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ABSTRACT 

The mixed spin-2 and spin-5/2 Ising ferrimagnetic system with different anisotropies ( AD z J )  for the spin-2 and 

( ) for the spin-5/2 is studied by the use of the mean-field theory based on the Bogoliubov inequality for the free 

energy. First, the ground state phase diagram of the system at zero temperature is obtained on the 

BD z J

( ),A BD z J D z J  

, different kinds of phase diagrams are achieved by changing the temperature and the values of the 
single ion anisotropies 
plane. Topologically

AD z J  and BD z des sec r transition lines, first order phase transition lines 

terminating at tricritical points, are found. The existence and dependence of a compensation temperature on single-ion 
anisotropies is also investigated. 

J . Besi ond-orde
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1. Introduction 

In the last two decades, much attention has been paid to 
the study of the magnetic properties of two-sublattice 
mixed-spin ferrimagnetic Ising systems, because they are 
well adapted to consider some types of ferrimagnetism, 
namely the molecular-based magnetic materials [1-3] 
which have less translational symmetry than their single- 
spin counterparts since they consist of two interpenetrat-
ing sublattices and have increasing interest. In a ferri-
magnetic material, the different temperature dependences 
of the sublattice magnetizations raise the possibility of 
the existence of a compensation temperature: a tempera-
ture below the critical point where the total magnetiza-
tion is zero [4]. This interesting behaviour has important 
applications in the field of thermomagnetic recording [5, 
6]. For this reason, in recent years, there have been many 
theoretical studies on the magnetic properties of systems 
formed by two sublattices with different spins and with 
different crystal field interactions. 

One of the earliest and simplest of these models to be 
studied was the mixed-spin Ising system consisting of 
spin-1/2 and spin-S (S > 1/2) in a uniaxial crystal field. 

The model for different values of S (S > 1/2) has been 
investigated by acting on honey-comb lattice [7-9], as 
well as on Bethe lattice [10,11]), mean field approxima- 
tion [12], effective field theory with correlations [13-17], 
cluster variational theory [11], renormalization-group tech- 
nique [18] and Monte-Carlo simulation [19-21]. 

It should be mentioned that the effects of different 
sublattice crystal-field interactions on the magnetic prop- 
erties of the mixed spin-1 and spin-3/2 Ising ferromag- 
netic system with different single-ion anisotropies have 
been investigated with the use of an effective field theory 
[22,23], mean field theory [24], a cluster variational me- 
thod [25] and Monte Carlo simulation [26]. Recently, 
The attention was devoted to the high order mixed spin 
ferrimagnetic systems (mixed spin-3/2 and spin-2 ferri- 
magnetic system mixed spin-2 and spin-5/2 ferrimagnetic 
system and mixed spin-3/2 and spin-5/2 system) in order 
to construct their phase diagrams in the temperature- 
anisotropy plane and to consider their magnetic proper- 
ties. Bobak and Dely investigated the effect of single-ion 
anisotropy on the phase diagram of the mixed spin-3/2 
and spin-2 Ising system by the use of a mean-field theory 
based on the Bogoliubov inequality for the free energy 
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[27]. Albayrak also studied the mixed spin-3/2 and spin-2 
Ising system with two different crystal-field interactions 
on Bethe lattice by using the exact recursion equations 
[28]. Bayram Deviren et al. have used the effective field 
theory to study the magnetic properties of the ferrimag- 
netic mixed spin-3/2 and spin-2 Ising model with crystal 
field in a longitudinal magnetic field on a honeycomb 
and a square lattice [29]. We should mention that an 
early attempt to study the mixed-spin-2 and spin-5/2 sys- 
tem on a honeycomb lattice was made by Kaneyoshi and 
co-workers [30] within the frame work of the EFT. Na- 
kamura [31,32] applied Monte Carlo (MC) simulations to 
study the magnetic properties of a mixed spin-2 and 
spin-5/2 system on a honeycomb lattice. Li et al. [33, 34] 
studied the magnetic properties of the mixed spin-2 and 
spin-5/2 system on a layered honeycomb lattice by a 
multisublattice green-function technique to investigate 
the magnetic properties of a mixed  

( ) ( )2 4 2 1AFe Fe C O A N -C H , 3,5n nn nΙΙ ΙΙΙ
+ = = 3

 and to 
consider the compensation behaviour of the system. Wei 
and co-worker [35] examined the internal energy, spe-
cific heat and initial susceptibility of the mixed spin-2 
and spin-5/2 ferrimagnetic system with an interlayer 
coupling by the use of the EFT with correlations. Albay-
rak [36] studied the critical behaviour of the mixed spin- 
2 and spin-5/2 Ising ferrimagnetic system on Bethe lat- 
tice. And he also examined the critical and the compen- 
sation temperatures of the mixed spin-2 and spin-5/2 
Ising ferrimagnetic system on Bethe lattice by using the 
exact recursion equations. Keskin and Ertas [37] investi- 
gated the Existence of a dynamic compensation tem- 
perature of a mixed spin-2 and spin-5/2 Ising ferrimag- 
netic system in an oscillating field. 

In this paper, we studied the effects of two different 
single-ion anisotropies in the phase diagram and in the 
compensation temperature of the mixed spin-2 and spin- 
5/2 Ising ferrimagnetic system within the theoretical frame- 
work of the mean-field theory and we found some out- 
standing features in the temperature dependences of total 
and sublattice magnetizations. 

The outline of this work is as follows. In Section 2, we 
define the model and present the mean-field theory based 
on the Bogoliubov inequality for the Gibbs free energy 
and then, we describe a Landau expansion of the free 
energy in the order parameter. In Section 3, we present 
the results and the discussion about the phase diagrams  

and compensation temperature for various values of the 
single-ion anisotropies, as well as the temperature de-
pendences of the magnetizations in some particular cases. 
Finally, in Section 4, we present our conclusions. 

2. The Model and Calculation 

We consider a mixed Ising spin-2 and spin-5/2 system 
consisting of two sublattices A and B, which are arranged 
alternately. The sublattice A are occupied by spins i , 
which take the spin values of , while the sublat-
tice B are occupied by spins 

S
2, 1,0± ±

jS , which take the spin 
values of 5 2, 3 2,1 2.± ±  In each site of the lattice, 
there is a single-ion anisotropy ( A  in the sublattices A 
and 

D

BD  in the sublattice B) acting in the spin-2 and 
spin-5/2. The Hamiltunian of the system according to the 
mean-field theory is given by 

( )
( ) ( )2 2

,

A B A B
i j A i B j

i j

H J S S D S D S= − − −   ,   (1) 

where the first summation is carried out only over near-
est-neighbor pairs of spins on different sublattices and J 
is the nearest-neighbour exchange interaction. 

The most direct way of deriving the mean-field theory 
is to use the variation principle for the Gibbs free energy, 

( ) ( )0 0 0 0
G H G H H H≤ Φ ≡ + − ,        (2) 

where  is the true free energy described by Ham-
iltonian given in the relation (1), 

 
is the free 

energy described by the trial Hamiltonian 0

( )G H
( )0G H

H  which 
depends on variational parameters and 

0  
denotes a 

thermal average over the ensemble defined by 


0H . 
Depending on the choice of the trial Hamiltonian, one 

can construct approximate methods of different accuracy. 
However, owing to the complexity of the problem, we 
consider in this work the simple choice of 0H , namely: 

( )

( )

2

0

2
,

A A
A i A i

i A

B B
B j B j

j B

H S D S

S D S

γ

γ

∈

∈

 = − +  

 − +  




          (3) 

where Aγ  and Bγ  are the two variational parameters 
related to the molecular fields acting on the two different 
sublattices, respectively. Through this approach, we found 
the free energy and the equations of state (sublattice 
magnetization per site  Am

 

( ) ( ) ( ) ( )1
ln 1 2exp 4 cosh 2 2exp cosh

2

1 25 5 9 3 1 1
ln 2exp cosh 2exp cosh 2exp cosh

2 4 2 4 2 4 2

1 1 1
,

2 2 2

A A A A

B B B B B

A B A A B B

g D D
N

D D D

zJm m m m

β βγ β βγ
β

β βγ β βγ β β
β

γ γ

Φ −= = + +  

           − + +                       

− + +

Bγ 
     (4) 
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where 
1

,
B

,g N
N k T

βΦ= =  is the total number of sites of the lattice and z is the coordination number. 

The sublattice magnetization per site  and Am Bm  are defined by 
0

A
A im S=  and 

0

B
B jm S= , thus 

( ) ( ) ( )
( ) ( ) ( ) ( )

2sinh 2 xp 3 sinh

cosh 2 exp 3 cosh 0.5exp 4
A A A

A
A A A A

D
m

D D

βγ β βγ
βγ β βγ β

+ −
=

+ − + −
e

                        (5) 

and 

( ) ( )

( ) ( )

5 3
5sinh 3exp 4 sinh exp 6 sinh

1 2 2
5 32 cosh exp 4 cosh exp 6 cosh
2 2 2

B B B B

B

B B B B

D
m

D D

βγ β βγ βγ βγ

βγ β βγ β βγ

      + − + −           =
      + − + −            

1
2
1

B

B

 .               (6) 

 
Now, by minimizing the free energy (4) with respect 

to Aγ  and Bγ , we obtain 

,A B BzJm zJmAγ γ= = .            (7) 

The mean-field properties of the present model are 
then given by Equations (4)-(7). Since the Equations (5)- 
(7) have in general several solutions for the pair , 
the stable phase will be the one which minimizes the free 
energy. When the system undergoes the second-order 
transition from an ordered state , to the 
paramagnetic state A B , this part of the 
phase diagram can be determined analytically. 

( ),A Bm m

( )0≠0,A Bm m≠
)0=( 0,m m=

Because the magnetizations A  and m Bm  are very 
small in the neighborhood of second-order transition  

point, we can expand Equations (4)-(6) to obtain a Lan-
dau-like expansion. 

(2 4 6 8
0 A A A A )g g am bm cm O m= + + + + ,         (8) 

where the expansion coefficients are given by 

( )(0

1
ln 1

2 A A B B Bg X Y X Y
β

= − + + + + )Z   ,   (9) 

2 2 4
2

1 2 1

1

2 4 8 32

t t t
a a a a

β 1b
 

= − − 
 

,            (10) 

4 3 2
2
1 1 2 1 2 3

1

2 768 192 96

t t t
b a c c a a

β
c

 
= + + 

 
,      (11) 

 

( ) ( )
74 8

5 2 3 252 2
4 5 2 1 3 2 1 4 1 2 6

21 6
3 3

2 11520 18423 7680 18432 245760

ca t ct t
c c c t c a a a a a a a

tβ
   = + + − − + − −        

c       (12) 

 
with 

1 2
1

2 1

9 25
,

1

R R
a

R R

+ +=
+ +

 2

4
,

1
A A

A A

X Y
a

X Y

+=
+ +

  

1 2
3

1 2

81 625
,

1

R R
a

R R

+ +=
+ +

 4

16
,

1
A A

A A

X Y
a

X Y

+=
+ +

 

1 2
5

1 2

729 15625
,

1

R R
a

R R

+ +=
+ +

 6

64
,

1
A A

A A

X Y
a

X Y

+=
+ +

 

1

25 9
,B B B

B B B

X Y Z
b

X Y Z

+ +=
+ +

 2

625 81
,B B B

B B B

X Y Z
b

X Y Z

+ +=
+ +

 

3

15625 729
,B B B

B B B

X Y Z
b

X Y Z

+ +=
+ +

  

( )
3

2
2 1 33 ,

2

t
c a a= −  (

2
2 2

3 1 3 13 4 12
4

t
c b a a b= + − − )2 ,  

( )
2

4 1 2 1 215 30 ,
4

t
c b b b b= − − −  

( )
3

3
5 5 1 330 15 ,

4

t
c a a a a= + −

( )( )4
36 6 2

6 1 2 4 1 6 1 215 30 ,
12

t
c a a a a a a a= − −  

where 

( )2exp 4 ,A AX Dβ=  ( )2exp 25 4 ,B BX Dβ=  

( )2exp ,A AY Dβ=  ( )2exp 9 4 ,B BY Dβ=  

( )2exp 4 ,B BZ Dβ=  , ( )1 2exp 4 AR Dβ= −

( )2 2exp 6 AR Dβ= − . 

In this way, critical and tricritical points are deter-
mined according to the following routine; 

1) Second-order transition lines when a = 0 and b > 0; 
2) Tricritical points when a = b = 0, and c > 0; 
3) The first-order transition lines are determined by 

comparing the corresponding Gibbs free energies of the 
various solutions of Equations (5) and (6) for the pair 

 Even so, we have also checked that c > 0 in 
all T, DA, DB space. The critical behaviour is the same for 
both ferromagnetic (J > 0) and ferrimagnetic (J < 0) 
systems, because the coefficients a, b and c are even 

( ,A Bm m ).

1  

Copyright © 2013 SciRes.                                                                               OJAppS 



F. ABUBRIG 273

functions of J. On the other hand, the total magnetization 
per site. 

(1

2 A B )M m m= +             (13) 

and the signs of sublattice magnetizations mA and mB are 
different, therefore, a compensation temperature  

 at which the total magnetization is equal to 
zero may be exist in the system, although  and 

. In our paper we shall prove whether the present 
mixed-spin system can exhibit a compensation point or 
not. 

(k k cT T T<

0Bm ≠

)
0Am ≠

3. Results and Discussions 

3.1. Phase Diagrams 

The ground-state phase diagram is easily determined 
from Hamiltonian (1) by comparing the ground-state 
energies of the different phases and is shown in Figure 1. 
At zero temperature, we find six phases with different 
values of { }, , ,A B A Bm m q q , namely the ordered ferri-
magnetic phases 

1

5 25
2, , 4,

2 4
O

 = − 
 

, 2

3 9
2, , 4, ,

2 4
O

 = − 
 

 

3

1 1
2, , 4, ,

2 4
O

 = − 
 

 4

5 25
1, ,1, ,

2 4
O

 = − 
 

 

5

3 9
1, ,1, ,

2 4
O

 = − 
 

 6

1 1
1, ,1,

2 4
O

 = − 
 

, 

and three disordered phases 

1

25
0,0,0,

4
D

 =  
 

, 2

9
0,0,0,

4
D

 =  
 

, 3

1
0,0,0,

4
D

= 






, 

where the parameters  and Aq Bq  are defined by: 
 

 

Figure 1. Ground-state phase diagram of mixed spin-2 and 
spin-5/2 Ising ferrimagnetic system with the coordination 
number z and different single-ion anisotropies DA and DB. 
The nine phases: ordered O1, O2, O3, O4, O5, O6 and disor-
dered D1, D2, D3 are separated by lines of first-order transi-
tions. 

2A
A iq S= , 

2B
B jq S=  

3.2. Temperature Phase Diagrams 

In Figures 2 and 3, the phase diagrams of the mixed 
spin-2 and spin-5/2 Ising ferrimagnetic system are shown 
in the ( ),A B cD z J k T z J  and ( ),B B cD z J k T z J

 
planes for some selected values of BD z J  for spin-5/2 
and AD z J  for spin-2, respectively.

 
The solid and 

light dotted lines are used for the second and first-order 
transition, respectively, the heavy dashed curve repre-
sents the positions of tricritical points. The second-order 
phase transition lines are easily obtained from Equations 
(10) and (11) by setting a = 0 and b > 0. 

The tricritical points (the critical points at which the 
phase transitions change from second to first order) are 
determined from Equations (10) and (11) by setting a = b 
= 0, however, the first-order phase transitions must be 
determined by comparing the corresponding Gibbs free 
energies of the various solutions of (5) and (6) for the 
pair . ( ),A Bm m

In Figure 2, we note that the value of the critical tem-
perature increases when BD z J  and AD z J  in-
creases. Above each second-order lines the system is in 
the paramagnetic state, while below them is in the ferri-
magnetic state. We note that the system gives only sec-
ond-order phase transitions (solid lines) for all the values 
of 0.4661AD z J > −  and the phase diagram is topo-
logically equivalent to that of the spin-5/2 Blume-Capel 
model which does not include any tricritical point. 

For the values of 2.3315 0.4661AD z J− ≤ ≤ −  the 
system includes second-order phase transition lines (solid 
lines) at higher temperatures, first-order phase transition 
lines (light dotted lines) at lower temperatures and a 
curve of tricritical (heavy dashed lines) points separates  
 

 

Figure 2. Phase diagram in the (DB, T) plane for the mixed- 
spin Ising ferrimagnet with the coordination number z, 
when the value of DB/z|J| is changed. The solid and dotted 
lines, respectively, indicate second and first-order phase 
transitions, while the heavy dashed line represents the posi-
tions of tricritical points. 
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the second and the first-order critical lines. 
When 2.5 2.3315AD z J− < < − , the system gives 

only first-order phase transition lines. 
In Figure 3, the phase diagrams of ( )B ck T z J  ver-

sus AD z J  are shown for selected values of BD z J  
From this figure, it is clear that in regions of high tem-
peratures, for all positive or negative values of, and for 
any value of BD z J , the phase diagram shows only 
second-order phase transitions. 

When 1.4650BD z J ≥ , all the second-order lines 
end in the same tricritical point given by  

( ) ( )3, 2.3315,1.1360A B cD z J k T z J = −  and when  

0.8450BD z J ≤ − , all the second-order lines end in the 
same tricritical point given by ( 3,A B cD z J k T z J =)

)
 

. From this figure, we also note that 
for 
( 0.4661,0.2272−

BD z J → +∞ , the mixed spin Ising system behaves 
like a two-levels system since the spin-5/2 behaves like 

5 2B
jS = ±  and the coordinates ( )3,A B cD z J k T z J  

of the tricritical point are . ( )2.3315,1.1360−
On the other hand, for BD z J → −∞ , the  

5 2B
jS = ±  and 3 2B

jS = ±  states are suppressed and 
the system becomes equivalent to mixed spin-1/2 and 
spin-2 Ising model with tricritical point located at  
( ) (3, 0.4661,0.2272A B cD z J k T z J = − ) . For this rea-
son, the coordinates of the tricritical point in the limit of 
large positive BD z J  are five times higher than those 
for large negative BD z J . 

3.3. Magnetization Curves 

Thermal behaviour of the sublattice magnetizations A  
and 

m

Bm  are obtained by solving the coupled Equations. 
(5) and (6). The results are depicted in Figure 4 for the 
system with 1.0AD z J = , when the value of BD z J  
is changed from 0.45BD z J = −  to −1.05. Notice that 
the selection of BD z J  corresponds to the crossover 
from the 1  phase to the 2  phase and from the 2  
to the 3  phase (see the ground-state phase diagram in 
Figure 1). Therefore, the ground state is always ordered 
and Figure 4 shows that the system undergoes only the 
second-order phase transition, because the sublattice mag- 
netizations go to zero continuously as the temperature 
increases. 

O O O
O

As shown in Figure 4, when 0.45BD z J = −  (close 
to the boundary between the ordered-phase 1  and the 
ordered phase 2  in the ground-state phase diagram), 
the temperature dependences of mB may exhibit a rather 
rapid decrease from its saturation value at T = 0 K. The 
phenomena is further enhanced when the value of 

O
O

BD z J  approaches the boundary. At 0.5AD z J = −  
and for , the saturation value of mB is , 
which indicates that in the ground state the spin configu-
ration of 

0 KT = 2.0Bm =

B
jS

 
in the system consists of the mixed state; 

in this state half of the spins on sublattice B are equal to  

 

Figure 3. Phase diagram in the (DA, T) plane for the mixed- 
spin Ising ferrimagnet with the coordination number z, 
when the value of DB/z|J| is changed. The solid and dotted 
lines, respectively, indicate second and first-order phase 
transitions, while the heavy dashed line represents the posi-
tions of tricritical points. 
 

 

Figure 4. Thermal variations of sublattice magnetizations 
mA, mB for the mixed-spin Ising ferrimagnet with the coor-
dination number z, when the value of DB/z|J| is changed for 
fixed DA/z|J| = 1.0. For one curve (DA/z|J|, DB/z|J|) = (−0.8, 
−0.3). 
 
+5/2 (or −5/2) and the other half are equal to +3/2 (or 
−3/2). Note that this mixed state persists as long as 

0.5BD z J = −  and 0.5AD z J > − . 
In this case, the total magnetization for the ferrimag- 

netic system is  at , and hence, there is 
a compensation point at which the two sublattice mag- 
netization cancel. 

0M = 0 KT =

By further decreasing BD z J , the ground state be- 
comes O2, with  at T = 0 K. In this region, 
when 

1.5Bm =
0.55= −B  (slightly below the boundary 

between the ordered phases O1 and O2) the thermal varia- 
tion of mB exhibits an interesting feature which is the 
initial rise of mB with the increase of temperature before 
decreasing to zero at the critical point. On the other hand, 
for all values of 

D z J

BD z J , even though the sublattice 
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magnetization mA may show normal behaviour it is cou-
pled to mB. 

When BD z J  has the values −0.95, −1.0 and −1.05 
(close to the end at the boundary between the ordered- 
phases O2 and O3 in the ground-state phase diagram), it is 
clear from Figure 4 that the temperature dependences of 
mB and mA exhibit similar behaviours to the temperature 
dependences of mB and mA in the previous case. 

At the point ( ) ( ), 0.8,A BD z J D z J = − −0.3 , the 
system will be in the ordered phase O5 (see the ground- 
state phase diagram in Figure 1). In this case, the satu-
rated values of  are ( ),A Bm m ( 1,3 2− ) at T = 0 K. No-
tice that the sublattice magnetization mB has initial rise 
with temperature before decreasing to its zero value at 
the critical point, and the sublattice magnetization mA 
may show a normal behaviour with temperature. 

3.4. Compensation Temperature A 

Compensation temperature Tk of the system can be 
evaluated by requiring the condition M = 0; in Equation 
(13). 

Figures 5(a) and (b) show the behaviour of k  (dot-
ted lines) in the 

T
( ,B BD z J k T z J )  plane for different 

values of AD z J . As seen from the figures, all Tk 
curves emerge from 0.5BD z J = −  at  and 
exhibit some characteristic behaviours when the value of 

0 KT =

AD z J  is changed. 
In Figure 5(a), all the curves increase monotonically 

with BD z J  and terminate at the corresponding phase 
boundaries (solid lines). This behaviour implies the oc-
currence of one compensation point only. As AD z J  
is reduced, the range of BD z J  over which the com-
pensation points occur gradually becomes small, but the 
compensation temperature still reaches the corresponding 
transition line. In the Figure 5(b), and in a restricted re-
gion of BD z J , close to 0.5BD z J = − , a new type 
of compensation curves appear and the compensation 
temperature lines exhibit an interesting features in their 
behaviours, which implies the occurrence of two, three, 
or four compensation points. In this figure, for AD z J , 
close to 0.5AD z J = − , a new type of compensation 
curves appear: the  curves are extended to  kT

BD z J → −∞  below the corresponding transition lines. 
The curve labeled 0.498AD z J = −  is an example of 
such behaviour of kT . Finally, a total magnetization 
curve (which refers to the compensation temperatures 
presented in Figure 5(b)) when 0.498AD z J = −  and 

0.499222B  with four compensation points 
are shown in Figure 6. Furthermore, In Figure 7(a), 
when 

D z J = −

0.4999D z J = −A  and 0.5BD z J = −  (very 
close to the point ( ) ( ), 0.5, 0.5D z J D z J = − −A B

which is in the boundary between five phases in the 
ground state phase diagram), the magnetization curves  

  

 
(a)                            (b) 

Figure 5. Dependence of the compensation temperature 
(dotted curves) on the single-ion anisotropy. DB/z|J| in a 
mixed-spin Ising ferrimagnet with coordination number z, 
when the value of DB/z|J| is changed. (a) The curves show 
the positions of one compensation points; (b) The curves 
show the positions of two, three and four compensation 
points. The solid and dashed curves represent the second 
and first-order transitions. 
 

 

Figure 6. Thermal variations of the total magnetization M 
for the mixed-spin Ising ferrimagnet with the coordination 
number z, when the value of DA/z|J| = −0.498 and the value 
of DB/z|J| = −0.499222. 
 
exhibit some outstanding features. At this point, as the 
temperature is increased from zero, the sublattice mag-
netizations mA and mB exhibit four jumps (discontinuity) 
before the magnetizations vanish, indicating the exis-
tence of four first order transitions at the temperature 
values 0.0797Bk T z J = , 0.1583 and 0.2526 respec-
tively. In the same time, as shown in Figure 7(b), the 
total magnetization exhibits four first order transition 
points and four compensation temperatures. 

4. Conclusion 

In this paper, we have determined the global phase dia-
grams of the mixed spin-2 and spin-5/2 Ising ferrimag-
netic system with different single-ion anisotropies acting 
on the spin-2 and spin-5/2 by using mean-field approxi-
mation. In the phase diagrams, the critical temperature 
lines versus single-ion anisotropies are shown. The sys-
tem presents tricritical behaviour, i.e., the second-order  
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(a) 

 
(b) 

Figure 7. Thermal variations of (a) The total magnetization 
M; (b) The sublattice magnetizations mA, mB for the mixed- 
spin Ising ferrimagnet with the coordination number z, 
when the value of DA/z|J| = −0.4999 and the value of DB/z|J| 
= −0.5. 
 
phase transition line is separated from the first-order 
transition line by a tricritical point. We also observed that 
this mixed-spin ferrimagnetic system may exhibit one, 
two, three or four compensation points. The theoretical 
prediction of the possibility of compensation points and 
the design and preparation of materials with such unusual 
behaviour will certainly open a new area of research on 
such materials. 
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