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ABSTRACT 

The equation of motion of an object moving in a frictionless horizontal rotating frame is somewhat comparable to the 
one describing the motion of a point-like charged particle projected in a magnetic field. We show that the impact of angu-
lar velocity in the former is equivalent to the impact of the magnetic field in the latter. We consider scenarios conducive 
to comparable trajectories for these two distinct areas of physics. We extend the analysis considering two separate routes. 
For the rotating frame we investigate the impact of friction and for the magnetic field the effect of field in-homogenei- 
ties. We utilize Mathematica [1] throughout, most notably for solving coupled partial differential equations. 
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1. Introduction 

Comparing the equations describing the motion of a mas- 
sive object in a rotating frame vs. the ones describing the 
motion of a point-like charged particle in a magnetic 
field reveals numerous similarities. These two individual 
topics, the one that applies to mechanical systems and the 
other that applies to magneto-static field have been stud- 
ied extensively but separately. A quick search of web- 
sites lists countless yet similar trivial articles concerning 
magneto-static cases, e.g. [2]. These references hardly 
address the field inhomogeneities. Classic text books 
such as [3] passively deal with inhomogeneities. For the 
rotating frames there are numerous resources as well [4,5] 
including the original work [6] and a classic [7]. Aside 
from these numerous isolated scattered resources, the 
author has been unsuccessful in locating an article recog- 
nizing the common features of these two separate areas 
of physics. 

To address this issue, for the sake of simplicity we 
confine the analysis to two-dimensional motions. There- 
fore, mathematically speaking the equations describing 
these scenarios become a comparable paired set of cou- 
pled partial differential equations. From a physics point 
of view, the coefficients of the variables in one set of 
equations become comparable to the coefficients of 
variables in the other set. Merely based on this observa- 
tion one anticipates the impact of varying the angular 
velocity on the kinematics of the former to be similar on 

the kinematics of the latter by varying the corresponding 
magnetic field. The primary objective of this article is to 
validate quantitatively the accuracy of this observation. 
Asides from the main objective, as a secondary goal, by 
including a symmetry breaking term such as friction we 
extend the analysis of the kinematics in the rotating 
frame. This is a fresh addition to the body of knowledge 
[4] now in 5th edition.  

The equations describing motion with friction are non- 
trivial nonlinear set of paired coupled partial differential 
equations. These are not analytically solvable equations; 
neither are the equations of motion of a charged particle 
in an inhomogeneous magnetic field. Computer Algebra 
System (CAS) such as Mathematica is proven essential 
and noteworthy for providing numeric solutions for these 
equations. Needless to mention this software has been the 
CAS of the author’s preferred choice for the last quarter 
of a century. With these objectives in hand this article is 
crafted in four sections. In addition to Motivation and 
Objectives, in Section 2 physics of the problem is for- 
mulated. In Section 3, solutions of the equations along 
with an extensive set of descriptive graphs pertaining 
various scenarios are presented. The article is closed with 
a few commentaries and concluding remarks.  

2. Physics of the Problem and its  
Formulations  

In a rotating coordinate system with angular velocity ω 
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with respect to a fixed frame Newton’s 2nd law is [4], 

  2eff f rm m m m       F F R r r v     (1) 

In this equation eff  is the effective acting force on a 
massive object of mass m. The subscripts f and r stand 
for fixed and relative frames, respectively. eff  is com- 
posed of five potential distinct pieces: 1) F counts for the 
forces such as gravity, and friction, 2) the second term is 
the force due to the translation of the frame, 3) the third 
term arises from the nonuniform rotation of the rotating 
frame, 4) the fourth term is the centrifugal force and 5) 
the fifth term is the Coriolis force. 

F

F

Applying Equation (1) to scenarios of interest simpli- 
fies its application, we consider a case where the rotating 
frame turns uniformly; this drops off the third term. The 
second term for a stationary observer is inoperative. One 
of the objectives of this study is to analyze the motion of 
an object for frictionless surfaces; this eliminates the first 
term. With these parameters Equation (1) sustains only 
the last two terms. Later on for the second phase of our 
analysis by turning on the friction we revive the first 
term. For time being for the scenario of interest Equation 
(1) reads 

  2eff rm m   F r   v



      (2) 

For the rotating frame we consider a disk spinning 
about a fixed vertical axis. Utilizing for angular velocity 

0,0, , the position vector  , ,0x yr  and its 
associated velocity  , ,0r x y  v , Equation (2) yields, 
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This is a set of coupled partial differential equations. 
We defer its solution to the next section. In pursue of our 
objective we now consider a scenario where a point-like 
charged particle is projected in a magnetic field. To put 
these two scenarios in the same footing, in a stationary 
coordinate system we set the magnetic field along a 
vertical axis; . A particle with a 
charge q projected in this field acquires a velocity 

 0,0, ,B x yB 

 , ,0x yv   , and experiences a force q F v B  [3]. 
These parameters yield the equations of motion, 
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This also is a set of coupled partial differential 
equations. Here again we defer the solution to the next 
section. Aside from subtle detailed differences Equations 
(3) & (4) have a number of similarities. For instance 
Equation (3) for a small reduces to identical format of 
Equation (4). And most striking the angular velocity 

dependent coefficients in Equation (3) are similar the 
ones in Equation (4). In other words, because of these 
similarities one expects kinematic similarities as well. 
More on this in the next section. 

3. Detailed Analysis 

To qualify the observations of the previous section here 
we present their quantitative version. For instance it is 
instructive to solve, graphically display and compare the 
trajectories of these two scenarios under similar circum- 
stances. First we note the set of Equation (3) for a chosen 
constant value can trivially be solved by combining the 
two independent variables {x, y} in one complex vari- 
able, z = x + iy. This reduces the two coupled equations 
in one, 22i 0z z z    . The solution of this equation 
for a chosen set of initial conditions yields {x(t), y(t), 0}. 
Alternatively, one may apply CAS and solve Equation (3) 
numerically. On the other hand Equation (4) for a homo- 
geneous magnetic field B has a trivial solution conducive 
to a circular trajectory. However, for most inhomogene- 
ous fields is not analytically solvable; a numeric solution 
is required. Henceforth, for both scenarios we apply a 
numeric schematic solving the needed equations. The 
software of personal preference is Mathematica V9.0. In 
solving Equation (3) it appears the only explicit variable 
parameter is ω. However, other implicit parameters such 
as the initial speed and the orientation of the initial ve- 
locity play crucial roles as well. For the second scenario, 
as discussed in the previous section asides from variation 
of the initial velocity of the projected particle, the 
strength of the magnetic field is crucial as well. For 2D 
cases the inhomogeneity of the field is controlled with 
the functional format of the field, B(x,y). As such, in our 
analysis we have introduced three intuitively sound in- 
homogeneous fields. The interested reader may readily 
try out different inhomogeneities. 

For the secondary objective we generalize the analysis 
by including a retarding force such as friction. Inclusion 
of this force turns on the first term of Equation (1). Sub- 
stituting for F , rˆk kmgv F  with k  being the 
coefficient of kinetic friction Equation (3) modifies, 
yielding, 
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      (5) 

One look at Equation (5) qualifies the wisdom of hav- 
ing decided to solve the equations of motion numeri- 
cally! 

To display the trajectories observed on a rotating 
frame, first we consider the frictionless cases. Parameters 
conducive to the trajectories are captioned with the 
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graphs. In these graphs the rotating frame is a disk of a 
one meter radius circle (shown in red) that turns counter 
clockwise with the shown ω-arrow. The initial position 
of the object is {x, y} = {–0.5, 0} and 0  is shown with 
its specifications printed at the bottom of each graph. 

v

Figures 1-3 are display of the trajectories correspond- 
ing to the parameters printed in the captions. θ is the ori- 
entation of the initial velocity w/x-axis and t’s are the 
time the projectile stays on the spinning disk before 
separating from the disk. 

The blue curves are the trajectories of the sliders on a 
frictionless horizontal turning table with its angular ve- 
locity aligned with the z-axis emerging from the paper. 
Our analysis reveals the general features of the trajecto- 
ries are very sensitive to small changes of initial and an- 
gular velocity. As one may imagine there are countless 
possibilities for all various trajectories. 

Now we focus our attention to the trajectories in a 
magnetic field. Solving Equation (4) is conducive to tra- 
 

 
(a) 

 
(b) 

Figure 1. (a) v0 = 0.2 m/s, θ = 22˚, ω = 0.05 rad/s, t = 7.7 s; (b) 
v0 = 0.2 m/s, θ = 36˚, ω = 0.4 rad/s, t = 7.7 s. 

 
(a) 

 
(b) 

Figure 2. (a) v0 = 0.2 m/s, θ = 55˚, ω = 0.4 rad/s, t = 12 s; (b) 
v0 = 0.15 m/s, θ = 65˚, ω = 0.4 rad/s, t = 14.9 s. 
 
jectories. To begin with we consider a uniform field. As 
it is well known [2,3] a positively charged particle pro- 
jected perpendicularly in the field circulates about the 
field; Figure 4 depicts one such trajectory. Orientation of 
the field emerging from the paper is symbolized by Cir- 
cle-Dot. The field fills the 1 × 1 m square area; however, 
we confine the trajectories within the circular red circle. 
The trajectory is a circular blue clockwise loop; orienta- 
tion of the initial velocity is shown as well.  

By displaying this figure we are qualifying one of our 
objectives; that is, the trajectories depicted in Figures 
3(a) and 4 are exactly the same. Without knowing the 
parameters that are conducive to these graphs one would 
not know whether they are the trajectories of a mechani- 
cal object in a rotating frame or of a magnetic field. In 
other words, the impact of the angular velocity in a ro-
tating frame is equivalent to the impact of the magnetic 
field in a stationary one. 

To distort the homogeneity of the magnetic field we  
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(a) 

 
(b) 

Figure 3. (a) v0 = 0.3 m/s, θ = 83˚, ω = 0.5 rad/s, t = 10 s; (b) 
v0 = 0.35 m/s, θ = 78˚, ω = 0.67 rad/s, t = 20 s. 
 

 

Figure 4. v0 = 0.68 m/s, θ = 90˚, B = 1.4 T, t = 53 s. 
 
introduce three different classes of coordinate dependent 
fields 1) x-dependent, 2) y-dependent and 3) x-y depend- 

ent. The functional format of each field in real-life would 
depend on the needed application. Merely for theoretical 
interest we consider cases such as: xn, yn and (xy)n with n 
is a positive real number. Trajectories depicted in Figure 
5 are due to x-dependent fields, e.g. B(x) = B0x

1.5 and B(x) 
= B0x

2. Parameters conducive to these trajectories are 
given in the captions. 

The localized stable elliptical trajectory in Figure 5(a) 
is due to B(x) = 4.8x1.5 Tesla. The trajectory depicted in 
Figure 5(b) is due to B(x) = 5.4x2 Tesla. Trajectories 
depicted in Figure 6 are y-dependent fields; the field is 
given by B(y) = B0y

2. Parameters conducive to these tra- 
jectories are given in the captions. 

Both trajectories are associated with the same field B(y) 
= 5.4y2 Tesla. The relevant differences are due to the 
initial velocities. 

Lastly, for the 3rd class we consider symmetrical inho- 
mogeneities on the x-y plane, e.g. . 
Under the influence of one such field a projected charged 

   10,B x y B xy

 

 
(a) 

 
(b) 

Figure 5. (a) v0 = 0.83 m/s, θ = 156˚, B = 4.8(x)1.5, t = 12 s; (b) 
v0 = 0.83 m/s, θ = 172˚, B = 5.4(x)2, t = 12 s. 

Copyright © 2013 SciRes.                                                                               JEMAA 



Compression of Characteristics of Trajectories in Rotating Frames vs. Nonuniform Magnetic Fields 340 

 
(a) 

 
(b) 

Figure 6. (a) v0 = 0.83 m/s, θ = 90˚, B = 5.4(y)2, t = 12; (b) v0 
= 0.872 m/s, θ = 86˚, B = 5.4(y)2, t = 23 s. 
 
particle with the initial velocity 0  results in 
the shown trajectory. As one may imagine there are 
countless trajectories corresponding to the chosen values 
of n, and the specifications of the initial velocities. Fig-
ure 7 is a display of one such case. This localized multi- 
loop trajectory is a result of firing a positively charged 
particle with initial velocity 

ˆ0.57 jv

 0
ˆ0.57 m s jv  in a 6.0 

Tesla inhomogeneous field. The field retains the particle 
at least for about 23 s. 

For the sake of curiosity we hunt for a set of parame- 
ters conducive to almost similar trajectories in the rotat- 
ing frame and an inhomogeneous magnetic field. Figure 
8 is one such case. Here again without knowing the pa- 
rameters used for each plot one would have a challenging 
time identifying the causes: meaning, each of these tra- 
jectories could have been generated either in a rotating 
frame or in an inhomogeneous magnetic field. The latter 
cause along with Figure 8 is a quantified generalization 
of our main objective. 

 

Figure 7. v0 = 0.57 m/s, θ = 90˚, B = 6(xy)1, t = 23 s. 
 

 
(a) 

 
(b) 

Figure 8. (a) v0 = 0.7 m/s, θ = 55˚, ω = 1.21 rad/s, t = 3.7 s; (b) 
v0 = 0.4 m/s, θ = 50˚, B = 1.8(xy)0.7, t = 12 s. 
 

The secondary objective is to depict the impact of fric- 
tion on the trajectories of rotating frames. As pointed out 
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in the Detailed Analysis Section, by including friction the 
equations of motion are modified; these are given by 
Equation (5). The numeric solution of these equations for 
chosen initial conditions is conducive to the trajectories 
of interest. Plots shown in Figure 9 are comparative dis- 
plays of trajectories with and without friction. The pa- 
rameters of each paired curves are given in the captions. 

bends the trajectory more pronouncedly, keeping the 
object on the frame longer, i.e. the short-dashed curve 
with t =1.05 s vs. long-dashed curve with t = 2.25 s. 
Similarly, the short-dashed curve in Figure 9(b) corre- 
sponds to the frictionless surface, while the long-dashed 
curve is associated with 0.3k g  . Here the surface is 
smoother but the initial speed and the angular velocity 
are slower resulting a shorter life-time, i.e. t = 4.45 s vs. t 
= 2.25 s, respectively. 

The short-dashed curve in Figure 9(a) corresponds to 
frictionless trajectory and the long-dashed curve corre- 
sponds to the trajectory with friction. In drawing these 
trajectories the combined parameter namely  k g  is 
essential rather than the k  by itself. For instance a 
typical coefficient of kinetic friction k 0.1   with a 

210 m sg   gives k 1.0g  . As such, for the same 
initial velocity and angular velocity the rough surface  

4. Conclusion and Remarks 

We have two targeted objectives. First we wish to dem- 
onstrate that impact of the angular velocity in a rotating 
frame is the same as the impact of the magnetic field in a 
stationary frame. We achieve this goal qualitatively as 
well as quantitatively. The secondary objective is to ex- 
tend quantitatively the analysis of the first objective in- 
cluding the impact of retarding forces such as friction. To 
quantify the impact of friction, we rely on the application 
of a CAS, specifically Mathematica. We solve the cou- 
pled non-linear partial differential equations and display 
comparatively the cases without vs. with friction cases, 
receptively. Not reported are the extensive Mathematica 
codes automating the integration of solutions of the 
equations and their graphic output. Also because of the 
space limitation only a handful of graphs are included in 
this article. The interested reader may apply the guided 
outlines extending the computations. 
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Figure 9. (a) Parameters of the left graph are: v0 = 2 m/s, θ 
= 49˚, ω = 2.2 rad/s, kg = 0.0, t = 1.05 s, kg = 1.0, t = 2.25 s; 
(b) Parameters of the right graph are: v0=1. m/s, θ = 53°, ω 
= 1.66 rad/s, kg = 0.3, t =2.5, and t = 4.4 s.  

 

 


