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ABSTRACT 

In this paper a class of large supergames, i.e., infinitely repeated games played by many players are studied. The players 
located on the vertex set of planar rectangle lattice play several basic games with his neighbors. The basic game is 
two-person prisoners’ dilemma game with asymmetric payoffs. Under the conditions of the pre-specified updating rules 
and the transition probabilities, the relevant stochastic process of strategy evolution forms a Markovian process. The 
simulation results about the long-run behavior are provided. 
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1. Introduction 

In a series of our previous works we have investigated a 
class of large Ising-type supergames, i.e., infinitely re-
peated games played by (infinitely) many players located 
on networks. In these stylized class of supergames, game 
players are located on the vertex set of planar rectangle 
lattice or trees (see [1,2]). Each player plays several basic 
games with his neighbors. The basic game is two-person 
Ising-type game with symmetric payoffs. Under the con-
ditions of the pre-specified updating rules and the transi-
tion probabilities i.e., these relevant stochastic process of 
strategy configuration given, the formula of invariant 
measures which represent the long-run equilibrium plays 
are obtained. The phase transition phenomena are discov-
ered. 

In this work we extend our previous work to prisoners’ 
dilemma game with asymmetric payoffs in stead of 
Ising-type game with symmetric payoffs. There has been 
many research works on prisoner’s dilemma games (see 
[3]) and for evolutionary prisoner’s dilemma games (for 
example, see [4,5]). In this work, we assume that each 
player plays several two person prisoners’ dilemma 
games only with her neighbors, in each and every period 
of discrete times. Players change their strategy simulta-
neously at every period of time. In section 2, we offer the 
structures of planar rectangle lattices and the formulation 
of the class of prisoners’ dilemma supergames by offer-
ing the ingredients needed. In section 3, we study a spe-
cial dynamic supergame with basic two person prisoners’ 
dilemma game with asymmetric payoffs. The theoretic 
analysis is difficult. So we provide simulated results to 

pursue the limiting behavior of the dynamics.  Section 4 
is the conclusion, in which some further research direc-
tions are mentioned. 

2. Supergames on Planar Rectangle Lattices 
Based on Basic Two Person Prisoners’  
Dilemma Games 

The players: We assume that players are located on the 
vertex sites of a planar rectangle lattice (see Figure 1) 

( , )G V E , where V is the vertex set and E the edge set 
of the lattice. We also assume that all the players are 
identical. 

Neighborhood: A neighborhood system  
is a collection of nonempty subsets of the vertices of V 
such that (i) i does not belong to  for all i

{ , }iN N i V 

ViN  ; (ii) 

ji N  if and only if ,ij N  for all   is called 
the neighborhood of i. We define the set 

, ;V iN
{ }i iW N i

i j
  . 

In this work we only consider the following structure of 
neighborhood. The structure of neighboring sites of the 
origin (0,0)o   is given by  
 

 

Figure 1. Planar rectangle lattice and neighborhood struc-
ture. 
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{ (1,0),(-1,0),(0,1),(0,-1)}oN   

(see Figure 1). This means that each vertex has 4 nearest 
neighboring vertices. 

Prisoners’ dilemma game: The basic game we study in 
this work is two person prisoners’ dilemma game (PDG) 
which is defined in its classic form: This game is played 
by two players. We assume that each player has only two 
choices of strategies which may be identified as { , }A C D . 
Where C represents to cooperate and D represents defect. 
At any run of dynamic games, if both players choose C, 
they get a pay-off R each; if one player chooses D while 
the other chooses C, the defector player gets the biggest 
pay-off T, while the other gets S; if both players defect, 
they get pay-off P. We can write the payoff in the matrix 
form: 

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

Q C C Q C D R R S T

Q D C Q D D T S P P

  
   
  

Q




  (1) 

where the pay-off values must satisfy the inequalities 

  2 .T R P S and R S T      

For more about PDG, readers may refer [3-5]. 
Stage games: In our class of supergames, some stage 

games are played over discrete time  At 
each discrete time every player plays four 2-strategy 2- 
person prisoners’ dilemma games simultaneously with 
his neighbors. At the end of each game, player  receives 
payoff  if he plays strategy y while his 
neighbor  plays strategy 

{0,1,2, }.i 

i
( , )ij jQ y x
j jx ; so his total payoff from 

playing strategy y is the sum of the payoffs received from 
playing y against each of his neighbors. Then player i 
may revise his strategy from y to z with probability 

    ( | ( , ))

1 1
exp ( , ) ( , )

|| ||

1 1
exp ( , )

' || ||

i

i

i

ij j ij j
j Ni

ij j
j Ni

p z i y

Q z x Q y x
N

Q z x
N











   
    
  





x

 
  (2) 

where   and '  are normalization factors to make  

( | ( , )) 1i
z A

p z i y


 x              (3) 

The global updating rule is synchronous, i.e., all play-
ers change their strategies simultaneously at the same 
time. 

The dynamics of a supergame is characterized by a 
stochastic process which is called strategy evolution 
process (SEP). Technically, the SEP for a large super-
game is a Markov chain whose state at time t is denoted 
by ,{ ;t t i }X i V X . It takes value over 

{ , }V V
t A C D      

,{ ; }t t ix i V x  is the realization of tX . Equivalently 
he state of SEP at time y a probability 

distribution t

we may model t t b
  on VA . Suppose that the configuration 

1tx  determ s the ategy of player i at time t with 
ability (called local transition probability): 

, 1 , 1,( | ) ( | : }i t i t i t i t j ip x p x x j W 

ine
prob

 str

 x        (4) 

Note that 

,

, 1,| ; ) 1      
t i

i t i t j i
x

x j W for all i V(p x         (5) 

Let be the global one-step transition prob-

)j W

( )P y | x  
abilities from x  to y . Then for Synchronous updating 
rule, the global transition probabilities of the SEP are 
defined by 

P 1 , 1,( ) ( | :t t i t i t j i
i V

p x x 


 x | x      (6) 

The global transition probabilities (6) defines a dis-
crete-time Markov process on the configuration space 

VA . Given a measure 1t   on the configuration 1tx  
defines a probability m sure 1=t t(6) ea    P on tx . 

( ) ( ) )d d P  x x      1 1 1( |t t t t t td  x x   (7) 

We say that a measure   is stationary 
va

or time in-
riant if  = P. We are interested in existence and 

uniqueness f the invariant measures under the above 
mentioned condition, i.e., the ergodicity and reversibility 
of the SEP. In certain cases there may exist multiple in-
variant measures. This phenomenon is called phase tran-
sition. The following result is well known. 

Theorem 3.1: The invariant measures 

 o

for the time 
ev

ous updating case, to find the invari-
an

3. Simulation Result of the Limiting  

In e report the simulation results for exam-



We consider the finite sub-lattice with 

olution form a nonempty convex set. 
Proof: see [6]. 
For the synchron
t measure analytically is quite difficult. So in this pa-

per we focus on the numerical simulation which shows 
interesting behavior. The detail is given in the next sec-
tion. 

Behavior 

 this section w
ining the limiting behavior of dynamic supergames de-
scribed in the previous section. For convenience, we set 
the following payoff matrix 

( 1, 1  ) ( 8,0)

(0, 8) ( 5, 5)


     

Q  

40 40  verti-
ce The los and 3 different boundary conditions. cal and 
global transition probabilities are given by (2) and (6), 
respectively. We use white color to represent D strategy 
state, and black color the C strategy state. For different which is called configuration space of the SEP at time t. 
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value of parameter  , we simulate the dynamics of 
evolution 500 steps. r simplicity, we only report the 
following three cases. The dynamic percentage of write 
vertices and the final state are provided via graphs. 

1) Case 1. 0

Fo

   
The change of every player’s strategy is independent 

of the history of his own and his neighbors’ past strate-
gies. So this case is not of interest. 

2) Case 2. 1   
i) The whit dae boun ry conditions: (Figure 2) 

4) 
ii) The black boundary conditions: (Figure 3) 
iii) The periodic boundary conditions: (Figure 
3) Case 3. 3   
i) White bo y condundar itions: (Figure 5) 

7) 
 

ii) Black boundary conditions: (Figure 6) 
iii) Periodic boundary conditions: (Figure 

 
(a) 

 
(b) 

Figure 2. (a)   1  
ercen

case w hite boundary conditions: ith w

the dynamic p tage of write vertices; (b)   1  case 
with white boundary conditions: the final co ation nfigur

 
(a) 

 
(b) 

Figure 3. (a)   1  
ercen

case w lack boundary conditions: ith b

the dynamic p tage of write vertices; (b)   1  case 
with black boundary conditions: the final configuration 
after 500 steps of evolution. after 500 steps of evolution. 
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(a) 

 
(b) 

Figure 4. (a)   1  
mic p

case w  periodic boundary co -ith ndi

tions: the dyna ercentage of write vertices; (b)   1
case with periodic boundary conditions: the final configura-
tion after 500 steps of evolution. 

 

 

 
(a) 

 
(b) 

Figure 5. (a)   3  
ercen

case w hite boundary conditi ns: ith w o

the dynamic p tage of write vertices; (b)   3  case 
with white boundary conditions: the final configuration 
after 500 steps of evolution. 

 
(a) 

 
(b) 

Figure 6. (a)   3  
ercen

case w lack boundary conditio s: ith b n

the dynamic p tage of write vertices; (b)   3  case 
with black boundary conditions: the final configuration 
after 500 steps of evolution. 
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From the above simulation result, we can see that for 
small value of   ( 0  ), the dynamic percentage of 
white vertices approaches to 50%, while for large value 
of   ( 0  ) the dynamic percentage of white vertices 
approaches to 100%. In other word, the final configura-
tion of SEP will approach to the sole state with all white 
color. This means that all players approach to defect. The 
greater the  , the faster the convergence. So we con-
jecture that there exists a critical value of   denoted by 

c  such that for 0 c    and c   the limiting 
behavior of the dynamic supergames are ifferent. For 
0 c

 d
   cases, the dynamic percentages of white ver-

tices approache to 50%. While for c


   cases, the 

dynamic percentages of white vertices approache to 
100%. To find the exact value of c  is also of interest. 
But the problem to prove these confirmations and con-
jecture theoretically remains open. 
 

 
(a) 

 
(b) 

Figure 7. (a)   3  

ercen

case with periodic boundary conditions: 

the dynamic p tage of te vertices; (b) wri   3  case 
with periodic boundary conditions: the final configuration 
after 500 steps of evolution. 

4. Conclusions 

We study the dynam
rectangle lattice and 

ic prisoners’ dilemma supergame on 
provide some interesting simulation 
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