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ABSTRACT 

Feasibility of oil production predicting results influences the annual planning and long-term field development plan of 
oil field, so the selection of predicting models plays a core role. In this paper, three different predicting models are in- 
troduced, they are neural network model, support vector machine model and GM (1, 1) model. By using these three dif- 
ferent models to predict the oil production in XINJIANG oilfield in China, advantages and disadvantages of these mod- 
els have been discussed. The predicting results show: the fitting accuracy by the neural network model or by the support 
vector machine model is higher than GM (1, 1) model, the prediction error is smaller than 10%, so neural network 
model and support vector machine model can be used to short-term forecast of oil production; predicting accuracy by 
GM (1, 1) model is not good, but the curve trend with GM (1, 1) model is consistent with the downward trend in oil 
production, so GM (1, 1) predicting model can be used to long-term prediction of oil production. 
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1. Introduction 

Oil production prediction is very important in the oilfield 
development; study on oil production predicting method 
is a key topic of petroleum science. At present, there are 
four kinds of predicting methods [1-6] with physical 
meanings: Empirical formula such as Arps method, Hub- 
bert model, water-flood decline curve method; Hydro- 
dynamic model based on fluid mechanics model; Mate- 
rial balance equation model; Numerical reservoir simula- 
tion model. Besides the above mentioned four methods, 
there is a typical type of prediction model related to mo- 
dern optimization, this model type is composed of GM (1, 
1) model, neural network model, support vector machine 
model, etc. Oil field development system is a complex 
multi variables non-linear dynamical systems, different 
predicting model has different characteristics like pre- 
dicting accuracy. Neural network model and support vec- 
tor machine model are two effective methods to solve 
multi nonlinear mapping problem. At present they are 
used in many disciplines, even in the oil production pre-  

diction. In this paper, neural network model and support 
vector machine model have been used to predict the oil 
production of XINJIANG oil field, and good predicting 
results have been achieved. Meanwhile, GM (1, 1) model 
has also been used to predict oil production. Predicting 
result shows that this model is adaptable to the case 
which lacks data and hard to establishes model with pro- 
babilistic method. 

2. Predicting Model 

2.1. Neural Network Predicting Model  

At present, in the application of artificial neural networks 
(ANN) [7,8], most of them are back propagation (BP) 
ANN and their variations. It has been proved that BP 
neural network can approximate any multivariate contin- 
uous function. Kolmogorov rule guaranteed that any con- 
tinuous function or mapping can be achieved by a 3-layer 
ANN.  

3-layer BP ANN is used to establish the ANN model 
with prediction function. The first layer of BP-ANN is 
input layer, the second layer of it is middle layer, and the 
third layer of it is the output layer, see Figure 1. *Corresponding author. 
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Figure 1. BP neural network structure. 

Network Simulation 
Assume N-samples (input-output data samples) are used 
during the training process: 
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After training of N samples, the network error is: 
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The connection weights  jlV  and the threshold val- 
ue  t  can be modified by the output layer error 
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Repeat the above-mentioned learning mode, until the 
network converges to a given error range. 

2.2. Support Vector Regression (SVR) Predicting 
Model 

SVR [9-11] is an effective method to solve the regression 
problem. This regression problem can be described in 
mathematics: 

Given training set       1, , , , ,
l

T x y x y x y 1 l l , 
where i i,nx x R y y R    1, ,i l , . The training 
set is composed of independent and identically distrib- 
uted sample points following certain probability distribu- 
tion  ,p x y . After giving loss function , the 
regression function 

 , ,c x y f
   Tf x w x b  


 will be found 

to make the expected risk     , , ,R f c x y f dp x y 
 

 
reach its minimum value, where x  is the nonlinear 
mapping, it maps the data x into a high dimensional fea- 
ture space;  and  are weight vector and bias value, 
separately.  

w b
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If we denote the regression problem by minimum risk 
problem with the loss function  

     , , max 0,c x y f x y y x     0  , then the 
basic rule of SVR method is established: by introducing 
kernel function     ,i j ik x x x 

w

jx  into the non- 
linear mapping, the nonlinear regression problem in low- 
dimensional input space transformed into a linear regres- 
sion problem in high dimensional feature space and the 
key is to solve the parameter  and b  in the regres- 
sion function. Hence, the basic rule of SVR in solving 
regression problem is to solve an optimal problem with 
the following 

form:
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where *,i i   are Lagrange multipliers; C  is a con- 
stant, called penalty factor;   is a given positive value, 
it is a maximum error of regression.  

By solving Equation (9) gives the optimal Lagrange  

multipliers  T*
1 1, , , ,l la a a a a  * , and then gives re-  

gression function when the expected risk  R f  gets its 
minimum: 

     *

1

,
l

i i i
i

f x K x 


   x b       (10) 

where the sample satisfied * 0i i    is the support 
vector;    *

i 1

,
l

i i iw K 


  x x . 

Select j  or *
k  in interval 0,

C

l
 
 
 

; 

If j  is selected, then 

    *

1

,
l

j i i i j
i

b y K x x  


     

If *
k  is selected, then 

   *

1

,
l

k i i i k
i

b y K x x  


     

when solving regression problem, the proper kernel func- 
tion can be selected to SVR training. Introducing sample 
factor vector ix  and predictor vector x  into Equation 
(10) after training gives the prediction result. 

2.3. GM (1,1) Predicting Model 

The Let               0 0 0 01 , 2 , ,x x x x n   be initial 
data series, its 1-AGO data series is 
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GM (1, 1) [12,13] by: 
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ground value,  is the grey functional variable. 

a
   1z k

b
Introducing 2,3, ,k n   into Equation (13) gives 

       
       

       

0 1

0 1

0 1

2 2

3 3

x az b

x az b

x n az n b

  

  


  


 

Let 
   
   

   

   
   

   

0 1

0 1

0 1

2 2

3 3
; ;

1

x z

ax z

b

x n z n

1

1

   
   
   

  


   
 


   
   
  

 
Y u B




 

Then GM (1, 1) model can be expressed as Y Bu
,a b

, 
now the question comes down to find the value of .  

Introducing least square method to solve the estimat- 
ing value: 
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Equation (12) is the albino type of GM (1, 1) model. 
Given initial value , the solution of 
Equation (12) becomes: 

       1 1x t x  0 1

         1 0 11 e a tb b
x t x

a a
    

 
 . 

3. Applications and Discussions  

Given the initial oil production data (from 1958 to 2012) 
of certain oilfield block in China, then the above-men- 
tioned three method can be used to predict the oil pro- 
duction of different oilfield block (A1, A2, A3). After 
using the above-mentioned three different predicting 
model gives Figures 2-4. 

In Figures 2-4, the black circle means the real oil pro- 
duction, the green curve is the predicting curve with 
ANN model, the red curve is the predicting curve with 
SVR model, the blue curve is the predicting curve with 
GM (1, 1) model. Figures 2-4 show the predicting accu- 
racy with ANN model and SVR model is higher than  
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Figure 2. comparison of oil production prediction value 
with different method in block-A1. 
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Figure 3. comparison of oil production prediction value 
with different method in block-A2. 
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Figure 3. comparison of oil production prediction value 
with different method in block-A3. 
 
the GM (1, 1) model, the maximum relative error is less 
than 10%, ANN model and SVR model can be used to 
short term prediction. However, the GM (1, 1) model 
predicts the overall trend in oil production decline; it can 
be used to middle-long term oil production prediction. 

4. Conclusions 

Prediction with ANN model and SVR model can comply 
with the actual oilfield production dynamics, the predic- 
tion errors of them are less than 10%. However, they are 
learning type of model; much data is needed to complete 
the prediction, so they are only suitable for the short term 
prediction; 

Although the prediction accuracy with GM (1, 1) 
model is low, still the prediction result fits with the over- 
all downward trend of oil production, so it can be used as 
a reference for long-term prediction. 
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