
Open Journal of Discrete Mathematics, 2013, 3, 127-129 
http://dx.doi.org/10.4236/ojdm.2013.33023 Published Online July 2013 (http://www.scirp.org/journal/ojdm) 

The Triangle Inequality and Its Applications in the 
Relative Metric Space* 

Zhanjun Su1, Sipeng Li1, Jian Shen2 
1College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, China 
2Department of Mathematics, Texas State University-San Marcos Texas State, San Marcos, USA 

Email: suzj888@163.com, sipengli@126.com, js48@txstate.edu 
 

Received January 10, 2013; revised April 20, 2013; accepted May 16, 2013 
 

Copyright © 2013 Zhanjun Su et al. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

Let C be a plane convex body. For arbitrary points , denote by , na b E ab  the Euclidean length of the line-segment 

. Let  be a longest chord of C parallel to the line-segment . The relative distance  between the 

points  and  is the ratio of the Euclidean distance between  and b  to the half of the Euclidean distance 

between  and . In this note we prove the triangle inequality in  with the relative metric , and apply 

this inequality to show that 
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1b 2 
 6 l P  , where  l P  is the perimeter of the convex polygon  measured in the 

metric . In addition, we prove that every convex hexagon has two pairs of consecutive vertices with relative 

distances at least 1. 
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We use some definitions from [1]. For arbitrary points 

, denote by ab the line-segment connecting the 
points a and b, by 

, na b E
ab  the Euclidean length of the 

line-segment ab, and by ab  the straight line passing 
through the points a and . Let 1 1  be a longest chord 
of C parallel to ab. The C-distance C  between 
the points  is defined by the ratio of 

b a b
 ,d a b

,a b ab  to 

1 1

1

2
a b

a

. If there is no confusion about , we may use  C

the terms relative distance between  and . Observe 
that for arbitrary points  the C-distance be-  

a b
, na b E

tween  and b  is equal to their   1

2
C C    

-dis-  

tance. Thus  ,Cd    is the metric of  whose unit  nE

ball is  1

2
C C   . We denote by n  the relative  

distance between two consecutive vertices of the regular 
-gon. It is clear that n 3 4 52, 5 1      , and 

6 1  . Doliwka and Lassak [1] proved that every convex 
pentagon has a pair of consecutive vertices with relative 
distance at least 5 . 

In this paper we first prove the triangle inequality with 
respect to the relative metric of a plane convex body. 
Then we apply this inequality to show that  6 8l P  , 
where  l P  is the perimeter of the convex polygon  
measured in the metric 

P
 ,d  P . In the last, we prove that 

every convex hexagon has two pairs of consecutive 
vertices with relative distances at least 1. 

For simplicity, if two lines pq  and rs  are parallel,  

we write pq rs . Denote by 1 2 nx x x  the polygon  

formed by the points 1 2, , , nx x x , and by  A P  the 
area of the polygon . A chord  of C  is called an  
affine diameter if there is no longer chord parallel to  
in . 

P pq
pq

C
Lemma 1 Let C be a plane convex body, and , ,x y z  

be arbitrary three points in . Then the triangle 
inequality 

2E
    d ,, ,C C Cd y z d x z x y   holds. *Su’s research was partially supported by National Natural Science 

Foundation of China (11071055) and NSF of Hebei Province (A2013-
205089).  
Shen’s research was partially supported by NSF (CNS 0835834, DMS 
1005206) and Texas Higher Education Coordinating Board (ARP 
003615-0039-2007). 

Proof. By the properties of affine transformation, we 
may assume that the triangle xyz  formed by the points 

, ,x y z  is a regular triangle. Let 1 1 2 2,x y x z , and 1 2  be 
the affine diameters of C parallel to xy, xz, yz re- 

z y
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spectively, and let 1 1 1 2 2 2 1 2 3, ,x y x z z y     .  
Since xyz  is a regular triangle, by the definition of 
relative distance, we need to prove the following 
inequality. 

3 1

1 1 1

2  
                  (1) 

Take the lines 1x u  and 2x v  through the points 1x  
and 2x , respectively, such that they are parallel to 1 2z y , 
where  (resp. ) is the intersection point of the lines u v

1x u  (resp. 2x v ) and 1 2y z . Denote by   the relative 
distance between the points 1x  and . (See Figure 1) 
Since 1 2  is an affine diameter of C , we obtain 

u
z y

3   and 

2 3 2 1 2 2

1 π 1 π
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2 3 2 3
A x z ux       (2) 

The following equality is obvious. 

 1 2 1 2 1 2

1 π
sin
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A x x y z              (3) 

By symmetry, we may assume without loss of gene- 
rality that 1 2x u x v . Then 

   2 1A x y u 1 1 1 1 3
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By (2), (3), and (4), 
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from which (1) holds and the proof is complete.  
Let  be a convex polygon. We denote by P  bd P  

the boundary of , and by P  l P
 

 the perimeter of P  
measured in the metric .  ,dP

Proposition 2 For arbitrary convex polygon , we 
have . 

P
 6 8l P 

From Theorem 2 in [2] we know that for every convex  

polygon P the perimeters of P and   1

2
P P   are  

equal in every distance space. Thus we may assume 
 

 

Figure 1. The figure of Lemma 1. 

without loss of generality that P is a centrally symmetric 
convex polygon. We take a point 1p  n there 
exists a point 

 bd P , the
 bd P

P
4p uch that 1 4p p  passes 

through the center of . And take the points  
 s

 2 3,p p b d P  such that    2 3 1 4

1
, ,

2P Pd p p d p p   

and 2 3 1 4p p p p . Then 1 2 3 4 5 6H p p p p p p  is an affine 
regular hexagon, where 5 6  are the antipodal points 
of 2 3 , respectively. It is clear that 

,p p
l H,p p   6 . Since 

the boundary of  is dissected into six parts by the 
vertices of 

P
H , we consider the part between 1  and 

 (the other five parts can be treated similarly). Let 

1 2  be the vertices of  between  and . 
(See Figure 2) Draw the line-segments  

. By Lemma 1, we get  

p

1p
6p

p v

, , , kv v v

1 1 1 2, ,p v

P 6p

1, p vk

     
     

1 6 1 6

1 1 1 1

, , , ,

, , ,

P k P k P

P k P k k P k

d p v d v p d p p

d p v d v v d p v 

 

  , ,
 

    
    

1 2 2 3 1 3

1 1 1 2 1 2

, ,

, , ,

P P P

P P P

d p v d v v d p v

d p v d v v d p v

 

 




, ,

.
 

Adding all these triangle inequalities, we obtain that  
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So we get    6 l H l P  . 
It is clear that we may circumscribe a parallelogram 
:Q efgh  about  with the minimal area such that P

 d P

2p
v

1 2 3, ,p p p
, ,ef fg gh

Q

4, p b
, he

p

 are the midpoints of the sides 
, respectively. By the properties of affine 

transformation we suppose without loss of generality that 
 is a square. Let 1 2  be the vertices of P  

between 1  and . Let iv , be the perpendi- 
cular projection of i  onto the line segment 

, , , nv v v
,1x i  n

gf , and let 

i ,1yv i n  , be the perpendicular projection of i  onto 
the line segment . (See Figure 3) According to Lem- 
ma 1, we obtain that 

v
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Figure 2. The figure of 6 = l(H) ≤ l(P). 
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Figure 4. Case 1. 
 

 

Figure 3. The figure of l(P) ≤ l(Q) = 8. 
 

Adding all these inequalities, we have  
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Figure 5. Case 2. 

,

a an
He

  

 

Similarly, we can consider the other parts of the poly- 
gon P between 2p and 3p p nd 4p , 4 d 1p . 

nce we have l P
 , 

 Q 
3  

8 . 
p  

 l
From Proposition 2 we obtain 
Corollary 3 Every convex hexagon has a pair of 

consecutive vertices with relative distance at least 1 (that 
is, 

Figure 6. Case 3. 
6 ).  

By the following Lemma [3], we give a stronger result 
than Corollary 3. 

then the result is clear, see (2) in Figure 5. Otherwise, 
since P and H have five points in common, the remaining 
vertex of H must be located inside one of the four 
triangular regions bounded by P and H. See (1) in Figure 
5. Since  is the midpoint of the side a xw  of P, we get 

 , f 

Lemma 4 Let C be a plane convex body. We can 
circumscribe a parallelogram P about C such that the 
midpoints of a pair of opposite sides of P belong to C. 

Theorem 5 Every convex hexagon has two pairs of 
consecutive vertices with relative distances at least 1. 

1Hd a
df

. Moreover, one of the segments  and 
 must be an affine diameter of 

ac
H , say , then we 

obtain that either 
df

 ,d e d 
P

Proof. Denote by H  the given convex hexagon. By 
Lemma 4, we can circumscribe a parallelogram  about P
H  such that the midpoints of the opposite level sides of 

 belong to P H . If H  is a degenerate hexagon, then 
the result is obvious. Hence we consider the following 
three cases. 

1H H

Case 3. Every side of  contains exactly one vertex 
of H. 

 or d e .  f, 1

There are two different configurations in this case, as 
shown in Figure 6. In (1) of Figure 6, since a and d are 
midpoints of the sides xw  and  of P , respectively, 
we conclude that 

yz
 ,d a b 1H 

a
 and H . In (2) 

of Figure 6, since  is the midpoint of the side 
 ,e Case 1. The parallelogram P has two sides, each of 

which contains exactly two vertices of H . 
1d d

xw  of 
, we obtain that P  ,b 1Hd a  and . The 

proof is complete. 
 , f 1Hd aThis case contains two different configurations, as 

shown in Figure 4. We first consider (1) in Figure 4. 
Since the segment  is an affine diameter of ac H , we 
get . By Lemma 1, we obtain   ,Hd a c 

  , ,d a b d b
2
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