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ABSTRACT 

The nuclear transcription factors κB (NF-κB) is widely existed in various kinds of cell types in the nervous system and 
plays an important role in neuron apoptosis and neurodegenerative diseases. Estrogen receptor alpha 36 (ER-α36) is a 
novel variant of ERα (as known ER-α66) which can transduce both estrogen- and antiestrogen-dependent activation of 
MAPK signal pathway and stimulate cell growth. Here, we aimed to detect the effect of ER-α36 gene silencing on the 
expression of NF-κB in normal cultured PC12 cells and to provide an experimental foundation for understanding the 
function of ER-α36 in nerve cells. PC12 cells with ER-α36 expression knocked down by the shRNA method. Then 
Western blot and immunocytochemical staining were performed to detect the expression and translocation of NF-κB 
after transfection. The results showed that NF-κB expression was significantly higher comparing with the control group 
after transfection (P < 0.01). Also, NF-κB subunit entered nuclear after transfection; Immunofluorescence staining and 
immunocytochemical staining of PC12 cells demonstrated that ER-α36 was expressed mainly on the plasma membrane 
and on the cell nucleus membrane. These data indicate that ER-α36 gene silencing can increase the expression of 
NF-κB and promote its nuclear translocation in PC12 cells. 
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1. Introduction 

Nuclear factor kappa B (NF-κB), as a dimeric transcrip- 
tion factor, is widely existing in neurons of central ner- 
vous system. Activated (NF-κB) controls the expression 
of genes that regulate a broad range of biological proc- 
esses through canonical and non-canonical pathways, 
such as synaptic plasticity, cell injury, and the adjustment 
of the immune and inflammatory response factors ex- 
pressions, such as cell adhesion molecules and cytokines. 
In the central nervous system, NF-κB controls inflam- 
matory reactions and the apoptotic cell death following 
nerve injury [1], which plays a regulating role in the 
course of inflammation and immunoreaction during neu- 
ron apoptosis and neurodegenerative diseases and the 
change of NF-κB expression caused the neuron death and 
astrocyte activation. It is also reported that the activation 

of NF-κB and CREB is involved in the protection of 
chromaffin cells and the sympathoadrenal PC12 cells (an 
established model for the study of neuronal cell apoptosis 
and survival) against serum deprivation-induced apop- 
tosis by the neuroactive steroids dehydroepiandrosterone 
(DHEA), its sulfate ester DHEAS and allopregnanolone 
(Allo) [2]. However, NF-κB is essential for neurosurvival 
as well. NF-κB activation is a part of recovery process 
that may protect neurons against oxidative-stresses or 
brain ischemia-induced apoptosis and neurodegeneration 
[3].  

Recent studies show that estrogen receptor-α mediates 
the brain anti-inflammatory activity of estradiol. It has 
also been reported that estradiol-induced enhancement of 
object memory consolidation involves hippocampal ex- 
tracellular signal regulated kinase activation and mem-
brane-bound estrogen receptors [4]. ER-α36, as a newly 
discovered estrogen receptor subtype, lacks both transac-
tivation domains and functions as a dominant-negative 
effector of transactivation activities of the full-length 
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ER-α66 and ERβ [5]. ER-α36 primarily localizes to the 
cytoplasm and plasma membrane, it can transduce both 
estrogen-and antiestrogen-dependent activation of MAPK 
signal pathway, stimulating proliferation of breast cancer 
cells [6].  

The interaction between ER-α66 and NF-κB has been 
studied in many kinds of cell types. ER can affect the 
NF-κB transcript activity by several aspects. It has been 
reported that the ER protects against debilitating effects 
of the inflammatory response by inhibiting the NF-κB in 
the MCF-7 breast cancer cell line. Tamoxifen treatment 
in ER-positive breast cancer up regulate NF-κB gene [7]. 
And the activity of NF-κB relies on the expression of ER 
in MCF-7 and HER2 cell line: the more ER expressed, 
the less NF-κB there was [8]. The activity of the NFκB 
signaling cascade is associated with mammary carcino-
genesis, especially tumors with an aggressive and ER- 
negative phenotype [9]. ER-α36 expression is regulated 
differently from ER-α66, consistent with the findings that 
ER-α36 is expressed in specimens from ER-negative 
breast cancer patients and established ER-negative breast 
cancer cells that lack ER-α66 expression [10,11]. Al- 
though the function of ER-α36 has been studied in cancer, 
to our knowledge, it has not yet been known in the nerv- 
ous system. As ER-α36 may play important roles in these 
progresses, it is of great importance to detect the function 
of ER-α36 and its interaction with NF-κB in neuron 
apoptosis and neurodegenerative diseases. 

2. Results 

2.1. The Transfection of ER-α36 shRNA down 
Regulate the Expression of ER-α36 in PC12 
Cells (Figure 1) 

The transfection efficiency of ER-α36 shRNA plasmid 
was detected by observing the fluorescence 48 hours 
after transfection and it was nearly 87%. ER-α36 expres- 
sion was also detected by Western blot and the expres- 
sion level of ER-α36 protein was suppressed by up to 
25% which shows that there was high interference effi- 
ciency. 

2.2. The Down Regulation of ER-α36 Promote 
the Expressions of NF-κB and Related  
Proteins in PC12 Cells (Figure 2) 

NF-κB is widely existed in various kinds of cell types in 
nervous system. After transfection in PC12 cells for 48 
hours, NF-κB was activated and had translocated from 
plasma to the nucleus. Compared with the control group, 
the expression level of NF-κB increased significantly 
after transfection. These date indicate that ER-α36 gene- 
silencing can increase the expression of NF-κB and pro- 
mote its nuclear translocation in PC12 cells. The expres- 
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Figure 1. The transfection of ER-α36 shRNA down regulate 
the expression of ER-α36 in PC12 cells. (A) Control group 
(a) ×100). GFP protein expressions in the PC12 cells after 
transfection for 48 hours (b) ×100) immunocytochemical 
staining detection ER-α36 location in PC12 (c) ×400). Im-
munofluorescence staining detection ER-α36 location in 
PC12 (d) ×400). (B) Western blot detection on ER-α36 ex-
pression after transfection for 48 hours in PC12 cells. Den-
sitometric analysis of ER-α36/β-actin. The results are pre-
sented as means ± SEMs of three independent experiments. 
 
sion of p-P38 and P38 were also detected by Western 
blot and there is a markerable increase after transfection. 

3. Discussion 

ER-α36 has been increasingly implicated in breast cancer 
cells, however, the role of ER-α36 in the brain has not 
been reported. ER-α36 as a newly discovered estrogen 
receptor subtype lacks both transcriptional activation 
domains of ERα (AF1 and AF2), but retains the DNA- 
binding domain and partial dimerization and ligand- 
binding domains. It is predominantly localizes to the cy- 
toplasm and plasma membrane and mediates the mem-
brane-initiated estrogen signaling in breast cancer cells. 
We show here that ER-α36 expressed on the plasma 
membrane and cell nuclear envelope in the PC12 cells. 
Thus, our results reveal the difference of ER-α36 be- 
tween PC12 cells and breast ancer cells. c 
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Figure 2. The down regulation of ER-α36 promote the expressions of NF-κB and related proteins in PC12 cells. (A) The ex-
pressions of NF-κB, p-P38 and P38 were detected by western blot after transfection for 48 hours in PC12 cells. Densitometric 
analysis of NF-κB/β-actin; Densitometric analysis of p-P38/P38. The results are presented as means ± SEMs of three inde-
pendent experiments (*significantly different from the control group); (B) Immunocytochemical staining showed that NF-κB 
subunit expression and location in PC12 cells after transfection for 48 hours. 
 

NF-κB is a transcription factor that regulates the ex- 
pression of a large number of genes that are critical for 
the regulation of cellular process, such as inflammatory 
responses, apoptosis, and cell proliferation [12]. NF-κB 
pathways may promote central nervous system (CNS) 
cell survival through the inhibition of caspase-1 and -3 
activity [13], and NF-κB as key mediators of the neuro-
protective against inflammatory stress in nigral dopa-
minergic (DA) neurons [14].  

In recent studies, NF-κB transrepression of steroid 
hormone receptors has been found [15]. 17 beta-estradiol 
(E2β) treatment produced strong protective effects by 
reducing infarct volume, neuronal apoptosis, and in-
flammatory responses caused by NF-κB activation through 
estrogen receptors in transient cerebral ischemia model 
[16]. Several groups have reported the direct interaction 
between ERα and NF-κB in the nucleus of living cells 
[17] and a reciprocal transcription inhibition between 
agonist-bound ERα and activated NF-κB [18]. Previous 
work demonstrated that the NF-κB transcription factor 
promotes survival and chemoresistance in human breast 
cancer [19]. The NF-κB signaling pathways have been 
implicated as mediators of breast cancer drug resistance. 
The literature reported that ER-α36 existed in breast 
cancer patient samples and found that its expression lev-
els were high in ER-negative tumors and low in ER- 
positive tumors [20,21], in addition, ER-α36 mediates 
nongenomic antiestrogen signaling in ER-negative breast 
cancer cells such as activation of the MAPK/ERK sig- 
naling in these cells [22,23], is involved in the resistance 

of breast cancer to endocrine therapy, for example, ta- 
moxifen [24]. It is also been demonstrated that the nu- 
clear translocation and activation of NF-κB was signifi- 
cantly blocked by p38 MAP kinases inhibitor SB 203580 
[25]. In our study, the expression of NF-κB in transfec-
tion group was increased together with the increase of 
p-P38 expression after ER-α36 gene was silenced 48 
hours later. These results demonstrate that p38 MAP 
kinase might be upstream of NF-κB which plays an im- 
portant role in nervous system.  

In summary, we reported the function of ER-α36 
might be associated with NF-κB transcription factor and 
showed that ER-α36 gene silencing promoted the expres- 
sion of NF-κB in ER-negative PC12 cells. It’s suggesting 
that non-genomic estrogen signaling mediated by ER- 
α36 contributes to development and progression of PC12 
cells that express NF-κB. This is the first report to our 
knowledge that demonstrates that ER-α36 gene silencing 
promote the expression of NF-κB in PC12 cells, but 
which kind of cross-talk is involves in this process re-
mains to be determined. 

4. Materials and Methods 

4.1. Chemicals and Antibodies 

All chemicals used in this study were purchased from 
Sigma Chemical Company (St Louis, MO). Antibodies 
of NF-κB, GFP, p-P38 and P38 were purchased from cell 
signaling Company. Rabbit polyclonal anti-ER-α36 an-
tibody was a gift from Dr Zhao-Yi Wang (Creighton 
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University, CaliforniaPlaza, USA). 

4.2. Cell Culture and Transfections 

PC12 cells were grown in RPMI medium 1640 (Sigma) 
supplemented with 5% FBS and 10% HS at 37˚C under a 
humidified 5% CO2 atmosphere. For transient transfec- 
tion experiments, 6 × 105 cells per well were seeded in 6- 
well plates in 2ml of RPMI medium 1640 without antibi-
otics. Transient transfections were performed with lipid- 
LipofectamineTM 2000 for 48 hours. Each experiment 
was performed on triplicate samples and repeated at least 
three times. 

4.3. Western Blot Analysis  

The cells were collected in ice-cold PBS, and then the 
cells extracts were prepared in RIPA buffer with pro- 
teinase inhibitor cocktail from Sigma (St. Louis, MO). 
Cell lysates were boiled with gel-loading buffer for 5 min 
at 100˚C, resolved on 10% SDS-PAGE, transferred to 
PVDF membrane, probed with appropriate antibodies 
and visualized with enhanced chemiluminescence (ECL) 
detection reagents (Amersham Pharmacia Biotech, Pis- 
cataway, NJ). 

4.4. Immunocytochemistry  

Cells were fixed in 4% (w/v) paraformaldehydein PBS 
(pH 7.4) followed by Permeabilization in 0.2% (v/v) Tri- 
ton X-100 in PBS (PBST). Background staining was 
minimalized by incubating these ctionsins 50% (v/v) 
ethanol, 0.9 (v/v) hydrogen peroxide in PBS for 30 min 
to block endogenous peroxidaseactivity. 0.9% followed 
by 4% (w/v) bovine serum albumin in PBS for 1 h at 
room temperature. 1:200 dilution of the anti-NF-κB an- 
tibody was added to the slides and incubated for 1 hour at 
37˚C. After removing unbound antibody with PBST 
washes, immuno reactivity was detected with a bioti- 
nylated secondary antibody followed by an avidin horse- 
radish peroxidase complex. Immunoreactivity was visu- 
alized using a diaminobenzidine staining kit for 30 min.  

4.5. Immunofluorescent  

Cells were plated onto laminin-coated coverslips whereas 
were plated onto poly-l-lysine-coated coverslips. Cells 
grown on cover glasses were washed twice with PBS and 
then fixed with 4% ice cold paraformaldehyde for 15 min. 
The cover slips were washed three times with 0.1% Tri-
ton X-100 in PBS and blocked with 5% bovine serum 
albumin (BSA) (Roche) in phosphate buffered saline 
solution for 1 h, and after that incubated with anti-ER-α36 
antibodies (rabbit polyclonal, 1:100, Millipore). After 
washing (three times for 10 min in PBS), cells were in-
cubated with Rhodamine-conjugated affinipure goat anti- 

rabbit antibodies (1:300, Zhongshan Goldenbridge Bio- 
technology, China). Nuclei were stained using DAPI (0.2 
μg/mL, Sigma). Fluorescence was imaged with a Bio- 
Rad MRC 600 confocal imaging system. Images were 
acquired using a Leica TCS SP2 MultiPhoton confocal 
microscope. 

4.6. Statistical Analysis  

Statistical analyses were performed using SPSS statisti- 
cal software. Treatment effects were analyzed using one- 
way analysis of variance. Significance was set at P < 
0.05. 
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