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ABSTRACT

L(2,1) -labeling number of the product and the join graph on two fans are discussed in this paper, we proved that

L(2,1) -labeling number of the product graph on two fans is /1(G) <A+3, L(2

ontwo fansis A(G)<2A+3.
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1. Introduction

Throughout this paper, we consider connected graphs
without loops or multiple edges. For a graph G,V (G)
and E(G) are used to denote the vertex set and edge
set of G,5(G) and A(G) denote the minimum de-
gree and the maximum degree of a graph G, respectively.
For a vertex veV (G), the neighborhood of v in G is
Ng (V)={ueV (G),uis adjacent to vin G}. Vertices in
Ng (V) are called neighbors of v, |NG (V)| denotes the
number of vertices in Ng (V). The other terminology
and notations are referred to [1].

For a given graph G, an integer k>0, an L(2,1)-
labeling of G is defined as a function
f:V(G)—>{0,1,2,---.k} such that |f(u)-f(v)[>2 if
uweE(G); and |f (u)-f (v)|21 if dg(u,v)=2,
where dg (u,v) =2, the distance of U and v, is the length
(number of edges) of a shortest path between U and v. the
L(2,1)-labeling number, denoted A(G), is the least in-
teger k such that G hasa L(2,1)-labeling.

The Motivated by the channel assignment problem in-
troduced by Hale in [2], the L(2,1) labeling have been
studied extensively in the past decade. In 1992, in [3]
Griggs and Yeh proposed the famous conjecture, for any
graph G,A(G)<A’.

Griggs and Yeh in [3] proved that the conjecture true
fop path, tree, circle, wheel and the graph with diameter
2, G. J. chang and David Kuo in [4] proved that A(G)<
A’ +A for any graph. Recently Kral D and Skrekovski
R in [5] proved the upper is A(G)<A’+A-1. Itis dif-
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,1) -labeling number of the join graph

ficult to prove the conjecture. Now, the study of L(2,1)-
labeling is focus on special graph. Georges [6,7] give
some good results. Zhang and Ma studied the labeling of
some special graph, giving some good results in [8-11].

In this paper, we studied the L(2,1)-labeling number
of the product and the join graph on two fans.

2. L(2,1)-Labeling Number of the Join
Graph on Two Fans

Definition 2.1 Let F, be a fan with m + 1 vertices
U, Uy, Uy, -+, Uy, in which d(uy)=m

Definition 2.2 Let G and H be two graphs, the join of
G and H denoted Gv H | is a graph obtained by starting
with a disjoint union of G and H, and adding edges join-
ing each vertex of G to each vertex of H.

Theorem 2.1 Let G=F,vF,, if m>4,n>4, then
A(G)<A+3.

Proof. In F, v F, , for arbitrary vertex u and v, such
that dg (u,v)<2,clearly A(G)<n+m+1.

Let k denote the maximum labeling number of F,

First, we give a L(2,1)-labeling of F, as follows,
f(v,)=0.

If j=1,2,---,n—=5,n—4,

( )—j+3 when j(mod4)=1
( ):j when j(mod4)=2,

v j+2 when j(mod4)=3,
f(vi)= (mod4)
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f(vj):j—l when j(mod4)=0
If n(mod4)=0, let
f(vos)=n, f(v,,)=n-2,
f(v,,)=n+Lf(v,)=n-1.
If n(mod4)=1, let
f(vos)=n-3, f(v,,)=n,
f(v,,)=n-2,f(v,)=n+1.
If n(mod4)=2, let
f(vos)=n-1, f(v,,)=n+1,
f(v,,)=n-3,f(v,)=n
If n(mod4)=3, let
f(vos)=n,f(v,,

f(v,,)=n-1L"f(v,)=n+1.

)=n-4,

Clearly, k=n+1.

Then we label the vertex of F, as follows,

If i=L2---,m=5m-4,
f(u,) max{f(ui)|i:1,2,- ,m}+2,
f(u)=k+i+3 when i(mod4)=1
f(u)=k+i when i(mod4)=2,
f(u)=k+i+2 when i(mod4)=3,
f(u)=k+i—-1 when i(mod4)=0.
If m(mod4)=0,
f(Ups)=k+m, f(u,_,)=k+m-2,

f(Up,)=k+m=+1,f(u
If m(mod4)=1, let
f(Ups)=k+m=3,f(u

m)=k+m-1;

mo ) =k+m,
f(Up,)=k+m=2,f(u,

If m(mod4)=2, let
f(ups)=k+m-1f(u
f(uy,)=k+m-3,f(u

If m(mod4)=3, let
f(uy,)=k+m,f(u

)=k+m+1;

mo ) =k+m+l,

m)=k+m;

mo ) =k+m—4,
f(Up,)=k+m—1f(u,)=k+m+1.

From above,
If m(mod4)=0, f(u,,) is the maximum number
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in F,,and f(u
f(u)=k+m+1+2=k+m+3
=n+1+m+3=n+m+4.

If m(mod4)=1, f(u,) is the maximum number in
Fo.and f(u,)=k+m+1, then

f(u)=k+m+1+2=k+m+3

=n+l+m+3=n+m+4.

n1)=K+m+1, then

If m(mod4)=2, f(u,,) is the maximum number
in F ,and f(u,,)=k+m+1,then

f(u)=k+m+1+2=k+m+3
=n+1+m+3=n+m+4.

If m(mod4)=3,f(u,) is the maximum number in
F..and f(u,)=k+m+1,then

f(u)=k+m+1+2=k+m+3
=n+l+m+3=n+m+4.

So f(u,) is the maximum number in G=F, v F,
and f(u))=n+m+4,and A(G)=n+m+1.

Obviously, fisa (A+3)-L(2,1)-labeling of G,

Then l(G)SA+3.

3. L(2,1)-Labeling Number of the Product
Graph on Two Fans

Definition 3.1 The Cartesian product of graph G and H,
denoted GxH , which vertex set and edge set are the
follows:

V(GxH)=V(G)xV(H)
={(uv)|ueV(G).,veV(H)

E(GxH) :{(u,v)(u',v')|v=v’ and
uu'eE(G)oru=u"andw' e E(H )}

Theorem 3.1 Let G=F, xF,, if 3<n<m<2n,

then A(G)<2A+3.
Proof. InF,,d (u,) =m, the other vertices
u;(1,2,---,m), In F,,d(v,)=n, the other vertices
Vj(jzlzzz"'an)’
V={Wij|Wij u Vv, ) lsiSm,ISan}

I’]

denote the vertex of G =F_ xF,, Obviously,
A(G)=m+n, for n>3.
We give a L(2,1) -labeling of G as follows, First, let

f(Wy)=0
f(w;)=2j,j=12.-.n
fwy)=2j+3j=12-.n,

We have the maximum labeling number is 2n + 3.
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Then let

f (WLM): f (Wiflj),(i =3,4,--,m, j=12,---,n)
f(w,)=f (W o). (i=34m j=1,2,--,n-1);
f(w,)=2n+2i+2,(i=12,-,m),

From above, 2n+2m+2 is the maximum labeling
number.

Finally, let f(w,,)=2n+2i+2,(i=12,--,m), Ob-
viously, 2n+2m+3 is the maximum labeling number
in these f (WO,O) =2n+2i+2,(i=1,2,---,m), since n <
m < 2n, then the maximum labeling number no more than
2n+2m+3,and A(G)=m+n,so 1(G)<2A+3.

REFERENCES

[11 J. A. Bondy and U. S. R. Murty, “Graph Theory with
Applications,” Macmillan, New York, 1976.

[2] W. K. Hale, “Frequency Assignment: Theory and Appli-
cations,” IEEE Proceedings, Vol. 68, No. 12, 1980, pp.
1497-1514. doi:10.1109/PROC.1980.11899

[3] J. R. Griggs and R. K. Yeh, “Labeling Graphs with a
Condition at Distance 2,” SIAM Journal on Discrete Ma-
thematics, Vol. 5, No. 4, 1992, pp. 586-595.
doi:10.1137/0405048

[4] G. J. Chang and D. Kuo, “The L(2,1)-Labeling Problem
on Graphs,” SIAM Journal on Discrete Mathematics, Vol.
9, No. 2, 1996, pp. 309-316.

Copyright © 2013 SciRes.

[10]

[11]

doi:10.1137/50895480193245339

D. Krél and R. A. Skrekovski, “Theorem about the Chan-
nel Asscgnment Problem,” SIAM Journal on Discrete
Mathematics, Vol. 16, No. 3, 2003, pp. 426-437.
doi:10.1137/S0895480101399449

J. P. Georges, D. W. Mauro and M. I. Stein, “Labeling
Products of Complete Graphs with a Condition at Dis-
tance Two,” SIAM Journal on Discrete Mathematics, Vol.
14, No. 1, 2000, pp. 28-35.
doi:10.1137/S0895480199351859

J. P. Georges, D. W. Mauro and M. A. Whittlesey, “Re-
lating Path Covering to Vertex Labelling with a Condi-
tion at Distance Two,” Discrete Mathematics, Vol. 135,
1994, pp. 103-111. doi:10.1016/0012-365X(93)E0098-O

S. M. Zhang and Q. L. Ma, “On List (2,1)-Labelling of
Some Planar Graphs,” Ars Combinatoria, Vol. 84, 2007,
pp. 231-241.

S. M. Zhang and Q. L. Ma, “Labelling Some Planar
Graphs with a Condition at Distance Two,” Journal of
Applied Mathematics and Computing, Vol. 24, No. 1-2,
2007, pp. 421-426.

S. M. Zhang and J. H. Wang, “L(p,q)-Labeling of Planar
Graph with High Maximum Degree,” Journal of Shan-
dong University, Vol. 42, No. 4, 2007, pp. 39-43.

S. M. Zhang and Q. L. Ma, “L(d,1)-Total Labeling of Ou-
terplannar Graphs,” Journal of Jinnan University, Vol. 20,
No. 3, 2006, pp. 258-260.

AM


http://dx.doi.org/10.1109/PROC.1980.11899
http://dx.doi.org/10.1137/0405048
http://dx.doi.org/10.1137/S0895480193245339
http://dx.doi.org/10.1137/S0895480101399449
http://dx.doi.org/10.1137/S0895480199351859
http://dx.doi.org/10.1016/0012-365X(93)E0098-O

