individual planning horizon becomes 
very short, all types of betas coincide. 

This paper extends the option betas presented by [1,6]. 
The starting point is the CAPM option pricing model of 
[7], where the length of the individual planning horizon 
is a determinant of an option’s value. In particular, we 
show how the beta of the underlying asset affects both an 
options’s covariance beta and its asset pricing beta. 
However, in contrast to [6], the generalized option betas 
are shown to coincide if the options are evaluated ac- 
cording to the CAPM option pricing model. We present 
all option betas in terms of Black-Scholes option prices. 
Therfore, they are easy to use in practice. 

This paper is organized as follows. Section 2 presents 
the assumptions and notation used. Section 3 summarizes 
the theoretical results about CAPM option pricing in dis- 
crete time. In Section 4, we present closed form solutions 
for option betas and compare them to the option betas of 
[1,6]. Section 5 concludes. 

2. Assumptions and Notation 

The assumptions and notation used in this study are ex- 
actly the same as those in [7]. In brief, we use the default 
assumptions of the CAPM, and additionally assume that 
the instantaneous rate of return on any asset and the mar- 
ket portfolio have a joint normal distribution. 

We use the following notation throughout this paper: 
h  Investor’s planning horizon 
  Time-to-maturity of an option 
K  Exercise price of an option 1Further empirical studies on option returns which use the Black-

Scholes instantaneous betas are [4,5]. 0S  Price of an underlying asset S 
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0C
S

 Price of a call on an asset S 

h

C
 Cash flow of the underlying asset 

h

 Instantaneous risk-free rate of interest 
 Cash flow of the call 

r

sr
r

 Instantaneous rate of return on asset S 

m

R
 Instantaneous rate of return on the market index 

m  Standardized cash flow of the market portfolio 
( ) mre 

s  Expected instantaneous rate of return on asset S 

m  Expected instantaneous rate of return on the 
market index 

s  Instantaneous volatility of the rate of return on 
asset S 

m  Instantaneous volatility of the rate of return on 
the market index 

  Coefficient of correlation between rs and rm 
  Market price per unit risk for the investor’s plan- 

ning horizon 
Furthermore, we consider a call option on a non-divi- 

dend asset S expiring at time s  when the investor’s 
planning horizon extends to time . The investor’s 
planning horizon may be equal to or shorter than the 
time-to-maturity of the option. We denote the remaining 
time-to-maturity of the option as 

t

0s  
0 

*h  

 and the 
length of the planning horizon as . For the dif- 
ference between the investor’s planning horizon and the 
time-to-maturity of the call, we write . Our 
aim is to determine the discrete-time beta of an option at 
time 0. 

h t

h

As usual in option pricing theory, we assume that op- 
tions, underlyings, and risk-free assets are traded in the 
market during an option’s remaining time-to-maturity. 
However, we assume that investors in general do not aim 
to replicate an options payoff by continuously trading the 
underlying and a risk-free asset. Reasons for this might 
be transactions costs, bid-ask spreads, or insufficient 
market liquidity; moreover, if equity is characterized as 
an option on the company’s assets the underlying does 
not trade at all. Therefore, we assume that options are not 
traded at Black-Scholes prices but at discrete-time 
CAPM option prices according to [7] which include 
Black-Scholes prices as a limiting case. Due to this as- 
sumption our analysis of discrete-time option betas is 
more general than the one of [6]. 

To clearly arrange our analytical results, we use the 
following notation for the Black-Scholes price of a call 
with time-to-maturity   when the price of the current 
asset 0  is replaced by  and the strike price  is 
replaced by 

S *S K
*K : 

 
 

* * * *

* *

,

e ,r
s

C S K S N d

K N d  

   

 
        (1) 

where 

 * * 2

*

1
ln

2
.

s

s

S K r
d

 

 

   
   

In the following, we use some auxiliary variables. 
Equation (1) will be evaluated for * erK K   and four 
different values of , *S

2 2

2 2

1 1

2 2
0 0 0 0

1 1*
2 2

0 0 0 0

e ,  e ,

e ,  e

s s s s s m

s s s m s s s m

A B

h h
C D

S S S S

S S S S

        

         

        
   

         
   

 

  .

 

Accordingly, 0 , 0
AC BC , 0  and 0

CC DC  are used to 
describe the resulting values of (1). Notice that Equation 
(1) is linear in  and *S *K , that is,  

* * * *, ,C aS aK aC S K .        

3. The Lognormal CAPM in Discrete Time  

3.1. Security Market Line in a Lognormal 
Market 

The security market line of the CAPM in discrete time is  

0 e erh rh
h mE S S E R  .s       
        (2) 

With the given parameters, for a bivariate normal dis- 
tribution of rates of return on the market , and the 
underlying asset 

 mr h
 sr h , both with respect to the holding 

period , two definitions of h s  are possible. We refer 
to  

2

2

1

2
0

1

2

e e

e
e e

s s

m m

hrh rh
ha

s rh
h

m rh

E S S

E R

 

 


  
 

  
 

     
    




e

     (3) 

as the asset’s pricing beta, and 

 
   

2 2

2 2

0

1 1

2 2

2

,

e e

e e 1

s s m m
s m

m m m

h mc
s

m

h
h

h h

Cov S S R

Var R

   
 

  



    
 



  
  






 



1
         (4) 

as the asset’s covariance beta2. Note that we define the 
parameter   as the rate of return of the expected value, 
whereas   is also used in the literature to identify the 
expected rate of return. If the latter definition is preferred, 
  must be replaced with 2 2   throughout this 
paper. Of course, since both the asset pricing beta and the 
covariance beta depend on the expected return of an asset 
we cannot use (2) to explain returns in a lognormal 

2To calculate the moments of the lognormal distribution, see, e.g., 
Appendix A in [11]. 
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market. However, setting (3) and (4) equal leads to the 
lognormal security market line in discrete time. After 
several conversions, we obtain  

 
   

2

2

2
2

1

2

1

2

e

e e 1
.

e 1 e 1 e 1

s s

m

m
m m

h

hrh

r hmh h

 



 
 

  
 

    
 




 
    
 
 

s 

    (5) 

Of course, if (5) holds in the market, an asset’s pricing 
beta (3) and its covariance beta (4) coincide, and they are 
equal to one if m s   . In the limit , when 
the investor’s planning horizon becomes very short, we 
can apply L’Hôspital’s rule to (3) and (4) to show that  

 0h  

2

2
0 02

1
r

2   and  .lim lim1
r

2

s s
a c s m
s s

h h
m

m m

   
 

  

 
 

 
   (6) 

Therefore, in continuous-time , the security 
market line (5) is  

 0h  

2 2
2

1 1
r = r ,

2 2
s m

s s m m
m

 
   


     
 

       (7) 

the well-known intertemporal CAPM of [8]. However, 
[9], addressing the relevance of the discrete-time analysis, 
remarks that “the continuous-time solution is a valid ap- 
proximation to the discrete-time solution, and its accu- 
racy is a function of the actual structure of returns and 
the length of the ‘true’ discrete-time interval. I thought to 
argue for the superiority of discrete-time analysis over 
the continuous analysis because discrete-time includes 
continuous time as a limiting case”. 

3.2. CAPM Option Pricing in a Lognormal 
Market  

[7] extend the option pricing equations of [2,10], and 
[11]. In particular, they show that, besides the option’s 
time-to-maturity, the individual planning horizon is a 
determinant of an option’s value in discrete time as well. 
The generalized pricing equations can be presented in 
terms of the Black-Scholes option values. 

For a call option, the certainty equivalent valuation 
equation of the CAPM is 

0

,
,  

e

h h

rh

E C Cov C R
C

      
  

m
 

where 

   

2

2 2

1

2

2

e e e
 

e e

m

m m m

hrh m rh
m

h hm

E R

Var R

 

  


  
 



     
   





Here,   describes the market price per unit risk for 
the investor’s planning horizon. In the following, it is 
assumed that the investor’s planning horizon is shorter 
than or equal to the time-to-maturity of the option 
 h  . Then, in a lognormal market, the expected cash 
flow of a call and the covariance between the cash flows 
of the call and the standardized return of the market 
portfolio are3 

 
2 *

*

1
* 2

0 0e
,

e

m m h
A C

h rh

C C
E C

 


  
  

   
 0

AC
         (9) 

 

   

2 *

* 2

2 *
*

2 2 *

1
* 2

0 0 0 0 0 0

1

2

1

2
*

*2

,

e
 

e

e
where  .

e 1

m m

m m

m m

m m m

h m

h
D A A B C D

rh h

h
rh

h h

Cov C R

C C C C C C

e

e

 

 

 

  





  
 

   
 

  
 



  

    







 

 (10) 

Inserting (9) and (10) into (8) yields the CAPM option 
pricing model of [7]4, 

 

 

 

2

2

2

1 *
r * 2

0 0 0 0

1

2
0 0

1
* 2

0 0 0 0

e e

e

e .

m m

m m

m m

h
A C

h
D A

A B C D

C C C C

C C

C C C C

 


 

  





 

    

  
 

  
 


  



 

A


   



  (11) 

In risk-neutral settings, 

2 21 1
0

2 2m m s sr r          

and Equation (11) equals the call option price of [2]. 

4. Discrete Option Betas 

4.1. An Option’s Pricing Beta 

The definition of an option’s asset pricing beta with re- 
spect to the holding period is 

0[ ] e
.

e

rh
a h
c rh

m

E C C

E R





   


             (12) 

Using *h  h   and (9) results in 

.
1

      (8) 

3The deviation is based on a minor extension of a known integral of the 
normal distribution, see Appendix A. 
4A proof of this slightly modified valuation equation is given in Ap-
pendix B. A valuation equation for puts and the generalized put betas 
which follow can be derived in an analogue way. Therefore, the study 
focuses on call options only. 
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 
2

2
*

1 *
* 2

0 0 0

1

2
0

e

e e e

m m

m m

h
A C A

a
c

h
rh rh

C C C

C

 

0e
rC 

 




  
 

  
 

 


 
 
 
 


   (13) 

Furthermore, with recourse to (3), (13) yields  

 
2

2
*

1 *
* 2

0 0 0

1

2
0

e e
.

e e

m m

s s

h
A C A

a a
c s

h
rh rh

C C C

C e

 

0
rC 

 


 

  
 

  
 

 


 
 
 
 


  (14) 

[1,6] derive option betas where the options are evalu- 
ated at the Black-Scholes option price (1) and not at the 
more general CAPM valuation Equation (8), which in- 
cludes [2] as a special case. Accordingly, to achieve their 
results, the current call price has to be replaced in (14), 

 0 0 ,C C S K .  Furthermore, the option prices at the 
end of the holding period also have to be replaced. Thus, 
we split the option’s time-to-maturity as follows. 

2 2

2 *

1 1

2 2

1
.

2

s s s s

s s

r r

r h

    

 

          
  

    
 

h


     (15) 

For the remaining period  

2 * 2 *1 1
0

2 2s s m mr h r h              
   

 

must apply if the option is evaluated (risk neutral) at the 
Black-Scholes option price at the end of the holding pe- 
riod. Therefore, , and (14) results in * 0 

 

 
2

2

0

0

1

2
0 0

1

2
0 0

, e

e , e , e

.

e

s s

s s

a a
c s r

r r

r h

S

C S K

C S K C S K

S S



  
 

 

 

  
 

   
 



 
 

  



    (16) 

Since  is linear in  and * *,C S K 
*S *K , and  

2 21 1
r r

2 2s s s s h              
   

 

as 

2 *1
r 0

2s s h     
 

 

applies to the remaining period , (16) yields *h

 

 
2

2

1

2
0

0
1

0 2
0 0

e , ,

.
,

e

s s

s s

r h

a a
c s

r h

C S K C S K
S

C S K
S S

 

 
 

   
 

   
 

 
 

   



0



(17) 

Now, let’s consider two special cases of (17). If the 
planning horizon becomes very short , we can 
apply L’Hôspital’s rule and (6) to achieve  

 0h 

 
 00

0 0 0 0

,
,lim lim

,
a a
c s

h h

C S KS

C S K S
 

 





     (18) 

where, if the lognormal security market line (7) holds, 

2
0 0

,lim lim
a c s m
s s

h h m

 
 

 
           (19) 

and  0 ,C S K S0   is equal to the option’s delta.  

Therefore, in continuous time, the beta of an option 
with respect to the market is given by the beta of its un- 
derlying asset times the elasticity of the option price with 
respect to the stock price. This is a well known result of 
[1]5. 

In discrete time  > 0h , if 1   and the distribu- 
tions of the rates of return on the market  and the 
underlying asset 

 mr h
 sr h  are bivariate normal, then 

s m   and s m  . In this case,  and (17) is 
equal to Equation (2.15) of [6], 

1a
s

 

 
2

2

1

2
0 0

0
1

0 2
0 0

e , ,

,
,

e

s s

s s

r h

a
c

r h

C S K C S K
S

C S K
S S

 

 


   
 

   
 

 
 

   



 (20) 

who analyze the beta of an option in discrete time with 
respect to the underlying6. However, if 1  , the 
bivariate normal distribution of the rates of return on the 
market  mr h  and the underlying asset  r hs  affects 
both the beta of an option with respect to the underlying 
and the beta of the underlying, even if options are equal 
to Black-Scholes prices at the end of the holding period. 



4.2. An Option’s Covariance Beta 

The definition of the discrete covariance beta is  

0 ,
,

h mc
c

m

Cov C C R

Var R


  
  

 

              (21) 

where, in a lognormal market,  

   2 22
e em m m

h h
mVar R

  
  1 .  
         (22) 

Using (10) and (22), (21) is equal to 

5See [1] p. 190 and p. 210. 
6Notice that we use the symbol  for the holding whereas [6] use h  . 
In addition, [6] define the parameter   as the rate of return of the 

expected value, whereas we use it to identify the expected rate of return
To make our results comparable with theirs, the parameter  must be 

replaced with 2 2   in [6]. 
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Using (4), we can transform (23) to  
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Using similar arguments as above (L’Hôspital’s rule 
and (6)), we obtain the special cases, [1] 
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and [6], Equation (2.10), 
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4.3. Equality of an Option’s Asset Pricing and 
Covariance Beta 

An option’s asset pricing beta can easily be converted to 
its covariance beta. Inserting (11) into (13) results in7 
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Using the definition of   in (8) and the definition 
 yields *h   h

 
   

  
   

which is equal to the covariance beta (23). Hence, in 
contrast to [6], an options’s asset pricing beta and its co- 
variance beta coincide if options are evaluated according 
to the CAPM option pricing model of [7]. 

5. Conclusions 

Adequate risk measures are essential for both hedging 
and performance evaluation. This paper extends the op- 
tion betas presented by [1,6]. Whereas [1] present con-
tinuous-time option betas, [6] analyze discrete-time op-
tion betas with respect to the stock price and the 
Black-Scholes option prices. They distinguish between 
the concepts of a covariance beta, which is based on the 
covariance between stock and option price changes, and 
an asset pricing beta, which is related to the option’s ex- 
pected returns. 

We utilize a more general, lognormal option pricing 
equation, which explicitly incorporates the planning ho- 
rizon and the investors’ expectations about the develop- 
ment of the underlying asset and the market portfolio, 
and show how the beta of the underlying asset affects 
both an options’s covariance beta and its asset pricing 
beta. Furthermore, the two risk measures coincide if the 
options are evaluated according to the CAPM option 
pricing model of [7]. The derived option betas are likely 
to exhibit a notable economic value. Their utilization 
might reduce the shortcomings of continuous-time betas 
applied in empirical studies where the application of dis- 
crete-time return measures appears to be more appropri- 
ate. Moreover, the option betas are clearly arranged in 
terms of Black-Scholes option prices and easy to use in 
practice. 
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Appendix A 

Definite Normal Integrals 

[12] has collected a list of normal integrals, including8 
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where .  0,1z N
To prove the results obtained by [13] and establish the 

covariance of the cash flow of a CAPM call with the 
return on the market portfolio, a minor extension of (A1) 
is required, 

   1 2
2

2

1
e d

2π 1

z C
.

A BC
N A Bz z N

B

  



 
    

     (A2) 

Proof. Let’s start with the left-hand side. The exponent 
in (A2) extends to 
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which also equals the first derivative of the right-hand 
side of (A2), 
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Appendix B 

Computation of the CAPM Call Option Price 

Computation of  hE C  


When the planning horizon is shorter that the 
time-to-maturity, we use the results presented by [13] 
who obtained the expected value of the call for 0   
in terms of a Black--Scholes value of an European-style 
call as9 
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Furthermore, we take into account that the call option 
price in a lognormal market for the case h   can be 
shown to equal10 

2

2 2

2 2

1

2
0

0

1 1

2 2
0

1 1

2 2
0

e , e

e

e e ,

e

e e , e

,
e

s s

m m s s s m

m m s s

r

r

r

r

r

r

C S K

C

C S K

C S K

  




       
e 





     










  
 

        
   

       
   

 
 
  

 
 
  

 
 
  

 

where 

   

2

2 2

1

2

2

e e

e e

m m

m m m

r
  



     


  
 






1
 

Thus, we can express the expected value of a call at 
the end of the holding period as 
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are Black-Scholes prices of options with time to maturity 
of *h  h  . Splitting (B1) in three integrals and util- 
izing the solution presented by [13] gives 
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and 8See [12], p. 403, integral 10,010.8. 
9See Appendix A. 

10See [7] with minor conversions. 
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Computation of . ,h mCov C R  
 

We compute the covariance between the value of the 
call and the return on the market portfolio at the end of 
the holding period using the decomposition theorem. 
First, to compute , we must integrate h mE C R 
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with  and  defined as in (B2) and (B3), respec- 
tively. Using the definition of the conditional density 
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Note that the conditional density of the bivariate nor- 
mal distribution equals the density of the normal distri- 
bution with the parameters 
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(B4) is therefore equal to 
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For the sake of clarity, we first consider only one term 
of (B5), 
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and split it into two separate components, 

 

 

2

2

1

2
0

1

2
1

S e

1
e d

2π

s s

s m s s
s

s s

h

r h
r

h ,s

s

N d r
h

  

  
 



   
 

      
 



 
    (B7) 

and 

   

 
2

1

2
2

e e

1
e d

2π

m s s
s

s s

r h r h

r h
r

h .s

s

K

N d r
h

 

 
 



  

     
 





 
      (B8) 

We start with (B8). Its exponent 
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can be transformed into 
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Next, we make following substitution 
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Using  d 1 ds sz h r , (B8) is equal to 
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Thus, the integral term of (B9) has the same structure 
as the left-hand side of (A2). Applying   
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and using  d 1 ds sz h r  in (B7) leads to Similarly, the exponent of (B7) 
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can be transformed into 
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Substituting 
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such that (B7) takes the following form: 
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Using (B10) and (B11) in (B6) and multiplying by  

from (B5) gives 
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The remaining terms in (B5) can be computed in an 
analogue way such that  takes the simple 
form 
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The covariance ,h mCov C R  
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