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ABSTRACT 

The burgeoning use of Web 2.0-powered social media in recent years has inspired numerous studies on the content and 
composition of online social networks (OSNs). Many methods of harvesting useful information from social networks’ 
immense amounts of user-generated data have been successfully applied to such real-world topics as politics and mar- 
keting, to name just a few. This study presents a novel twist on two popular techniques for studying OSNs: community 
detection and sentiment analysis. Using sentiment classification to enhance community detection and community parti- 
tions to permit more in-depth analysis of sentiment data, these two techniques are brought together to analyze four net- 
works from the Twitter OSN. The Twitter networks used for this study are extracted from four accounts related to Mi- 
crosoft Corporation, and together encompass more than 60,000 users and 2 million tweets collected over a period of 32 
days. By combining community detection and sentiment analysis, modularity values were increased for the community 
partitions detected in three of the four networks studied. Furthermore, data collected during the community detection 
process enabled more granular, community-level sentiment analysis on a specific topic referenced by users in the data- 
set. 
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Community-Level Sentiment Analysis 

1. Introduction 

The popularity of online social networks (OSNs) has 
increased dramatically in recent years. Individuals and 
organizations can now take advantage of a wide array of 
Web 2.0-powered social networking platforms, including 
the likes of Facebook, LinkedIn, and Twitter [1]. Though 
these services vary greatly in both form and function, 
they are all alike in facilitating the exchange of signify- 
cant volumes of information among their users. Due to 
the massive amounts of data that flow through social 
networks and the relative ease of accessing this data, 
analysis of social networks has become a research topic 
of particular interest. 

While the study of social networks can take many 
forms, two popular topics are community detection and 
sentiment analysis. Distinct groups of entities, or com- 
munities, will often form within social networks. Identi- 
fying these groups and modeling their dynamic interact- 
tions can provide valuable insight across many disci- 
plines, and is the primary goal of community detection 

[2]. Sentiment analysis, sometimes called opinion mining, 
provides a means of automatically determining the atti- 
tudes or opinions of users via the content they have cre- 
ated [3]. Using sentiment analysis and community detec- 
tion techniques, previous research has demonstrated the 
usefulness of information gained from social networks in 
describing such real-world events and issues as political 
movements [4], elections [5], and consumer attitudes 
towards products and services [6]. In this study, both 
sentiment analysis and community detection will be used 
to analyze networks from the Twitter OSN. 

1.1. The Twitter OSN 

Since its inception in 2006, Twitter’s overwhelmingly 
rapid growth has made this service the Internet’s fastest 
growing social networking platform [1]. As a result, 
Twitter has become a popular target for research efforts. 
The service’s powerful and well-documented Application 
Programming Interface (API) provides an easy means to 
obtain content created by Twitter users, and a plethora of 
libraries exist for many platforms and programming lan- *Corresponding author. 
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guages to further simplify the data collection process. 
Twitter is primarily a microblogging service, allowing 

its users to post, or “tweet” messages up to 140 charac- 
ters in length. These messages often contain links to 
other web content in the form of URLs (usually abbrevi- 
ated via URL shortening services) and Twitter-specific 
constructs including hashtags, mentions, replies, and 
retweets. Hashtags are words or terms denoting a specific 
topic preceded by the # (pound) symbol, while mentions 
and replies are a means of referencing other Twitter users 
by prepending their username with the @ symbol in a 
message [1]. A retweet allows a user to re-post a tweet 
created by another user, usually indicating their support 
for or interest in that tweet’s content. Twitter users can 
“follow” other individuals to receive the messages those 
users post to Twitter, and anyone following a particular 
user is denoted as a “follower” of that user [7]. By de- 
fault, users’ Tweets are publicly accessible, allowing 
Twitter users open access to each other’s content via 
Twitter’s web portal or its API [6]. 

1.2. Community Detection 

Community detection is undoubtedly one of the most 
popular research topics associated with OSNs. To facili- 
tate community detection, social networks are modeled 
as mathematical graphs, often referred to as “social 
graphs”, in which vertices (or nodes) represent actors 
within the network and edges correspond to ties between 
individuals. Such a network is shown in Figure 1. In this 
image, the coloring of vertices represents possible com- 
munities to which each of the nodes in the network may 
belong. Depending on a network’s purpose and the na- 
ture of the data being analyzed, its edges may be  
 

 

Figure 1. An example social network. 

weighted or unweighted as well as directed or undirected 
[8].  

Communities of individuals in a social network can be 
distinguished using graph clustering techniques. The ba- 
sic idea of graph clustering is to group similar or associ- 
ated nodes together. Generally, partitions are created that 
maximize the number of connections (edges) within a 
cluster while minimizing connections between clusters 
[8]. Using graph clustering, previous studies have been 
able to effectively discover real-world communities on 
the Twitter OSN such as the Indie Mac developer com- 
munity studied in [7]. 

Many graph clustering methods have been applied to 
community detection on social networks. Hierarchical 
clustering utilizes hierarchical representations of graphs 
called dendrograms. These structures provide easy con- 
trol over clustering resolution, since each level of the 
hierarchy is effectively a clustering of the graph at a dif- 
ferent level of granularity [8]. Though this is a popular 
method, its shortcomings have stimulated interest in 
other ideas. One alternative technique, proposed by 
Newman and Girvan, uses a measure called “between- 
ness” to discover clusters within a graph structure [9]. 
Betweenness is a metric applied to the edges within a 
graph and is defined as the number of shortest paths 
connecting any two nodes that pass through a given edge 
[8]. Algorithms based on optimizing edge betweenness 
that perform well on both real and computer-generated 
networks have been successfully developed [9]. Another 
algorithm, known as DENGRAPH, is a density-based 
clustering algorithm proposed specifically to analyze 
social network structures. Based on the incremental ver- 
sion of the DBSCAN algorithm, DENGRAPH provides a 
key asset in the study of social networks: the ability to 
handle the constant, dynamic changes in their structure 
[10]. Still another technique, known as the Label Pro- 
pagation Algorithm (LPA), is based on the idea of a 
spreading disease epidemic. With this method, each node 
in the network is initially assigned a unique label. For 
every iteration after the initial step, each node is updated 
to have the label held by the majority of its neighbors (in 
the case of a tie, a label is picked at random). The effec- 
tiveness of this algorithm has been shown by several 
studies [11]. These examples are but a small sampling of 
the myriad community detection algorithms that have 
been proposed over the past few years.  

One key aspect of community detection is quantifying 
the quality, or fitness, of the communities found. Indeed, 
many community detection algorithms are driven by op- 
timization of one metric or another, such as the well- 
known modularity metric [8]. Modularity, proposed by 
Newman and Girvan in [12], measures the fraction of 
edges within communities minus the expected value in a 
network with equivalent partitions but random edges. 
This quantity can be expressed as follows: 
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where k denotes the number of modules (partitions) cre- 
ated from the network, ei the number of edges in a mod- 
ule i, di the sum the degrees of nodes in a module i, and 
m the number of edges in the entire network [13]. Modu- 
larity can also take edge weights into account with just a 
slight change to the formula. Despite the popularity of 
this measure, it has been criticized for such issues as a 
significant resolution limit [14], stemming from the fact 
that modularity is oriented towards global optimization 
[15].  

Another method for calculating community fitness, 
proposed in [16], simply measures the ratio of the inter- 
nal degree of a community to the total degree of that 
community: 
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where  and  denote the internal and external 
degrees of the nodes in a module G. The exponent α con- 
trols the size of the communities, and ought to be a posi- 
tive real-valued number [16]. Both modularity and the 
degree ratio metric will be used in this study to evaluate 
the results of community detection. These are but two 
examples of the many methods for evaluating community 
structures in networks, and further reading on this topic 
can be found in [17].  
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In this study, two algorithms were chosen for commu- 
nity detection: the Speaker-Listener Label Propagation 
Algorithm (SLPA) [18] and the Infomap algorithm [19]. 
These were chosen because they are able to handle both 
weighted and directed networks, they both execute rela- 
tively quickly on large graphs, and because their opera- 
tion differs greatly. SLPA is based on the Label Propaga- 
tion Algorithm (LPA), but offers a critical extension: 
whereas in LPA each node may contain only a single 
label, SLPA allows each node to assume multiple labels. 
Thus, SLPA is able to detect overlapping communities, 
such as those that occur in a social network [18]. The 
implementation of SLPA used for this study was ob- 
tained from the creators of this algorithm at their website 
(https://sites.google.com/site/communitydetectionslpa/). 
The Infomap algorithm, on the other hand, models in- 
formation flow in a network using the probabilities of 
particular random walks within the network. This algo- 
rithm was designed for use with biological and socio- 
logical networks, and was originally demonstrated on a 
citation network of publications from the sciences [19]. 
The iGraph library (http://igraph.sourceforge.net) con- 
tains an implementation of this algorithm, which was 
used with the provided Python interface. 

1.3. Sentiment Analysis 

In addition to community detection, sentiment analysis 
has become another popular tool for analysis of social 
networks. Sentiment analysis is often formulated as a 
two-step problem, in which it is first necessary to deter- 
mine whether a given text is subjective or objective. This 
is known as Subjective/Objective-polarity, or SO-polar- 
ity. If it is determined that a text is subjective, it can then 
be classified according to whether it expresses positive or 
negative sentiment, which is denoted Positive/Negative- 
polarity or PN-polarity [20]. Over the past few years, a 
variety of strategies have been used to perform sentiment 
analysis on many different types of data. 

A common approach to sentiment analysis uses a 
lexicon of words labeled with their SO or PN polarities. 
The SentiWordNet lexicon [20] is one such resource that 
has proven effective in analyzing all manner of text 
documents, from product reviews [21] to news headlines 
[22], and has even been used for multilingual sentiment 
analysis [23]. When using a lexicon such as SentiWord- 
Net, a simple technique involves summing the polarity 
scores for the words in a document and making a predic- 
tion based on the result. While this naïve approach can 
produce satisfactory results, lexicon-based polarity scores 
can be used more accurately when coupled with a ma- 
chine learning algorithm [24]. 

While lexicon-based methods have been shown to be 
effective for many types of textual documents, Twitter 
presents a unique challenge because its informal mes- 
sages are very short and contain large amounts of slang 
and misspellings. This reduces the effectiveness of tradi- 
tional lexicons [3]. As a result, some studies such as [3] 
and [25] have chosen to use fully or distantly supervised 
learning to more accurately classify the sentiment ex- 
pressed in tweets. Fully supervised learning requires 
manually labeling data to provide input for a machine 
learning classifier. This is a useful technique, but is ex- 
tremely time-consuming and often produces training sets 
that are not of sufficient size to effectively train a classi- 
fier [3]. Distantly supervised methods attempt to over- 
come these issues by automatically labeling training 
datasets based on “noisy” labels such as emoticons and 
hashtags [26].  

For this study, we adopt the fully supervised training 
approach using multiple datasets to ensure we have a 
training corpus of sufficient size. The Naïve Bayes clas- 
sifier from the Natural Language Toolkit (http://nltk.org/), 
abbreviated NLTK, is used in conjunction with both uni- 
gram (single-token) and bigram (two-token) features to 
identify the subjective/objective and positive/negative 
orientation of tweets. 

1.4. Purpose of This Research 

While previous studies using sentiment analysis and 
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community detection abound, these tasks are generally 
treated as completely separate issues. This study instead 
combines the two techniques, investigating the integra- 
tion of sentiment analysis and community detection on 
networks from the Twitter OSN. Sentiment analysis is 
used in addition to other Twitter-specific features in- 
cluding hashtags, mentions, replies, and retweets to en- 
hance community detection. Once community structures 
have been discovered, the power of combining these 
techniques is demonstrated by analyzing sentiment in- 
formation on the community level in one of the dataset’s 
networks. 

2. Datasets 

Two datasets were used in this study. The first of these 
was the publicly available Sanders corpus  
(http://www.sananalytics.com/lab/twitter-sentiment/), a ma- 
nually-labeled dataset provided for training sentiment 
classifiers. The second dataset was collected directly from 
the Twitter API for this study, and contained data relat-
ing to several Twitter accounts managed by Microsoft 
Corporation. 

2.1. Sanders Corpus 

The Sanders corpus consists of 5513 tweets manually 
labeled according to their subject and sentiment. The 
Twitter API terms of service do not permit direct distri- 
bution of the tweets, so a small Python script is provided 
to download the dataset directly from Twitter. While this 
corpus contains over 5500 tweets, some of the tweets 
appear to be no longer available via the Twitter API and 
could not be downloaded. Thus, the number of available 
tweets was reduced to 4957. Furthermore, only 3727 of 
the tweets are labeled according to sentiment as “posi- 
tive”, “negative”, or “neutral”, while the rest are labeled 
“irrelevant”. All of the tweets labeled “irrelevant” were 
filtered out, as well as those that were not English (ac- 
cording to the “lang” attribute provided by the Twitter 
API). Thus, the usable data for this study from the Sand- 
ers corpus contained 3111 tweets. 

From the 3111 tweets extracted from the Sanders cor- 
pus, two datasets were created, and later merged with 
data from the Microsoft dataset described below. The 
first dataset was used in the training of a subjective/ob- 
jective Naïve Bayes classifier. All “neutral” tweets were 
assigned the label “objective”, and all positive and nega- 
tive tweets were assigned the label “subjective”. The 
second dataset was used to train a positive/negative Na- 
ïve Bayes classifier, and consisted of the tweets from the 
Sanders corpus labeled positive or negative. Thus, as can 
be seen from Table 1, 1028 tweets were subjective while 
2083 were objective. Also, as Table 2 shows, 484 of the 
1028 subjective Tweets were positive, while 544 were 
negative. 

2.2. Microsoft Corpus 

The Microsoft corpus collected for this study was 
downloaded directly from the Twitter API. This dataset 
was collected in two stages. First, using the Python li- 
brary Tweepy (http://tweepy.github.com/), the social 
networks of four Microsoft-sponsored Twitter accounts 
were crawled: @technet, @windevs, @VisualStudio, and 
@Silverlight. These four accounts are used by Microsoft 
to communicate with information technology profession- 
als and developers, and were chosen because they had 
relatively large numbers of followers but could still be 
crawled in a timely manner within the rate limits of the 
Twitter API. All followers and friends of these accounts 
who were following less than 600 others were collected, 
creating the social network for each of the four accounts 
similar to the visualization in Figure 1. The limit of fol- 
lowing 600 users was imposed similarly to [7] as a 
means of de-noising and limiting the size of the crawled 
network. With this limitation in place, the number of 
users crawled for each of the four accounts is displayed 
in Table 3. 

The second stage of data collection involved capturing 
tweets created by the collected users. This data was har- 
vested using the Java library Twitter4j  
(http://twitter4j.org/) in conjunction with the Twitter 
streaming API. Between January 2, 2013 and February 2, 
2013, a total of 2,061,789 tweets were collected from the 
networks of the Microsoft accounts described above. 
This portion of the dataset provided the additional fea- 
tures described in Section 3 that were used to enhance 
community detection on the four Microsoft networks. 

2.3. Combined Datasets 

To ensure significant training data was available for sen- 
timent analysis, a portion of the tweets collected in stage 
two above were withheld as a training set. A total of 
3000 English tweets were randomly selected and re- 
moved from the full set of tweets such that they were 
proportional to the number of tweets collected from each 

 
Table 1. Sanders dataset: subjective and objective tweets. 

Subjective Objective Total 

1028 2083 3111 

 
Table 2. Sanders dataset: subjective tweets. 

Positive Negative Total 

484 544 1028 

 
Table 3. Users crawled for Microsoft accounts. 

@technet @windevs @VisualStudio @Silverlight

1382 15,559 26,775 18,630 
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of the four accounts. This set of 3000 tweets was then 
manually labeled as “positive”, “negative”, or “object- 
tive” according to the sentiment they expressed.  

After this was completed, these tweets were split into 
two datasets just like the Sanders Corpus, with one set of 
tweets containing the labels ”subjective” and “objective” 
and the other containing the labels “positive” and “nega- 
tive”. These two datasets are described in Tables 4 and 5, 
respectively. Finally, the datasets described in Tables 6 
and 7 were created for training the two Naïve Bayes 
classifiers, combining the tweets from the Sanders Cor-
pus and the training tweets from the Microsoft Corpus.  

The remaining Microsoft tweets were then grouped 
according to the account with which their author was 
associated as a friend or follower, and further divided by 
the day on which they were created. Combined with the 
social networks created from stage one of the Microsoft 
Corpus collection described in Section 2.2, these tweets 
created input for the enhanced community detection de- 
scribed in Section 3. 

3. Methods 

Once data had been collected, initial community detec- 
tion was performed on the friend/follower networks of all 
four Twitter accounts in the dataset. After this was com- 
pleted, sentiment, hashtag, reply, mention and retweet 
features were computed for each day’s data and inte- 
grated into the community detection process. This sec- 
tion describes the procedures used to accomplish these 
tasks, focusing particularly on sentiment analysis. 

3.1. Network Construction and Basic  
Community Detection 

To perform community detection on the friend and fol- 
lower networks, representations of these networks were 
created as directed graphs with weighted edges. Edges 
were created according to the friend and follower rela-  
 
Table 4. Microsoft dataset: subjective and objective tweets. 

Subjective Objective Total 

940 2060 3000 

 
Table 5. Microsoft dataset: positive and negative tweets. 

Positive Negative Total 

595 345 940 

 
Table 6. Combined dataset: subjective and objective tweets. 

Subjective Objective Total 

1968 4143 6111 

Table 7. Combined dataset: positive and negative tweets. 

Positive Negative Total 

1079 889 1968 

 
tionships within the four networks, and assigned a weight 
value of one. This resulted in the networks described in 
Table 8. The number of vertices in each network was 
equivalent to the number of accounts in Table 3. The 
number of edges, however, was much higher, as every 
Twitter account was associated with many connections to 
other individuals. Crawled from the @VisualStudio ac- 
count, the largest network had had 258,538 edges, while 
the smallest, from the @technet account, contained only 
4834 edges. After the networks had been constructed, 
both the Infomap and SLPA algorithms were run to per- 
form initial community detection before any additional 
features were added. 

3.2. Updating the Networks with Additional  
Features 

Three types of features were used to augment the results 
of SLPA and Infomap on the initial friend/follower net- 
works. These included: replies, mentions and retweets; 
hashtags; and sentiment classification of tweets. These 
features were computed for all of the 32 days in the 
dataset. Then, they were used to iteratively increment 
edge weights in the four social networks, and community 
detection was repeated on the networks using edge 
weights updated with each day’s data. Variations of this 
technique were attempted in order to determine optimal 
performance, such as cumulatively maintaining edge 
weight updates or resetting the network to the initial 
friend/follower network after computing communities 
with each day’s data. 

3.2.1. Reply, Mention, Retweet, and Hashtag Features 
The first and most intuitive feature included as a supple- 
mentary feature for community detection was the pres- 
ence of replies, mentions, and retweets in tweets refer- 
encing other users. The Twitter API conveniently en- 
codes this information in the “entities” section of the data 
it returns describing tweets, trivializing the extraction of 
these features. Whenever a reply, mention, or retweet 
referencing another user in the social network was found 
in a given day’s data, the weight of the edge from the 
mentioning user to the one mentioned was incremented 
by one (assuming an edge from the first to the second 
user existed). 

The second supplementary feature for community de- 
tection was the presence of hashtags in tweets. Whenever 
two users mentioned the same hashtag in one or more of 
their tweets from a given day, the weights of any existing 
edges between those two users were incremented by one.  
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Table 8. Networks created from the Microsoft dataset. 

Account Vertices Edges 

@Technet 1382 4834 

@Windevs 15,559 65,718 

@VisualStudio 26,775 258,538 

@Silverlight 18,630 127,983 

 
Again, this process was fairly trivial, as Twitter’s API 
also encodes the hashtags used in each tweet in the “enti- 
ties” section of the metadata describing tweets. 

3.2.2. Sentiment Features 
While calculating the features described above was rela- 
tively straightforward, computing sentiment features was 
much more involved. This section describes the steps 
used to train the subjective/objective (SO) and posi- 
tive/negative (PN) Naïve Bayes classifiers, the accuracy 
achieved on the training set with these classifiers, and the 
integration of sentiment features with community detec- 
tion. 

The first step towards training both the SO and PN 
Naïve Bayes classifiers was converting tweet text into a 
set of features suitable for input to the appropriate classi- 
fier. Both unigram and bigram features were used to train 
each classifier, with bigram features helping to account 
for cases when words in a sentence were negated (i.e. 
preceded by the word “not”).  

Before unigram and bigram features were created from 
tweets, tweet text was first preprocessed according to 
techniques inspired by a previous study [25]. First, all 
characters in the tweet were converted to lowercase. 
Then, all hashtags were replaced with “twitterhashtag”, 
retweet designations (“RT”) were removed, and user- 
names were replaced with “twitterusername”. Similarly, 
URLs were replaced with “twitterurl”. Then, tweet text 
was split into individual word tokens, from which a list 
of unigram and bigram features was created. While these 
procedures were applied for both the SO and PN classifi- 
ers, additional preprocessing was found to improve the 
accuracy of the PN classifier. For this classifier, repeated 
punctuation was replaced with the punctuation symbol 
and a plus sign (i.e. “!!!” would be replaced with “!+”). 
Additionally, sentence punctuation following words was 
split into separate individual tokens, and non-sentence 
punctuation (such as parenthesis and quotation marks) 
was removed. Stopwords from the NLTK Stopwords 
Corpus (with the exception of the tokens “don”, “no”, “s”, 
“t”, “not” and “nor”) were also removed from the set of 
tokens representing each tweet for the PN classifier.  

Once preprocessing was completed, the combined SO 
and PN datasets from Section 2.3 were used to train the 
NLTK Naïve Bayes classifiers. Ten-fold cross-validation 
on the training data was used with both classifiers to ap- 

proximate their accuracy. The SO classifier achieved an 
average accuracy of 70% across the ten folds, while the 
average accuracy of the PN classifier was 79%. The top 
20 most informative features as selected by the two Na- 
ïve Bayes classifiers are shown in Tables 9 and 10, along 
with their associated labels. Note that, in both of these 
tables, bigram features are displayed as two tokens en-
closed in parenthesis. Several of the tokens identified as 
most informative in both sets of features are highly do-
main-specific. This is due to the fact that the Sanders 
Corpus focuses particularly on tweets relating to Apple 
and Android. 

With construction of the SO and PN classifiers com- 
plete, sentiment features were added as supplementary 
features to community detection. Similarly to the previ- 
ous two types of supplementary features, sentiment fea- 
tures were used to increment edge weights within the 
social network, which in turn influenced the performance 
of the Infomap and SLPA community detection algo- 
rithms.  

Several steps were involved with updating edge 
weights based on sentiment. First, each tweet in a given 
day’s data was classified as either subjective or objective. 
Then, any tweet classified as objective was further clas- 
sified as positive or negative. Once sentiment classifica- 
tion was complete, hashtags were used to ensure senti-  

 
Table 9. Top 20 most informative subjective/objective fea- 
tures. 

Feature Label 

fucking subjective 

(ios, 5) subjective 

liked subjective 

(customer, service) subjective 

(twitterusername, video) subjective 

:( subjective 

totally subjective 

birthday subjective 

usage subjective 

(can’t, wait) subjective 

(twitterusername, ios) subjective 

:-) subjective 

phone! subjective 

wtf subjective 

awesome! subjective 

(twitterusername, thanks) subjective 

customer subjective 

itunes subjective 

followers objective 

trouble subjective 

Copyright © 2013 SciRes.                                                                                JDAIP 



W. DEITRICK, W. HU 25

Table 10. Top 20 most informative positive/negative fea- 
tures. 

Feature Label 

:) positive 

hate negative 

;) positive 

awesome positive 

itunes negative 

issues negative 

:-) positive 

(?, twitterhashtag) negative 

won’t negative 

fuck negative 

sandwich positive 

fucking negative 

sucks negative 

(ice, cream) positive 

cream positive 

battery negative 

issue negative 

else negative 

(?, twitterusername) negative 

(cream, sandwich) positive 

 
ment about unrelated topics was not used to update the 
network. Thus, edge weights in the network were up- 
dated as follows: whenever two users posted a tweet with 
the same sentiment classification containing the same 
hashtag, the weights of any edges connecting those users 
were incremented by one. This effectively could have 
allowed one tweet to cause two edge updates between 
two users. If a user’s tweet was classified as subjective 
and assigned the same subjective label (positive or nega- 
tive) as another user who tweeted the same subjective 
sentiment and a common hashtag, two edge updates 
would be made: one for the subjective classification and 
another for the shared positive or negative classification. 

3.3. Enhanced Community Detection and  
Sentiment Analysis 

To enhance the basic community detection described in 
Section 3.1, the three supplementary feature types were 
used to cumulatively update edge weights in the social 
network. The social networks for each Microsoft account 
were updated according to the features in their tweets 
from each day in the dataset, and community detection 
using both SLPA and Infomap was performed again after 
features from each day’s data had been included. 

As the network was updated community detection was 
repeated, and the calculated features and detected com- 

munities were stored for further analysis. This provided 
for in-depth analysis of sentiment information uncovered 
when calculating sentiment features for the network as 
described in Section 4. 

4. Results and Analysis 

The three types of supplementary features significantly 
increased modularity in the Infomap output for three of 
the four Microsoft communities. This section describes 
and analyzes the results of community detection on these 
networks and shows how the sentiment features com- 
puted to enhance community detection provided even 
more insight when paired with community detection re- 
sults. In this way, it is shown that community detection 
and sentiment analysis can be mutually supportive, each 
providing information to enhance the other. 

4.1. Community Detection 

While community detection was performed using both 
the Infomap and SLPA algorithms, best results were 
achieved using Infomap with cumulatively maintained 
edge updates from each day’s data. Thus, in Table 11, 
community counts, modularity values, and degree ratios 
for the Infomap algorithm are given (abbreviated in three 
of the four columns as “C.”, “M.”, and “D.R.” respect- 
tively). The 33 rows are shown for the initial community 
partitions computed by Infomap for all four Microsoft 
accounts and for each of the 32 days in the dataset. As 
can be seen from the data in Table 11, modularity values 
increased significantly for the @technet, @windevs, and 
@Silverlight accounts from the initial network to the 
final February 2 network. The greatest increase in modu- 
larity was in the network from the @windevs account, 
with the modularity value for the partitioning increasing 
from 0.1839 to 0.3129. This suggests that more mean- 
ingful communities were uncovered by updating network 
edge weights with the three supplementary feature types. 
Increasing weight values of edges connecting nodes with 
common features allowed community partitions that 
were likely more representative of the real world interac- 
tions in these networks to be discovered.  

Interestingly, unlike the other three accounts, the 
modularity values for the @VisualStudio account did not 
noticeably increase when the supplementary features 
were used. While the reason for this is not immediately 
clear, there are several possible explanations for these 
results. The @VisualStudio network is significantly lar- 
ger than any of the other networks, with twice as many 
edges as the next largest network tested. Furthermore, the 
average degree of nodes in the @VisualStudio network, 
9.66, is much higher than any of the other networks (the 
next highest, from the @Silverlight network, is 6.87). 
Thus, considering the relatively large number of edges in 
the @VisualStudio network, updates to edge weights  
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Table 11. Community detection results. 

@technet @windevs @VisualStudio @Silverlight 
Date 

Communities Modularity Degree Ratio C. M. D.R. C. M. D.R. C. M. D.R. 

Initial 51 0.3462 0.4891 532 0.1839 0.4006 1141 0.3144 0.3357 445 0.2377 0.4131

2-Jan 51 0.3446 0.4889 536 0.1870 0.3992 1146 0.3107 0.3349 428 0.2385 0.4203

3-Jan 52 0.3523 0.4848 548 0.1879 0.3946 1142 0.2985 0.3346 579 0.3180 0.3722

4-Jan 51 0.3632 0.4838 538 0.1967 0.3974 1145 0.2961 0.3348 587 0.3216 0.3677

5-Jan 51 0.3597 0.4863 549 0.2036 0.3937 1118 0.2967 0.3376 574 0.3243 0.3709

6-Jan 52 0.3612 0.4834 543 0.2061 0.3938 1133 0.2933 0.3355 591 0.3270 0.3671

7-Jan 53 0.3652 0.4716 543 0.2112 0.3956 1141 0.3004 0.3352 596 0.3283 0.3649

8-Jan 51 0.3705 0.4853 563 0.2209 0.3891 1134 0.2992 0.3335 594 0.3309 0.3629

9-Jan 52 0.3860 0.4776 561 0.2257 0.3889 1135 0.2978 0.3332 603 0.3319 0.3608

10-Jan 52 0.3806 0.4878 559 0.2333 0.3888 1147 0.3012 0.3319 593 0.3333 0.3657

11-Jan 53 0.3886 0.4782 554 0.2396 0.3902 1147 0.2893 0.3289 603 0.3394 0.3621

12-Jan 52 0.3932 0.4827 561 0.2418 0.3883 1121 0.2925 0.3336 625 0.3376 0.3548

13-Jan 52 0.3903 0.4804 562 0.2455 0.3893 1117 0.3035 0.3353 614 0.3416 0.3569

14-Jan 54 0.3926 0.4670 567 0.2480 0.3883 1136 0.2998 0.3324 623 0.3371 0.3528

15-Jan 55 0.3883 0.4644 559 0.2539 0.3899 1145 0.3000 0.3290 620 0.3398 0.3556

16-Jan 54 0.4106 0.4707 557 0.2662 0.3923 1153 0.3013 0.3303 624 0.3369 0.3516

17-Jan 55 0.4019 0.4708 559 0.2688 0.3915 1153 0.3047 0.3290 628 0.3420 0.3522

18-Jan 54 0.4024 0.4640 547 0.2720 0.3932 1128 0.3096 0.3318 621 0.3443 0.3529

19-Jan 57 0.4023 0.4568 564 0.2734 0.3894 1144 0.3089 0.3305 630 0.3504 0.3518

20-Jan 56 0.4061 0.4639 564 0.2719 0.3878 1137 0.3103 0.3302 614 0.3449 0.3542

21-Jan 57 0.4078 0.4568 567 0.2737 0.3891 1158 0.3097 0.3276 621 0.3542 0.3548

22-Jan 57 0.4093 0.4579 553 0.2893 0.3941 1159 0.3128 0.3274 634 0.3574 0.3546

23-Jan 59 0.4077 0.4522 567 0.2886 0.3898 1142 0.3141 0.3298 644 0.3559 0.3490

24-Jan 58 0.4141 0.4561 562 0.2935 0.3923 1172 0.2985 0.3255 636 0.3566 0.3497

25-Jan 59 0.4150 0.4510 578 0.2950 0.3870 1168 0.3007 0.3250 639 0.3557 0.3505

26-Jan 58 0.4151 0.4560 572 0.2989 0.3901 1165 0.3017 0.3245 644 0.3555 0.3499

27-Jan 58 0.4145 0.4548 561 0.3055 0.3917 1176 0.3028 0.3237 625 0.3607 0.3523

28-Jan 58 0.4186 0.4558 570 0.3045 0.3892 1178 0.3060 0.3234 629 0.3631 0.3548

29-Jan 59 0.4192 0.4518 580 0.3048 0.3850 1160 0.3073 0.3249 645 0.3631 0.3492

30-Jan 60 0.4260 0.4507 574 0.3038 0.3882 1221 0.3210 0.3164 646 0.3577 0.3479

31-Jan 59 0.4281 0.4524 573 0.3096 0.3866 1161 0.3163 0.3251 665 0.3604 0.3434

1-Feb 60 0.4294 0.4503 564 0.3116 0.3897 1171 0.3177 0.3230 652 0.3610 0.3480

2-Feb 60 0.4287 0.4501 577 0.3129 0.3853 1182 0.3163 0.3215 659 0.3615 0.3428

 
based on the three supplementary features may not have 
been sufficient to significantly alter the community de- 
tection output.  

Also, while modularity tended to increase with the in- 
clusion of additional features, the degree ratio values 
decreased as edge weights were updated. While this may 
at first seem counterintuitive, it is actually to be expected. 
The modularity metric takes edge weights into account, 
while the degree ratio does not. Thus, since the number 
of distinct communities detected increased as additional  

days’ features were included (while maintaining the same 
internal edge structure), the degree ratio scores de- 
creased. 

4.2. Sentiment Analysis 

As demonstrated in Section 4.1, the three types of sup- 
plementary features helped discover communities exhibi- 
ting stronger real-world interaction. However, just as 
sentiment analysis helped facilitate enhanced community 
detection, community detection also served to enhance 
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sentiment analysis. Correlating sentiment information 
with detected communities permits more in-depth analy- 
sis of sentiment information from the level of entire net- 
works down to single communities. 

Sentiment analysis data was computed and stored as a 
part of the community detection process for each of the 
four Microsoft accounts, which simplified further analy- 
sis of this data. In Figure 2, sentiment statistics are pre- 
sented for each Microsoft account over the 32 days in the 
dataset. Each of the four curves shown in these figures 
represents a percentage of the total tweets from each day 
classified as subjective, objective, positive, or negative. 
As can be seen from each of these figures, the majority 
of tweets from each of these networks were classified as 
objective, with the @technet network exhibiting the 
highest ratio of objective (average of 60% per day) to 
subjective (average of 40% per day) tweets. In three of 
the four networks, the percentages of positive and nega- 
tive tweets were relatively equal. In the @windevs net- 
work, however, the objective tweets were primarily 
negative. Of the objective tweets produced by this net- 
work, 44% per day on average were positive, while 56% 
were classified as negative.  

While looking at the overall sentiment trends for each 
of these accounts is interesting, this information is ulti- 
mately of limited usefulness. A multitude of topics are 
discussed by many different groups of people in each of 
these networks. Realistically, it would be much more 
helpful to consider sentiment expressed by specific groups 
of people or about specific topics.  

To facilitate a more narrowed analysis, popular tweet 
topics in the dataset were identified using hashtags.  

Table 12 shows the top ten most popular hashtags ap- 
pearing in the entire dataset and the number of times 
each was used. Four out of these ten hashtags (“win- 
dowsphone”, “wpdev”, “wp”, and “wp8”) reference Mi- 
crosoft’s smartphone platform, Windows Phone, indicat- 
ing that this was a popular topic during the period the 
dataset was collected. Thus, to demonstrate the power of 
combining sentiment analysis with community detection, 
Windows Phone was chosen as a topic for deeper analy- 
sis. 

To understand overall sentiment towards Windows 
Phone, sentiment classifications were tallied for tweets 
containing the above four hashtags from the networks 
associated with each Microsoft account. Figure 3 shows 
percentages of tweets pertaining to Windows Phone ex- 
pressing each of the four sentiment labels from one of the 
Microsoft networks, @windevs. In the @windevs net- 
work, the majority of tweets from each day pertaining to 
Windows phone were classified as objective (73% on 
average), and of the subjective tweets there was a fairly 
even split of positively (12% on average) and negatively 
(14% on average) classified tweets. Figure 3 represents 
sentiment scores pertaining to the entire @windevs net- 
work. But, by combining community detection and sen- 
timent analysis results, an even more granular perspec- 
tive becomes available. Figure 4 displays Windows 
Phone-related sentiment classification percentages for the 
largest detected community in the @windevs network, 
and reveals a significantly different trend than that of the 
@windevs network as a whole. While the majority of 
tweets produced by this community are still objective (an 
average of 73% per day), of the subjectively classified 

 

 

 

Figure 2. Overall sentiment statistics for Microsoft networks. 
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Figure 3. Windows phone sentiment—@windevs. 
 

 

Figure 4. Windows Phone sentiment—largest community 
from @windevs. 
 

Table 12. Top ten hashtags. 

Hashtag Count 

tech 6892 

windows8 5463 

microsoft 4871 

windowsphone 4188 

wpdev 3788 

wp 3332 

wp8 2906 

getglue 2407 

android 2260 

fb 2258 

 
tweets only 7% per day on average are positive, while 
19% on average are negative. Thus, the largest commu- 
nity detected within the @windevs network exhibited 
significantly more negative sentiment towards Windows 
Phone than the network as a whole. This demonstrates 
how community data was able to enhance sentiment 
analysis by permitting a more granular view of sentiment 
from a specific community within the larger @windevs 
network. 

5. Conclusions 

Due to the rising popularity of online social networks, 
analysis of OSNs has become the focus of many recent 

research efforts. Two common topics are community 
detection and sentiment analysis, which examine the 
structure and content of social networks. Though com- 
munity detection and sentiment analysis are usually 
treated as separate issues, this research integrates the two 
and demonstrates how these techniques can be used to 
enhance each other.  

The publicly available Sanders Sentiment Corpus was 
used to provide data for this study, in addition to four 
Microsoft-related social networks downloaded directly 
from the Twitter API. While the Sanders Corpus was 
relatively small, the Microsoft dataset was significantly 
larger. Overall, the combined Microsoft dataset con- 
tained the friend and follower networks of 62,346 Twitter 
users and 2,061,789 of their tweets, collected over a pe- 
riod of 32 days. 

Community detection was performed on the friend/ 
follower networks of the four Microsoft accounts using 
the SLPA and Infomap algorithms. This community de- 
tection was then enhanced with three types of additional 
features: replies, mentions, and retweets; hashtags; and 
sentiment classifications. The sentiment classifications 
were derived using two Naïve Bayes classifiers trained 
with the Sanders dataset and a small portion of hand- 
labeled tweets from the Microsoft dataset. These three 
feature types were calculated from each day’s tweets, and 
were applied to the four networks in the dataset by in- 
creasing edge weights between network nodes.  

Using the three supplementary feature types to en- 
hance community detection improved modularity values 
in the Infomap output on three of the four networks stud- 
ied. The most dramatic change in modularity was in the 
@windevs network, with modularity increasing from 
0.1839 to 0.3129. Furthermore, combining sentiment 
classifications and community groupings permitted more 
in-depth analysis of sentiment data from the same 
@windevs network, which was illustrated by examining 
sentiment directed towards Microsoft’s Windows Phone. 
Thus, this study takes the novel approach of combining 
community detection and sentiment analysis, demon- 
strating that these techniques can be used in a mutually 
informative way with each enhancing the other. 
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