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ABSTRACT 

We consider a Riemann boundary value problem of non-normal type on the infinite straight line. By using the method 
of complex functions, we investigate the method for solving this Riemann boundary value problem of non-normal type 
and give the general solutions and the solvable conditions for it. 
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1. Introduction 

Various kinds of Riemann boundary value problems 
(BVPs) for analytic functions on closed curves or on open 
arc, doubly periodic Riemann BVPs, doubly quasi-peri- 
odic Riemann BVPs, and BVPs for polyanalytic functions 
have been widely investigated in [1-8]. The main ap- 
proach is to use the decomposition of polyanalytic func- 
tions and their generalization to transform the boundary 
value problems to their corresponding boundary value 
problems for analytic functions. Recently, inverse Rie- 
mann BVPs for generalized analytic functions or biana- 
lytic functions have been investigated in [9-12].  

In this paper, we consider a kind of Riemann BVP of 
non-normal type on the infinite straight line and discuss 
the solvable conditions and the general solution for it.  

2. A Riemann Boundary Value  
Problem of Non-Normal Type on  
the Infinite Straight Line 

Let X  be the real axis oriented in the positive direction. 
And let Z  , Z   denote the upper half-plane and the 
lower half-plane cut by X . Our objective is to find a 
sectioally holomorphic function  satisfying the 
following boundary condition 
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  , 1, , ;j l j l j m l      1, , n  

being on X  and ,j l   . And the integer 
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is the index of problem (1). 
Write 
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m n
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  ， . 

Without loss of generality, we can consider problem (1) 
in class 0 , that is, the two limits R     and 

    exist as  or  z Z Z   . Clearly, here 
we have          .  

3. Homogeneous Problem 

The homogeneous problem of (1) is as follows  

   
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,
x

x G x x x X
x
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It is found that    is required for solving problem 
(2) in class . Here we suppose that 0R   . Let  

   0

x i
G x G x

x i

    
,            (3) 
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then  and  0
ˆG x H  0 0G x   with  

   0 0G G    , 

and 

   0 0

1
Ind arg 0

2πX X
G x G x    .      (4) 

Write  
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d
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Since , by taking logarithm of  0Ind 0X G x   0G x  
for some branch we obtain a single-valued function 

 with , hence 0log G x 0logG x  Ĥ  x  exists 
with   ˆx H 

 e

  and . And by simple cal- 
culation we see that 
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then      0X x G x X x   . Substituting this into (2) 
gives  
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then we get    x x    . Thus  is analytic 
on the whole complex plane and has at most 

 z
   or- 

der at . From [5], we know that  must be an 
arbitrary polynomial  of degree 

  z
P  z    with 

 if . Therefore, the homogeneous 
problem (2) has general solution in class  as follows 
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Considering the requirements that  x  and 
 x  are bounded at  

 , 1, , ; 1, ,j l j m l     n , 

we can let  
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where  P z   is an arbitrary polynomial of degree 
 -  with  P z   0  if . Now we get the 
general solution in class  for the homogeneous 
problem (2) as follows 

0  -

0R

 
     
     

1

2

, ;

, .

z X z P z z Z
z

z X z P z z Z

 

 







   


Ⅱ

Ⅱ
     (8) 

Thus we get the following results.  
Theorem 3.1. For the homogeneous problem (2) in 

class , the following two cases arise.  0

1) When 
R

  , it is always solvable and its general 
solution is given by (8), where  is an arbitrary 
polynomial of degree 

 P z 
  . 

2) When   , it only has zero-solution. 

4. Nonhomogeneous Problem  

For nonhomogeneous problem (1), the key is to find out 
the special solution. 

Similar to the case in homogeneous problem (2), the 
canonical function  X z  is given by (6) but with  
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satisfying  
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By this, problem (1) can be rewritten as 
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We note that Plemelj formula can not be used directly 
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Multiplying  x i
  to the two sides of (9) gives 

   
 

   
 

   
 

2 1 2x x x x x g

Y x Y x Y x

 

  

 
 

Ⅱ Ⅱ Ⅱ x
. 

Copyright © 2013 SciRes.                                                                                  AM 



1228 L. X. CAO 

We know that 
 
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with   0  

R

. Similar to the reasoning for (7) for 
problem (2), we know that if problem (1) has solution in 
class 0 , then can easily write out the form. But for 
problem (11), the function 
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is analytic everywhere except at the possible unique pole 
, therefore the following two cases arise. z  i

Case 1. . 0 
When , 0   F z  has a pole of order   at 
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is actually the general solution for problem (1) in class 

0 , where . For convenience, we 
deform the function  given by (12) into 
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and the smallest degree of  lt   in numerator is l  
(i.e.  x  is bounded on X ) only when 
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In a similar way, we know that  x  is bounded 
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are satisfied.  
Hence, we get the results that  x  are bounded 
 on X  only when the conditions (14) and (15) are all 

satisfied. While it is troublesome to solve the system 
composed by (14) and (15) for the coefficients of 

 z  .  
Here we aim to determine the 

P
coefficients by using 

H
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ermite interpolation polynomial. 
omial Q z 
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We can see from (16) that  0 x  are continuous on 

X , and through simple verifi that  0cation x satisfy  

the condition in problem (1), and that the order of 
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If we make the Hermite interpolation polynomial of 

degree 
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