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ABSTRACT

We consider a Riemann boundary value problem of non-normal type on the infinite straight line. By using the method
of complex functions, we investigate the method for solving this Riemann boundary value problem of non-normal type
and give the general solutions and the solvable conditions for it.
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1. Introduction

Various kinds of Riemann boundary value problems
(BVPs) for analytic functions on closed curves or on open
arc, doubly periodic Riemann BVPs, doubly quasi-peri-
odic Riemann BVPs, and BVPs for polyanalytic functions
have been widely investigated in [1-8]. The main ap-
proach is to use the decomposition of polyanalytic func-
tions and their generalization to transform the boundary
value problems to their corresponding boundary value
problems for analytic functions. Recently, inverse Rie-
mann BVPs for generalized analytic functions or biana-
lytic functions have been investigated in [9-12].

In this paper, we consider a kind of Riemann BVP of
non-normal type on the infinite straight line and discuss
the solvable conditions and the general solution for it.

2. A Riemann Boundary Value
Problem of Non-Normal Type on
the Infinite Straight Line

Let X be the real axis oriented in the positive direction.
And let Z*, Z~ denote the upper half-plane and the
lower half-plane cut by X . Our objective is to find a
sectioally holomorphic function CI)(Z) satisfying the
following boundary condition

o ()5

where the two given functions G (X), g (X) eH (X )
and G(x)#0 on X with G() existing and
G(w)#0 (clearly g(e) exists), and

G(x)@ (x)+g(x), xeX (1)

Copyright © 2013 SciRes.

n

19 =TT(x-a,)" . L()=TT(x-5)" .

j=1 1=1
with
aj’ﬂl (aj iﬂl)(] =1,---,m;l :1,...’n)
beingon X and A;,z4 € N. And the integer

x =Ind,G(X) = %[arg@ (3],

is the index of problem (1).
Write

m n
/1=Z/1r ﬂ=2#| .
j=1 I=1
Without loss of generality, we can consider problem (1)

in class R, , that is, the two limits @ () and
O (o) exist as Z(e Z" or Z’)—)oo . Clearly, here
we have @ (+00) = ®* ().
3. Homogeneous Problem

The homogeneous problem of (1) is as follows
——=G(x)® (x), xeX. )

It is found that A = g is required for solving problem
(2)in class R, .Here we suppose that A = . Let

X+i

Go(x):(—jKG(x), 3)

X—Ii
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then G,(x)eH and G,(x)=0 with
Gy () =G () #0,

and
1
IndXGo(x)ZZ[argGo(x)]x =0. @)
Write
1 +logG,(x)
I'iz)=—| ———1Zdx. 5
(Z) 27ri-[*°° X—1 X )

Since Ind, G, (x)=0, by taking logarithm of G (X)
for some branch we obtain a single-valued function
logG, (x) with logG,(x)eH , hence I (X) exists
with T'*(x)eH and I'(+0)=0. And by simple cal-
culation we see that e'? is sectionally holomorphic.

Write

(6)

(z+i)" ' zez*;
1e’l”,

(z-i)" e,
then X* (X) =G, (X) X~ (X) . Substituting this into (2)
gives
I, (x) " (x) _
X" (x)

If we write

then we get Q" (x)=Q (x). Thus Q(z) is analytic
on the whole complex plane and has at most x+ A4 or-
der at . From [5], we know that Q(z) must be an
arbitrary polynomial P_,, (Z) of degree x+A4 with
P.,(2)=0 if x+A<0. Therefore, the homogeneous
problem (2) has general solution in class R, as follows

(2)

X(z)P

H—(H;, zeZ";
z
" x@e., ?
—"M, z7eZ".
II, (z
Considering the requirements that @ (X) and

@~ (x) are bounded at

1’...’n)’

we can let

P (2)=1L(2)I,(2)P._, (2).
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where PK_l(Z) is an arbitrary polynomial of degree
k=4 with P_,(z)=0 if k~2<0. Now we get the
general solution in class R, for the homogeneous
problem (2) as follows

o(z :{HI(Z)X(Z)P,M(Z),
IL (2)X(z)P._,(2),

Thus we get the following results.

Theorem 3.1. For the homogeneous problem (2) in
class R, the following two cases arise.

1) When x> A4, it is always solvable and its general
solution is given by (8), where P_,(z) is an arbitrary
polynomial of degree x—A4.

2) When «x < A, it only has zero-solution.

zel”;
(®)

zel".

4. Nonhomogeneous Problem

For nonhomogeneous problem (1), the key is to find out
the special solution.

Similar to the case in homogeneous problem (2), the
canonical function X (z) is given by (6) but with

I(2)=

1 JomlogGO(x)
 2mi o

— d X
- X(z ¢ X)

satisfying
X" (x)=G(x) X~ (x).

By this, problem (1) can be rewritten as

005 -

(€)]

We note that Plemelj formula can not be used directly
here, because that when x>0

fim _9(%)

s gy = ) e g () =o0

X—0

9(x)

X" (x)
x <0). For a unified treatment, regardless of the value
of x,we always let

is not a finite constant, and so ¢H (unless

I(z) 7e¢Z*:

Y(Z)=(2+i)KX(Z)= (Z_”)Ker(l) ze’l”.
Multiplying (Xx+i)" to the two sides of (9) gives
I, (x)@" (x) _IL ()@ (x) , L, (x)g(x)
Y7 (%) Y (%) Y' (%)
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W 9(x)
e know that e H and so that
Y*(x)
I(e(x)
Y (x)
If we let
1 +00 g(T) dr
¥ — | I , X, 10
(2) 27 = 2(T)Y+(r)r—z ze (19)
then we get

and

I )
X)®™ (X
:M_\p*(x)’x eX,
Y=(x)

with W(0)=0. Similar to the reasoning for (7) for
problem (2), we know that if problem (1) has solution in
class R;, then can easily write out the form. But for
problem (11), the function

M—T(z), zeZ",
F(z)= Y@
—HI(Z)(D(Z)—‘P(Z) zeZ”
Y(2) ’

is analytic everywhere except at the possible unique pole
z = —i , therefore the following two cases arise.

Casel. x>0.

When x>0, F(z) has a pole of order x at

z=—-i . To eliminate the singularity, we multiply
(z+i)" to F(z) and get a polynomial of degree
K+A:
(z+i)" F(2)=P.,(z).
Therefore
( )Prc+l(z)+Y( ) ( )’ Z€Z+;
IL, (z)
O (z)= (12)
X(@PL ()Y (%),

I, (z)

is actually the general solution for problem (1) in class
R,, where (z+1i)"Y(z)=X(z). For convenience, we
deform the function ®(z) given by (12) into
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(Z-H)Ker(z)[PKM(Z)+(Z+I)K‘P(Z):| -

®(z)- I.(2) e
(z=i) " e"[ P, (2)+(2+1) ¥ (2)] o,

IL(z) )
(13)

Considering the requirements that ®*(x) are
bounded on X , and the fact that

(z+i) e[ P, (2)+(z+1) ¥ (2)]

v L)
C(z+i)" ¢F* (2)
I, (2)
with F*(z)=P_,(z)+(z+i)" ¥(z), the smallest de-

gree of (t - /)’,) in the numerator of the above formula
should be 4 , we suppose that

F(t)=a,(t=4)""++a(t-4)"
+al(t_ﬁ|)#'71+"'+a|(t—,3|)+a,+1,
then when t — 3 , we have
F(t)>a..F'(t)>a.F"(t)>2a_,
F(”'_l)(t)%az(,u,—l)!

and the smallest degree of (t—/) in numerator is z
(i.e. @ (x) isbounded on X ) only when

F(t)=F'(t)=F"(t)=--=F“ 7 (t)=0,
that is,
P () +[ (z+1)" <z)} e =0 gy
$=0,1,-u,-1 I=

In a similar way, we know that ®~ (X) is bounded
on X only when

P (e, )+] (z+1) ¥(2)]

r=0,1-2~1

YT

=0,
e (15)
j =12,--m

are satisfied.

Hence, we get the results that ®*(x) are bounded
on X only when the conditions (14) and (15) are all
satisfied. While it is troublesome to solve the system
composed by (14) and (15) for the coefficients of
P...(2).

Here we aim to determine the coefficients by using
Hermite interpolation polynomial.

Firstly, we make the polynomial Q,(z) of degree
p=A+u—-1=24-1 (A=p) suchthat

AM
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,(r

=q; °
Z(Z]

QY (@) =] (z+i) ¥(2)]
Q¥ (8)=[(z+i) w(2)]”

The polynomial Q,(z) exists uniguely from [5]. Let

(z+i)”(er(z):(Z+i)KW(Z)_QP(Z): R

- I (z) ’ ’
(I)O(Z)_ a1 K T

@[ v o,0]

I (2) ’ '

(16)

We can see from (16) that @ (x) are continuous on
X, and through simple verification that ®j () satisfy

(z+i) " e[ (z+i) ¥(2)-Q,(2)]

=p

1229

r :Osls"'sﬂj _19 J :1929"'9m5

S=0,1- 4 —1; 1=1,2,-n.

the condition in problem (1), and that the order of
®,(z) at © is —k+p-A=A-k-1.

Now we aim to make ®,(z) belong to R, by add-
ing restricted conditions.

a)If A-x—-1<0,thatis, x>A1-1, ®,(z) exactly
belongs to R, and is justly the solution for homogene-
ous problem of (2), and also a particular solution for
nonhomogeneous problem (1) in R;. Combining with
the general solution (8) of homogeneous problem (2), we
known that when x>A-1, the general solution of
problem (1)in R, is

+I(2)X(2)P._,(2), zeZ%;

II,(2)

—i) ez +i) P (2) -

(17
Q,(2)] 1ez.

+11,(2) X (2)P._; (2).

II,(z)

where P_,(z)=0 when x=1-1.

b) If A—x—-1>0, that is, x <A-1, since the ho-
mogeneous problem (2) corresponding to (1) only has
zero-solution in R, the existence of a solution @ (z)
for nonhomogeneous problem (1) in R, implies the

(241" (2 ¥(2)-0,(2)]

uniqueness. Because <D0(Z) has generally singularity
of order A-x—1 at oo, @, (z) belongs to R, if
and only if A-x-1 conditions on g(x) or on
Q,(z) are satisfied.

By rewriting @, (z) as

er(Z)\P(Z) el‘(Z)Qp (Z) -

I, (2)
[(2+1)"¥(2)-Q,(2)]

- (z-i) “el®

K

L(z) (z+i)'I,(z2)

.
r(z) N r'(z)
e (z+i z) ¢Q,(2) -

I (z)

Here we write

Q,(2)=Az’+Az’" +-+A (p=A+u-1=22-1).

Since the order of the denominator in @, (z) is
k+A(=21)=-1 (is always true), it is enough that
Q,(z) isat most a polynomial of degree « + 4, that is,

A=A=-=A,=0. 19)

Therefore, only when condition (19) is satisfied, (16)
is actually the general solution for nonhomogenous prob-
lem (1), now the homogeneous problem (2) only has

) ( |
(Z )Kﬂl(z) (Z_i)Kﬂl(z)

(18)

zero-solution.

Case2. x<0.

When x <0, F(z) is analytic on the whole com-
plex plane and has A order at oo, that is,
F(z)=P,(z), and now the homogeneous problem (2)
only has zero-solution. Therefore the general solution for
nonhomogenous problem (1) in R, is given by

PN (RO 0 .
()= [ (k)[R (Z) (e | e
), (2)+V¥(z 241 o
II,(2) ]]l(z) (z—i) ’ -
AM
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If we make the Hermite interpolation polynomial of
degree A—1, the fact that A—-1< A (the order of the
denominator) implies that CD(Z) is unbounded on X,
which contradicts with the hypothesis that ®(z) is
bounded on X . So it is infeasible to make the Hermite
interpolation polynomial for this.

However, we have the following effective treatment
for this.

a) Under this situation, ®(z) may have the unique
pole at z=—i. In order to eliminate the pole, we should
put the following restrictions for it:

if x+42>0, we only need

PU (<) +¥ (<i)=0,j=0,1,2,-,—x~1; (1)
if kx+A=-1, we only need to put
P, (i) =—¥(-i); (22)
if xk+A4<-1, apart from (22), the restrictions
P (-i)=0,j=1,2,,—x~1,
or
j+°°—]12(x)g(x) dx=0,j=12-x-1  (23)

Y (x) (x+i)

are necessary.
b) Considering the boundedness of (D(Z) on X, the
following restrictions are also necessary:

P (a;)+ ¥ () =0,r =01, 4 =1; j=1,2,--m
24

P(B)+¥ I (B)=0,5=0,1,-- 1 ;1 =1,2,---,n,
(25)

Thus we get the following results.

Theorem 4.1. For the nonhomogeneous problem (1)
inclass R, the following two cases arise.

1) x20.If x>A1-1, problem (1) is always solvable
and its general solution is given by (17); and if x<A-1,
ifand only if Q (z) satisfies condition (19), problem (1)
has unique solution, given by (16).

2) When x <0, it has unique solution in form (20)
when the restrictions (21) or (22) or (22)-(23), and (24)-
(25) are satisfied.

Anyway, the degree of freedom of solution for nonho-
mogeneous problem (1) is x—A+1.

Copyright © 2013 SciRes.
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