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ABSTRACT 

With a direct impact on compression performance, 
optimal quantization scheme is crucial for transform- 
based ECG data compression. However, traditional 
optimization schemes derived with signal adaption 
are commonly inherent with signal dependency and 
unsuitable for real-time application. In this paper, the 
variety of arrhythmia ECG signal is utilized for op- 
timizing the quantization scheme of wavelet-based 
ECG data compression based on a genetic algorithm 
(GA). The GA search can induce a stationary rela- 
tionship among the quantization scales of multi-res- 
olution levels. The stationary property facilitates the 
control of multi-level quantization scales with a single 
variable. For this aim, a three-dimensional (3-D) 
curve fitting technique is applied for deriving a quan- 
tization scheme with linear distortion characteristic. 
The linear distortion property can be almost inde- 
pendent of ECG signals and provide fast error con- 
trol. The compression performance and convergence 
speed of reconstruction quality maintenance are also 
evaluated by using the MIT-BIH arrhythmia data- 
base.  
 
Keywords: Electrocardiogram; Error Control;  
Quantization Scale 

1. INTRODUCTION 

Electrocardiogram (ECG) is a non-invasive modality that 
senses electric action of heart motion from body surface. 
Being a three-dimensional (3-D) organ, heart disease di- 
agnosis usually needs the use of multiple ECG signals 
sensed from different positions around the heart. Typical 
requirement is a record of 12-lead ECG signals [1]. ECG 
data compression technique is crucial for the transmis- 
sion and long-term storage of mass ECG signals, e.g., 

ambulatory monitoring and telemedicine [2,3]. This tech- 
nique can also benefit portable ECG recording due to 
low power consumption. 

According to processed data, ECG data compression 
methods can be generally categorized into time-, trans- 
form-domain, and signal adaptation groups [4-6]. Signal 
adaptation methods based on a pre-process are unsuitable 
for real-time applications and time-domain methods are 
usually sensitive to the interference of high frequency 
components. With high compression performance and 
real-time processing capability, transform-domain me- 
thods have attracted much attention of researchers re- 
cently, especially for discrete cosine transform (DCT) [7] 
and discrete wavelet transform (DWT) [8] due to their 
excellent compression performance. 

Transform-domain methods achieve data compression 
in terms of a non-uniform quantization scheme that uses 
different quantization scales for different frequency com- 
ponents. Quantization scheme will strongly impact on 
compression performance due to irreversible processing. 
For this sake, optimizing the compromise between com- 
pression ratio (CR) and distortion is crucial. Optimiza- 
tion schemes generally can be partitioned into filter se- 
lection and quantization scale design groups. With lattice 
parameterization, Nielsen et al. [9] proposed a signal- 
based optimization process that found optimal mother 
wavelet with minimal distortion rates for some fixed CRs. 
He and Mitra [10] designed optimal quantization error 
feedback filter by minimizing synthesis filtering error. 
Filter selection was also concerned for 3D signal com- 
pression [11]. For quantizing DCT coefficients, Batista et 
al. [12] determined threshold and quantization vectors by 
minimizing the cost function J defined as a linear com- 
bination of entropy and distortion measure. Blanco- 
Velasco et al. [13] built a nearly perfect reconstruction 
cosine modulated filter bank and determined threshold 
value with reconstruction quality guaranteed. 

However, optimization schemes commonly need a 
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pre-process for signal adaptation. This requirement is 
disadvantageous for real-time application. A less attrac- 
tive approach was the set partitioning in hierarchical 
trees (SPIHT) algorithm [14] that combining quantiza- 
tion and coding can provide wavelet-based ECG data 
compressing with selectable bit rate. SPIHT scheme also 
has good compression performance. Considering the 
maintenance of reconstruction quality, an approach com- 
bining non-recursive discrete periodized wavelet trans- 
form (NRDPWT) and the reversible round-off linear 
transformation (RROLT) theorem was proposed [15]. 
The RRO-NRDPWT-based approach with the capability 
of error propagation resistance and octave coefficient 
normalization is efficient for reconstruction error control. 

In this paper, a new quantization scheme that com- 
bines genetic algorithm (GA) and linear distortion pro- 
gram is presented for the RRO-NRDPWT-based ECG 
data compression. By using a test dataset involving 11 
arrhythmia ECG signals, optimal quantization scales for 
a desired range is first found with a GA search. Using 
percentage root mean square difference (PRD) as the 
distortion measure, GA search with the criterion of min- 
imum PRD/CR can induce a stationary relationship 
among multi-level quantization scales. This property 
implies that multi-level quantization scales can be con- 
trolled with single variable. Conducted by this hypothe- 
sis, a 3-D polynomial curve fitting technique is then ap- 
plied for linear distortion program with respective to a 
generation variable QF. Following the use of MIT-BIH 
arrhythmia database [16], linear distortion characteristic 
of the new quantization scheme, which benefits fast con- 
vergence in reconstruction quality maintenance, is eva- 
luated. The experimental results of using untrained ECG 
signals also show that the GA-based quantization scheme 
can be independent of training data and improve average 
compression performance by 18.52% in comparing with 
the SPIHT scheme [14]. 

2. QUANTIZATION SCHEME OF 
RRO-NRDPWT-BASED ECG DATA 
COMPRESSION 

RRO-NRDPWT is an efficient DWT process developed 
for easily controlling reconstruction error with mini- 
mum-word-length fixed-point computation. The funda- 
mental architecture of RRO-NRDPWT-based ECG data 
compression system consists of three processes; i.e., 
RRO-NRDPWT, quantization, and lossless SPIHT en- 
coding. The quantization scheme with single variable for 
controlling quantization scales of octave frequency bands 
can be independent of signals and suitable for real-time 
application. A brief review of the system is given in this 
section. 

Let SJ denote a row vector involving N-point sampled 
ECG data with 2 JN   where  is referred to as 

the decomposition level. For , the non- 
recursive channel filter for the jth level decomposition 
can be defined with a 

0J 

0J j 

2 jN   matrix jA . In jA , the 
filter coefficients of two adjacent columns have a 2 j J - 
shift relationship in the vertical direction. By integrating 
the channel filters of all decomposition levels, a N N  
filter-band matrix  0 0A B

*
( 1) (, ,d d  

c
*

1 1  can be 
constructed, where 0  is a column vector consisting of 
constant elements. Using matrix A, the 1-D RRO-NRD- 
PWT can be represented with 
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where  denotes to round all the elements of vector 
X into the nearest integers, max  is the significance 
normalization factor of A, 

X「 」

jd  is a row vector consisting 
of 2 j  integer wavelet coefficients of the jth level, and 

*
0s  is a low-band coefficient of the terminate level. 
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unitary matrix where 
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The quantization scheme with generation variable QF 
can be defined by 
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where   X  denotes to truncate the elements of vector X 
into integers and  Fjc Q  is the normalized quan- 
tization scale of the jth level defined by 
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For inverse quantization, each retrieved datum will be 
compensated by half of the quantization scale, namely, 

   *
sign

*
d0.5j jjd d jc QF  ,       (4) 

where  jd  is the jth sub-band vector of  and d
 sign X  denotes the sign vector of X, e.g., sing([−5, 3]) 

= [−1,1]. The quantized data 
*
0  and 

*
jdS  will be en- 

coded with the differential pulse code modulation (DPCM) 
and lossless SPIHT scheme, respectively. 

3. OPTIMAL QUANTIZATION SCHEME 
DESIGN BASED ON GENETIC  
ALGORITHM 

GA invented by J. Holland [17] is a global searching me- 
thod commonly used for finding optimal solutions of 
multi-variable non-linear system. This method achieves 
global searching based on uniformly distributed popula- 
tion [18,19] of training data and finds solutions by three 
stratagems, i.e., selection, crossover, and mutation. Se- 
lection defines the criterion of candidate selection, cros- 
sover acts as a filter with clustering effect, and mutation 
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is used to prevent from a trap of local sink. For over- 
coming data dependency of the GA-based optimization, 
it is desirable to use diversified training data. For this 
purpose, 11 arrhythmia ECG signals (i.e., record number 
100, 101, 102, 103, 107, 109, 111, 115, 117, 118, and 119) 
saved in the MIT-BIH database are selected to build a 
training dataset. Each signal with 360 sampling rate and 
11 bits resolution involves 10-min length sampled data. 
The quantization scheme design consists of two stages. 
The first stage applies GA to find four sets of optimal 
quantization scales where each set involves 11 level 
quantization scales, i.e.,  

. Each set 
of multi-level quantization scales acts as a seed that will 
result in a PRD value for each signal during range [0.5%, 
7%]. The four seeds corresponding to four specified 

 (i.e., ) will be found 
with minimum PRD/CR being the selection criterion 
where CR = (bits of compressed signal)/(bits of original- 
signal). The compressed data file of each signal consists 
of a QF value and quantized ECG data. The former was 
encoded with the DPCM method and the latter was en- 
coded with lossless SPIHT scheme. The GA-based search- 
ing process is described in the following: 

        0 1 8 9, , , , , ()DCcp cp cp cp cp  

 9cp  9 16,8,4,and 2cp 



Objective: 
Find the values of cpDC(QF) and cpj( ), −8 ≤ j ≤ 0, 
for cp−9( ) = 2, 4, 8, and 16, respectively. 

Fitness function: Minimizing the ratio of PRD/CR. 

Initialization: 
Generate 100 data sets randomly with each set
defined as {cpDC( ), cp0( ), cp−1( ),···, cp−8( )}. 

Evolution Rules: 

Selection: 
Eighty sets with smallest PRD/CR are selected for
crossover in each iteration. 

Crossover: 

1) The choice of {cpDC( ),···, cpj( )} or { cpj−1( ),···,
cp−8( )} for crossover is random where the value of j
is also randomly chosen and the choosing  
probability is defined by 0.5. 
2) Crossover processing number for each iterationis 
defined as 40. 

Mutation: 
1) Mutation process is defined as exchanging the
values of cpi ( ) and cpj( ) when they are selected. 
2) The mutation probability is defined by 0.3. 

Termination: 
1) Iteration times should exceed 100. 
2) Select the set with maximum cp−8( ) and  
terminate the iteration. 

 
In the algorithm, a large mutation probability (i.e., 0.3) 

is selected for the desire of fast convergence. As shown 
in Figure 1, the  solutions of ECG signal 101 
have the trend of  for i . In fact, 
this trend is also true for all ECG signals. This trend im- 
plies that for a specific 

( )jcp
 cp  i jcp j

 9cp

cp

, GA search can always 
end at a globally optimal solution that selects one set of 
multi-level quantization scales    
with minimum PRD/CR. This result cannot be influ- 
enced by mutation probability. For the training dataset, 
44  values for each j will be found. Figure 2 

  ,0 8j j  

( )jcp

 

Figure 1. The GA-based cpj( ) of the ECG signal 101 for four 
specified. 
 

 

Figure 2. Curve fitting result of cp−7(QF) by using the train-
ing dataset. 
 

shows the 44 values of . 7

The GA solutions also imply that the criterion mini- 
mum PRD/CR can induce a stationary relationship 
among multi-level quantization scales, i.e.,  

( )cp

   i ij jcp cp  with constant ij . This property can 
rationalize the control of all j  with a single vari- 
able. Based on the hypothesis, the second stage is to cre- 
ate a 

 cp

 jcp  generation function by applying 3-D 
curve fitting technique. The 3-D coordinate system con- 
sists of three real number axes defined with PRD, CR, 
and  jcp , respectively. For simplicity, the generation 
function is approximated with 

  2
j j j jcp QF a QF b QF c    where QF being the 

control variable is defined with 2 2QF PRD CR  . 
For dealing with low PRD region, the curve fitting also 
involves two new sets of low CR case. One uses constant 

  maxj jcp nap c 
0PRD
, this case will introduce 11 CR 

values with   for the 11 ECG training signals. 
The other uses  j j . Combining the two cases, 
the training dataset will provide 66 3-D points for the 
curve fitting of each jcp . By using the least 
square error (LSE) method, the 10-level coefficients 

cp

,

nap

QF 

j ja b , and jc j for 0, , 9   can be found as fol- 
lows: 
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(5) 

Figure 2 illustrates the curve fitting result of  
. The quantization scales of 7cp QF   jcp QF  for 
 and  are depicted in Figure 3. 

This result shows that the proposed quantization scheme 
design method can effectively prevent from obtaining an 
exponential  growth in high CR region. 

0~ 9j   1~15QF 

 QFjcp

4. EXPERIMENTAL RESULTS 

In this section, compression performance and data de- 
pendency of the GA-based quantization scheme referred 
to as NRDPWT-GAar are studied. All experiments were 
performed on an IBM PC with Microsoft Windows 7, 
Intel Core i7 2.8 GHz CPU and 8 GB RAM. For com- 
pression performance comparison, 48 arrhythmia ECG 
signals in MIT arrhythmia database were used. Each 
signal involves 10-min length sampled data. Figure 4 
shows the average PRD-QF and CR-QF curves of 
NRDPWT-GA, both are approximately linear. In com- 
paring with the local optimal quantization scheme NR- 
DPWT-6t, [2] the NRDPWT-GA has smoother  jcp QF



 
curve in high CR region. On the other hand, the 
NRDPWT-6t has an exponential jcp  growth in 
high CR region. This improvement can result in NR- 
DPWT-GA with more linear distortion behavior, espe- 
cially for high CR case. By using 48 arrhythmia ECG 
signals, three wavelet based approaches are compared in 
Figure 5 where NRDPWT-GA with optimal quantization 
scale design can obtain the best compression perform- 
ance in both low and high CR regions. In comparing with 
SPIHT scheme, the compression performance can be 
improved by 12.26(%) and 10.13% for the two ranges 4 
≤ CR ≤ 12 and 14 ≤ CR ≤ 20, respectively. 

QF

Generally, data dependency can be an intrinsic prop- 
erty of GA-based approach. This property can lead to 
instable result in practical applications. For studying the 
data dependency effect of GA-based quantization scheme, 
a second training dataset comprising 8 ECG signals ran- 
domly selected from MIT-BIH ST change database was 
build. These signals were the records 301, 305, 310, 314, 
315, 317, 325 and 326 with each involving 10-min length 
sampled data. By applying the same training process of 
GA and 3-D curve fitting described in Section 3, a second 

 

Figure 3. The cpj(QF) values of the GA-based quantization 
scheme. 
 

 

Figure 4. Compression performance of the GA-based quanti- 
zation scheme for the 48 ECG signals in MIT arrhythmia 
database. 
 

 

Figure 5. Compression performance comparison of three 
wavelet-based approaches. 
 

GA-based quantization scheme referred to as NRDPWT- 
GAst is derived in Figure 6 where the robustness of ex- 
ponential-growth resistance in high CR region is also 
obvious. For a comparison of the two GA-based quanti- 
zation schemes, all the signals saved in arrhythmia data- 
base and ST change database were used. The former and 
later comprise 48 and 28 ECG signals, respectively. Each 
signal involves 15-min length sampled data. The evalua- 
tion results were shown in Figures 7-9 where both the 
two schemes can obtain approximately linear distortion 
results with very minor difference. The comparison im- 
plies that data dependency effect of GA-based quantiza- 
tion scheme can be almost neglected in practice. Figure 
8 shows that NRDPWT-GAar using arrhythmia signal is 
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Figure 6. The cpj(QF) values of NRDP-WT-GAst quanti- 
zation scheme. 
 

 

Figure 7. Compression performances of two GA-based quan- 
tization schemes by using MIT-BIH arrhythmia database. 

 

 

Figure 8. Compression performances of two GA-based quan- 
tization schemes by using MIT-BIH ST change database. 
 

 

Figure 9. Compression performance comparison of three 
wavelet-based approaches with untrained noisy ECG signals. 
 

slightly better than NRDPWT-GAst. An exploration us- 
ing untrained noisy signals (i.e., records 104, 107, 111, 
112, 115, 116,117, 118, 119, 201, 207, 208, 209, 212, 213, 

214, 228, 231, and 232) was also taken. Each signal con- 
tains about 1-min length sampled data. Three wavelet- 
based approaches were compared in Figure 9 where 
NRDPWT-GAar also can obtain the best compression 
performance. In comparing with SPIHT scheme, the 
compression performance can be improved by 6.19(%) 
and 27.85% for the two ranges 4 ≤ CR ≤ 12 and 14 ≤ CR 
≤ 20, respectively. 

Quantization scheme with linear distortion character- 
istic can not only obtain high compression performance, 
but also facilitate in reconstruction quality maintenance 
that can be fulfilled with a close-loop error control proc- 
ess [20]. For exploring the quality maintenance perform- 
ance of NRDPWT-GAar, the three ECG signals, records 
109, 117, and 232, were used. From Figure 4, an ap- 
proximately linear relationship between PRD and QF can 
be derived by LSE method as 

0.417 0.07717 0.4138PRD QF QF   . Applying this 
relationship into the linear QF prediction model used in 
the close-loop error control process can obtain the ECG 
data compression results shown in Figures 10-12, re- 
spectively. The three figures only demonstrated the first 
316 segments of each file where PRDT denotes the target 
PRD and T T 100%PRD PRD P   RD  is the fault 
tolerance of error control. Record 109 has a waveform 
with baseline wandering and slightly noise coupling. 
Figure 10 shows that a stable low bit rate (CR ≈ 20) can 
be obtained. The desired QF can be also stable and con- 
vergence speed is very fast, even for a suddenly violent 
rate change. The iteration times (ITs) of error control 
process are distributed in the dynamic range [1,3]. The 
two segment demonstrations of Figures 10(e) and (f) 
show that the clinical information including the ampli- 
tude and duration can be preserved well. Record 117 is a 
nice waveform ECG signal. Figure 10 shows that for 
violent QF changes, the convergence speed can be still 
fast. The dynamic range of ITs is [1,4]. The reconstructed 
signal with very low rate (CR ≈ 24) has slightly distor- 
tion at the boundary of segments. This can be overcome 
by reducing PRDT. As shown in Figure 12, record 232 is 
a distorted and noisy waveform ECG signal. Though 
both rate and QF are violently changed, the dynamic 
range of ITs can be maintained in [1,4]. This signal has 
poor PRD due to the smoothing effect of quantization 
process, but the reconstruction error is almost unobserv- 
able. 

5. CONCLUSION 

For wavelet-based ECG data compression, the problem 
of quantization scheme optimization was studied by us- 
ing two kinds of ECG signals and a GA search in this 
paper. The experimental results showed that GA-based 
quantization scheme can be inherent with the property of 
signal independency. Using a training set involving more 
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(a)                                             (b) 

     
(c)                                              (d) 

   
(e)                                      (f)                                      (g) 

MIT-BIH Record 109 

Figure 10. Performance demonstration of the proposed quantization scheme using the ECG signal of record 109 with PRDT = 5% 
and ε = 5%. 
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(a)                                               (b) 

      
(c)                                              (d) 

   
(e)                                      (f)                                      (g) 

MIT-BIH Record 117 

Figure 11. Performance demonstration of the proposed quantization scheme using the ECG signal of record 117 with PRDT = 3% 
and ε = 5%. 
 
diversified signals can obtained much better compression 
performance, however, this improvement can be so mi- 
nor. On the other hand, the quantity of training signals 

may be a more significant factor in overcoming signal 
dependency. Based on the study, a new quantization 
cheme with linear distortion characteristic was proposed  s   
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(a)                                                        (b) 

        
(c)                                                     (d) 

        
(e)                                                       (f) 

 
(g) 

MIT-BIH Record 232 

Figure 12. Performance demonstration of the proposed quantization scheme using the ECG signal of record 232 with PRDT = 7% 
and ε = 5%. 
 
for wavelet-based ECG data compression. This quantiza- 
tion scheme can be easily controlled with signal variable 
and facilitates the issue of reconstruction quality main- 
tenance. 
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